1932

Abstract

Gonorrhea, an obligate human infection, is on the rise worldwide and gonococcal strains resistant to many antibiotics are emerging. Appropriate antimicrobial treatment and prevention, including effective vaccines, are urgently needed. To guide investigation, an experimental model of genital tract infection has been developed in female mice to study mechanisms by which evades host-derived antimicrobial factors and to identify protective and immunosuppressive pathways. Refinements of the animal model have also improved its use as a surrogate host of human infection and accelerated the testing of novel therapeutic and prophylactic compounds against gonococcal infection. Reviewed herein are the () history of antibiotic usage and resistance against gonorrhea and the consequences of resistance mechanisms that may increase gonococcal fitness and therefore the potential for spread, () use of gonococcal infection in the animal model system to study mechanisms of pathogenesis and host defenses, and () current status of vaccine development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090816-093530
2017-09-08
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/71/1/annurev-micro-090816-093530.html?itemId=/content/journals/10.1146/annurev-micro-090816-093530&mimeType=html&fmt=ahah

Literature Cited

  1. Almoncid Mendoza HL, Humbert MV, Christodoulides M. 1.  2016. Biology and function of the Neisseria gonorrhoeae adhesin complex protein (Ng-ACP, NGO1981) Presented at Int. Pathog. Neisseria Conf (IPNC), , 20th., Manchester, UK: [Google Scholar]
  2. Arko RJ. 2.  1989. Animal models for pathogenic Neisseria species. Clin. Microbiol. Rev. 2:S56–59 [Google Scholar]
  3. Ball LM, Criss AK. 3.  2013. Constitutively Opa-expressing and Opa-deficient Neisseria gonorrhoeae strains differentially stimulate and survive exposure to human neutrophils. J. Bacteriol. 195:2982–90 [Google Scholar]
  4. Banerjee A, Wang R, Uljon SN, Rice PA, Gotschlich EC, Stein DC. 4.  1998. Identification of the gene (lgtG) encoding the lipooligosaccharide β chain synthesizing glucosyl transferase from Neisseria gonorrhoeae. PNAS 95:10872–77 [Google Scholar]
  5. Bjorkman J, Nagaev I, Berg OG, Hughes D, Andersson DI. 5.  2000. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287:1479–82 [Google Scholar]
  6. Blake MS, Wetzler LM, Gotschlich EC, Rice PA. 6.  1989. Protein III: structure, function, and genetics. Clin. Microbiol. Rev. 2:S60–63 [Google Scholar]
  7. Bolan GA, Sparling PF, Wasserheit JN. 7.  2012. The emerging threat of untreatable gonococcal infection. N. Engl. J. Med. 366:485–87 [Google Scholar]
  8. Boslego JW, Tramont EC, Chung RC, McChesney DG, Ciak J. 8.  et al. 1991. Efficacy trial of a parenteral gonococcal pilus vaccine in men. Vaccine 9:154–62 [Google Scholar]
  9. Boulton IC, Gray-Owen SD. 9.  2002. Neisserial binding to CEACAM1 arrests the activation and proliferation of CD4+ T lymphocytes. Nat. Immunol. 3:229–36 [Google Scholar]
  10. Braude AI. 10.  1982. Maxwell Finland lecture. Resistance to infection with the gonococcus. J. Infect. Dis. 145:623–24 [Google Scholar]
  11. Buchanan TM, Eschenbach DA, Knapp JS, Holmes KK. 11.  1980. Gonococcal salpingitis is less likely to recur with Neisseria gonorrhoeae of the same principal outer membrane protein antigenic type. Am. J. Obstet. Gynecol. 138:978–80 [Google Scholar]
