1932

Abstract

To thrive, cells must control their own physical and chemical properties. This process is known as cellular homeostasis. The dilute solutions traditionally favored by experimenters do not simulate the cytoplasm, where macromolecular crowding and preferential interactions among constituents may dominate critical processes. Solutions that do simulate cytoplasmic conditions are now being characterized. Corresponding cytoplasmic properties can be varied systematically by imposing osmotic stress. This osmotic stress approach is revealing how cytoplasmic properties modulate protein folding and protein–nucleic acid interactions. Results suggest that cytoplasmic homeostasis may require adjustments to multiple, interwoven cytoplasmic properties. Osmosensory transporters with diverse structures and bioenergetic mechanisms activate in response to osmotic stress as other proteins inactivate. These transporters are serving as paradigms for the study of in vivo protein-solvent interactions. Experimenters have proposed three different osmosensory mechanisms. Distinct mechanisms may exist, or these proposals may reflect different perceptions of a single, unifying mechanism.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090110-102815
2011-06-07
2024-04-20
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-micro-090110-102815
Loading
/content/journals/10.1146/annurev-micro-090110-102815
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error