  12. Callaghan MJ, Lewis S, Sadarangani M, Bailey SE, Chan H. 12.  et al. 2011. Potential of recombinant opa proteins as vaccine candidates against hyperinvasive meningococci. Infect. Immun. 79:2810–18 [Google Scholar]
  13. 13. Cent. Dis. Control Prev. (CDC). 2007. Update to CDC's sexually transmitted diseases treatment guidelines, 2006: fluoroquinolones no longer recommended for treatment of gonococcal infections. Morb. Mortal. Wkly. Rep 56:332–36 [Google Scholar]
  14. 14. Cent. Dis. Control Prev. (CDC). 2012. Update to CDC's Sexually transmitted diseases treatment guidelines, 2010: oral cephalosporins no longer a recommended treatment for gonococcal infections. Morb. Mortal. Wkly. Rep 61:590–94 [Google Scholar]
  15. 15. Cent. Dis. Control Prev. (CDC). 2016. Gonorrhea statistics https://www.cdc.gov/std/gonorrhea/stats.htm
  16. Christodoulides M, McGuinness BT, Heckels JE. 16.  1993. Immunization with synthetic peptides containing epitopes of the class 1 outer-membrane protein of Neisseria meningitidis: production of bactericidal antibodies on immunization with a cyclic peptide. J. Gen. Microbiol. 139:1729–38 [Google Scholar]
  17. Cohen MS, Hoffman IF, Royce RA, Kazembe P, Dyer JR. 17.  et al. 1997. Reduction of concentration of HIV-1 in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1. Lancet 349:1868–73 [Google Scholar]
  18. Cole JG, Fulcher NB, Jerse AE. 18.  2010. Opacity proteins increase Neisseria gonorrhoeae fitness in the female genital tract due to a factor under ovarian control. Infect. Immun. 78:1629–41 [Google Scholar]
  19. Cole JG, Jerse AE. 19.  2009. Functional characterization of antibodies against Neisseria gonorrhoeae opacity protein loops. PLOS ONE 4:e8108 [Google Scholar]
  20. Cornelissen CN, Hollander A. 20.  2011. TonB-dependent transporters expressed by Neisseria gonorrhoeae. Front. Microbiol. 2:117 [Google Scholar]
  21. Criss AK, Katz BZ, Seifert HS. 21.  2009. Resistance of Neisseria gonorrhoeae to non-oxidative killing by adherent human polymorphonuclear leucocytes. Cell Microbiol 11:1074–87 [Google Scholar]
  22. Criss AK, Seifert HS. 22.  2008. Neisseria gonorrhoeae suppresses the oxidative burst of human polymorphonuclear leukocytes. Cell. Microbiol. 10:2257–70 [Google Scholar]
  23. de Jonge MI, Hamstra HJ, Jiskoot W, Roholl P, Williams NA. 23.  et al. 2004. Intranasal immunisation of mice with liposomes containing recombinant meningococcal OpaB and OpaJ proteins. Vaccine 22:4021–28 [Google Scholar]
  24. Delahay RM, Robertson BD, Balthazar JT, Shafer WM, Ison CA. 24.  1997. Involvement of the gonococcal MtrE protein in the resistance of Neisseria gonorrhoeae to toxic hydrophobic agents. Microbiology 143:Pt. 72127–33 [Google Scholar]
  25. DeRocco AJ, Staats HF, Sempowski GD, Ventevogel MS, Jerse AE. 25.  2014. Development of MtrE, the outer membrane channel of the MtrC-MtrD-MtrE active efflux pump, as a gonorrhea vaccine Presented at Int. Pathog. Neisseria Conf. (IPNC), , 19th., Asheville, NC:
  26. Drake SL, Koomey M. 26.  1995. The product of the pilQ gene is essential for the biogenesis of type IV pili in Neisseria gonorrhoeae. Mol. Microbiol. 18:975–86 [Google Scholar]
  27. Duncan JA, Gao X, Huang MT, O'Connor BP, Thomas CE. 27.  et al. 2009. Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J. Immunol. 182:6460–69 [Google Scholar]
  28. Edwards JL, Brown EJ, Uk-Nham S, Cannon JG, Blake MS, Apicella MA. 28.  2002. A co-operative interaction between Neisseria gonorrhoeae and complement receptor 3 mediates infection of primary cervical epithelial cells. Cell Microbiol 4:571–84 [Google Scholar]
  29. Ermert D, Shaughnessy J, Joeris T, Kaplan J, Pang CJ. 29.  et al. 2015. Virulence of group A streptococci is enhanced by human complement inhibitors. PLOS Pathog 11:e1005043 [Google Scholar]
  30. Feinen B, Jerse AE, Gaffen SL, Russell MW. 30.  2010. Critical role of Th17 responses in a murine model of Neisseria gonorrhoeae genital infection. Mucosal Immunol 3:312–21 [Google Scholar]
  31. Feinen B, Russell MW. 31.  2012. Contrasting roles of IL-22 and IL-17 in murine genital tract infection by Neisseria gonorrhoeae. Front. Immunol. 3:11 [Google Scholar]
  32. Fifer H, Natarajan U, Jones L, Alexander S, Hughes G. 32.  et al. 2016. Failure of dual antimicrobial therapy in treatment of gonorrhea. N. Engl. J. Med. 374:2504–46 [Google Scholar]
  33. Gagliardi MC, Starnino S, Teloni R, Mariotti S, Dal Conte I. 33.  et al. 2011. Circulating levels of interleukin-17A and interleukin-23 are increased in patients with gonococcal infection. FEMS Immunol. Med. Microbiol 61:129–32 [Google Scholar]
  34. Garvin LE, Begum AA, Bash MC, Jerse AE. 34.  2010. Porin-derived cyclic peptides elicit broadly cross-reactive bactericidal antibodies against Neisseria gonorrhoeae Presented at Int. Pathog. Neisseria Conf (IPNC), , 17th., Banff, Can:
  35. Gill MJ, McQuillen DP, van Putten JP, Wetzler LM, Bramley J. 35.  et al. 1996. Functional characterization of a sialyltransferase-deficient mutant of Neisseria gonorrhoeae. Infect. Immun. 64:3374–78 [Google Scholar]
  36. Golparian D, Shafer WM, Ohnishi M, Unemo M. 36.  2014. Importance of multidrug efflux pumps in the antimicrobial resistance property of clinical multidrug-resistant isolates of Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 58:3556–59 [Google Scholar]
  37. Greenberg L, Diena BB, Ashton FA, Wallace R, Kenny CP. 37.  et al. 1974. Gonococcal vaccine studies in Inuvik. Can. J. Public Health 65:29–33 [Google Scholar]
  38. Gulati S, McQuillen DP, Mandrell RE, Jani DB, Rice PA. 38.  1996. Immunogenicity of Neisseria gonorrhoeae lipooligosaccharide epitope 2C7, widely expressed in vivo with no immunochemical similarity to human glycosphingolipids. J. Infect. Dis. 174:1223–37 [Google Scholar]
  39. Gulati S, McQuillen DP, Sharon J, Rice PA. 39.  1996. Experimental immunization with a monoclonal anti-idiotope antibody that mimics the Neisseria gonorrhoeae lipooligosaccharide epitope 2C7. J. Infect. Dis. 174:1238–48 [Google Scholar]
  40. Gulati S, Mu X, Zheng B, Reed GW, Ram S, Rice PA. 40.  2015. Antibody to reduction modifiable protein increases the bacterial burden and the duration of gonococcal infection in a mouse model. J. Infect. Dis. 212:311–15 [Google Scholar]
  41. Gulati S, Zheng B, Reed GW, Su X, Cox AD. 41.  et al. 2013. Immunization against a saccharide epitope accelerates clearance of experimental gonococcal infection. PLOS Pathog 9:e1003559 [Google Scholar]
  42. Gulati S, Zheng B, Reed GW, Su X-H, Le W. 42.  et al. 2014. Pre-existing Chlamydia infection is associated with an increased risk of gonococcal infection Presented at Int. Pathog. Neisseria Conf (IPNC), , 19th., Asheville, NC: [Google Scholar]
  43. Haghi F, Peerayeh SN, Siadat SD, Zeighami H. 43.  2012. Recombinant outer membrane secretin PilQ406–770 as a vaccine candidate for serogroup B Neisseria meningitidis. Vaccine 30:1710–14 [Google Scholar]
  44. Hobbs MM, Alcorn TM, Davis RH, Fischer W, Thomas JC. 44.  et al. 1999. Molecular typing of Neisseria gonorrhoeae causing repeated infections: evolution of porin during passage within a community. J. Infect. Dis. 179:371–81 [Google Scholar]
  45. Hobbs MM, Anderson JE, Balthazar JT, Kandler JL, Carlson RW. 45.  et al. 2013. Lipid A's structure mediates Neisseria gonorrhoeae fitness during experimental infection of mice and men. mBio 4:e00892–13 [Google Scholar]
  46. Hobbs MM, Sparling PF, Cohen MS, Shafer WM, Deal CD, Jerse AE. 46.  2011. Experimental gonococcal infection in male volunteers: cumulative experience with Neisseria gonorrhoeae strains FA1090 and MS11mkC. Front. Microbiol. 2:123 [Google Scholar]
  47. Hook EW 3rd, Olsen DA, Buchanan TM. 47.  1984. Analysis of the antigen specificity of the human serum immunoglobulin G immune response to complicated gonococcal infection. Infect. Immun. 43:706–9 [Google Scholar]
  48. Imarai M, Candia E, Rodriguez-Tirado C, Tognarelli J, Pardo M. 48.  et al. 2008. Regulatory T cells are locally induced during intravaginal infection of mice with Neisseria gonorrhoeae. Infect. Immun. 76:5456–65 [Google Scholar]
  49. Islam EA, Shaik-Dasthagirisaheb Y, Kaushic C, Wetzler LM, Gray-Owen SD. 49.  2016. The reproductive cycle is a pathogenic determinant during gonococcal pelvic inflammatory disease in mice. Mucosal Immunol 9:1051–64 [Google Scholar]
  50. James JF, Swanson J. 50.  1978. Color/opacity colonial variants of Neisseria gonorrhoeae and their relationship to the menstrual cycle. Immunobiology of Neisseria gonorrhoeae GF Brooks, EC Gotschlich, KK Holmes, WD Sawyer, FE Young 338–43 Washington, DC: Am. Soc. Microbiol [Google Scholar]
  51. Jerse AE. 51.  1999. Experimental gonococcal genital tract infection and opacity protein expression in estradiol-treated mice. Infect. Immun. 67:5699–708 [Google Scholar]
  52. Jerse AE, Bash MC, Russell MW. 52.  2014. Vaccines against gonorrhea: current status and future challenges. Vaccine 32:1579–87 [Google Scholar]
  53. Jerse AE, Deal CD. 53.  2013. Vaccine research for gonococcal infections: Where are we?. Sex. Transm. Infect. 89:iv63–68 [Google Scholar]
  54. Jerse AE, Wu H, Packiam M, Vonck RA, Begum AA, Garvin LE. 54.  2011. Estradiol-treated female mice as surrogate hosts for Neisseria gonorrhoeae genital tract infections. Front. Microbiol. 2:107 [Google Scholar]
  55. Johansson L, Rytkonen A, Bergman P, Albiger B, Kallstrom H. 55.  et al. 2003. CD46 in meningococcal disease. Science 301:373–75 [Google Scholar]
  56. John CM, Liu M, Jarvis GA. 56.  2009. Natural phosphoryl and acyl variants of lipid A from Neisseria meningitidis strain 89I differentially induce tumor necrosis factor-α in human monocytes. J. Biol. Chem. 284:21515–25 [Google Scholar]
  57. Johnson DW, Holmes KK, Kvale PA, Halverson CW, Hirsch WP. 57.  1969. An evaluation of gonorrhea case findings in the chronically infected female. Am. J. Epidemiol. 90:438–48 [Google Scholar]
  58. Johnson MB, Criss AK. 58.  2013. Neisseria gonorrhoeae phagosomes delay fusion with primary granules to enhance bacterial survival inside human neutrophils. Cell. Microbiol. 15:1323–40 [Google Scholar]
  59. Keiser PB, Gibbs BT, Coster TS, Moran EE, Stoddard MB. 59.  et al. 2010. A phase 1 study of a group B meningococcal native outer membrane vesicle vaccine made from a strain with deleted lpxL2 and synX and stable expression of opcA. Vaccine 28:6970–76 [Google Scholar]
  60. Kim JJ, Zhou D, Mandrell RE, Griffiss JM. 60.  1992. Effect of exogenous sialylation of the lipooligosaccharide of Neisseria gonorrhoeae on opsonophagocytosis. Infect. Immun. 60:4439–42 [Google Scholar]
  61. Koch ML. 61.  1947. A study of cervical cultures taken in cases of acute gonorrhea with special reference to the phases of the menstrual cycle. Am. J. Obstet. Gynecol. 54:861–66 [Google Scholar]
  62. Kunz AN, Begum AA, Wu H, D'Ambrozio JA, Robinson JM. 62.  et al. 2012. Impact of fluoroquinolone resistance mutations on gonococcal fitness and in vivo selection for compensatory mutations. J. Infect. Dis. 205:1821–29 [Google Scholar]
  63. Lammel CJ, Sweet RL, Rice PA, Knapp JS, Schoolnik GK. 63.  et al. 1985. Antibody-antigen specificity in the immune response to infection with Neisseria gonorrhoeae. J. Infect. Dis. 152:990–1001 [Google Scholar]
  64. Lee EH, Shafer WM. 64.  1999. The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Mol. Microbiol. 33:839–45 [Google Scholar]
  65. Lewis LA, Carter M, Burbage J, Chaves B, Beluchukwu A. 65.  et al. 2012. The role of gonococcal neisserial surface protein A in serum resistance and comparison of its factor H binding properties with that of its meningococcal counterpart Presented at Int. Pathog. Neisseria Conf (IPNC), , 18th., Wuzberg, Ger:
  66. Lewis LA, Choudhury B, Balthazar JT, Martin LE, Ram S. 66.  et al. 2009. Phosphoethanolamine substitution of lipid A and resistance of Neisseria gonorrhoeae to cationic antimicrobial peptides and complement-mediated killing by normal human serum. Infect. Immun. 77:1112–20 [Google Scholar]
  67. Lewis LA, Gulati S, Burrowes E, Zheng B, Ram S, Rice PA. 67.  2015. α-2,3-sialyltransferase expression level impacts the kinetics of lipooligosaccharide sialylation, complement resistance, and the ability of Neisseria gonorrhoeae to colonize the murine genital tract. mBio 6:e02465–14 [Google Scholar]
  68. Lewis LA, Shafer WM, Dutta Ray T, Ram S, Rice PA. 68.  2013. Phosphoethanolamine residues on the lipid A moiety of Neisseria gonorrhoeae lipooligosaccharide modulate binding of complement inhibitors and resistance to complement killing. Infect. Immun. 81:33–42 [Google Scholar]
  69. Li G, Jiao H, Jiang G, Wang J, Zhu L. 69.  et al. 2011. Neisseria gonorrhoeae NspA induces specific bactericidal and opsonic antibodies in mice. Clin. Vaccine Immunol. 18:1817–22 [Google Scholar]
  70. Liang JY, Cao WL, Li XD, Bi C, Yang RD. 70.  et al. 2016. Azithromycin-resistant Neisseria gonorrhoeae isolates in Guangzhou, China (2009–2013): coevolution with decreased susceptibilities to ceftriaxone and genetic characteristics. BMC Infect. Dis. 16:152 [Google Scholar]
  71. Liu M, John CM, Jarvis GA. 71.  2010. Phosphoryl moieties of lipid A from Neisseria meningitidis and N. gonorrhoeae lipooligosaccharides play an important role in activation of both MyD88- and TRIF-dependent TLR4-MD-2 signaling pathways. J. Immunol 185:6974–84 [Google Scholar]
  72. Liu Y, Egilmez NK, Russell MW. 72.  2013. Enhancement of adaptive immunity to Neisseria gonorrhoeae by local intravaginal administration of microencapsulated interleukin 12. J. Infect. Dis. 208:1821–29 [Google Scholar]
  73. Liu Y, Feinen B, Russell MW. 73.  2011. New concepts in immunity to Neisseria gonorrhoeae: Innate responses and suppression of adaptive immunity favor the pathogen, not the host. Front. Microbiol. 2:52 [Google Scholar]
  74. Liu Y, Islam EA, Jarvis GA, Gray-Owen SD, Russell MW. 74.  2012. Neisseria gonorrhoeae selectively suppresses the development of Th1 and Th2 cells, and enhances Th17 cell responses, through TGF-β-dependent mechanisms. Mucosal Immunol 5:320–31 [Google Scholar]
  75. Liu Y, Liu W, Russell MW. 75.  2014. Suppression of host adaptive immune responses by Neisseria gonorrhoeae: role of interleukin 10 and type 1 regulatory T cells. Mucosal Immunol 7:165–76 [Google Scholar]
  76. Liu Y, Russell MW. 76.  2011. Diversion of the immune response to Neisseria gonorrhoeae from Th17 to Th1/Th2 by treatment with anti-transforming growth factor β antibody generates immunological memory and protective immunity. mBio 2:e00095–11 [Google Scholar]
  77. McClure R, Nudel K, Massari P, Tjaden B, Su X. 77.  et al. 2015. The gonococcal transcriptome during infection of the lower genital tract in women. PLOS ONE 10:e0133982 [Google Scholar]
  78. Moore J, Bailey SE, Benmechernene Z, Tzitzilonis C, Griffiths NJ. 78.  et al. 2005. Recognition of saccharides by the OpcA, OpaD, and OpaB outer membrane proteins from Neisseria meningitidis. J. Biol. Chem. 280:31489–97 [Google Scholar]
  79. Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M. 79.  et al. 2015. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLOS ONE 10:e0143304 [Google Scholar]
  80. Ngampasutadol J, Rice PA, Walsh MT, Gulati S. 80.  2006. Characterization of a peptide vaccine candidate mimicking an oligosaccharide epitope of Neisseria gonorrhoeae and resultant immune responses and function. Vaccine 24:157–70 [Google Scholar]
  81. Normark S, Albiger B, Jonsson AB. 81.  2002. Gonococci cause immunosuppression by engaging a coinhibitory receptor on T lymphocytes. Nat. Immunol. 3:210–11 [Google Scholar]
  82. Ohneck EA, Zalucki YM, Johnson PJ, Dhulipala V, Golparian D. 82.  et al. 2011. A novel mechanism of high-level, broad-spectrum antibiotic resistance caused by a single base pair change in Neisseria gonorrhoeae. mBio 2:e00187–11 [Google Scholar]
  83. Ohnishi M, Golparian D, Shimuta K, Saika T, Hoshina S. 83.  et al. 2011. Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea? Detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob. Agents Chemother. 55:3538–45 [Google Scholar]
  84. Packiam M, Veit SJ, Anderson DJ, Ingalls RR, Jerse AE. 84.  2010. Mouse strain-dependent differences in susceptibility to Neisseria gonorrhoeae infection and induction of innate immune responses. Infect. Immun. 78:433–40 [Google Scholar]
  85. Packiam M, Wu H, Veit SJ, Mavrogiorgos N, Jerse AE, Ingalls RR. 85.  2012. Protective role of Toll-like receptor 4 in experimental gonococcal infection of female mice. Mucosal Immunol 5:19–29 [Google Scholar]
  86. Packiam M, Yedery RD, Begum AA, Carlson RW, Ganguly J. 86.  et al. 2014. Phosphoethanolamine decoration of Neisseria gonorrhoeae lipid A plays a dual immunostimulatory and protective role during experimental genital tract infection. Infect. Immun. 82:2170–79 [Google Scholar]
  87. Pantelic M, Chen I, Parker J, Zhang P, Grunert F, Chen T. 87.  2004. Retinoic acid treated HL60 cells express CEACAM1 (CD66a) and phagocytose Neisseria gonorrhoeae. FEMS Immunol. Med. Microbiol 42:261–66 [Google Scholar]
  88. Petousis-Harris H, Paynter J, Morgan J, Saxton P, Sherwood J. 88.  et al. 2016. Effectiveness of a group B OMV meningococcal vaccine on gonorrhea in New Zealand—a case control study Presented at Int. Pathog. Neisseria Conf (IPNC), , 20th., Manchester, UK:
  89. Pettersson A, Kortekaas J, Weynants VE, Voet P, Poolman JT. 89.  et al. 2006. Vaccine potential of the Neisseria meningitidis lactoferrin-binding proteins LbpA and LbpB. Vaccine 24:3545–57 [Google Scholar]
  90. Plante M, Jerse A, Hamel J, Couture F, Rioux CR. 90.  et al. 2000. Intranasal immunization with gonococcal outer membrane preparations reduces the duration of vaginal colonization of mice by Neisseria gonorrhoeae. J. Infect. Dis. 182:848–55 [Google Scholar]
  91. Plummer FA, Chubb H, Simonsen JN, Bosire M, Slaney L. 91.  et al. 1993. Antibody to Rmp (outer membrane protein 3) increases susceptibility to gonococcal infection. J. Clin. Invest. 91:339–43 [Google Scholar]
  92. Plummer FA, Chubb H, Simonsen JN, Bosire M, Slaney L. 92.  et al. 1994. Antibodies to opacity proteins (Opa) correlate with a reduced risk of gonococcal salpingitis. J. Clin. Invest. 93:1748–55 [Google Scholar]
  93. Plummer FA, Simonsen JN, Chubb H, Slaney L, Kimata J. 93.  et al. 1989. Epidemiologic evidence for the development of serovar-specific immunity after gonococcal infection. J. Clin. Invest. 83:1472–76 [Google Scholar]
  94. Price GA, Masri HP, Hollander AM, Russell MW, Cornelissen CN. 94.  2007. Gonococcal transferrin binding protein chimeras induce bactericidal and growth inhibitory antibodies in mice. Vaccine 25:7247–60 [Google Scholar]
  95. Ragland SA, Schaub RE, Hackett KT, Dillard JP, Criss AK. 95.  2016. Two lytic transglycosylases in Neisseria gonorrhoeae impart resistance to killing by lysozyme and human neutrophils. Cell. Microbiol. 19:e12662 [Google Scholar]
  96. Ram S, Cullinane M, Blom AM, Gulati S, McQuillen DP. 96.  et al. 2001. Binding of C4b-binding protein to porin: a molecular mechanism of serum resistance of Neisseria gonorrhoeae. J. Exp. Med. 193:281–95 [Google Scholar]
  97. Ram S, McQuillen DP, Gulati S, Elkins C, Pangburn MK, Rice PA. 97.  1998. Binding of complement factor H to loop 5 of porin protein 1A: a molecular mechanism of serum resistance of nonsialylated Neisseria gonorrhoeae. J. Exp. Med. 188:671–80 [Google Scholar]
  98. Ram S, Sharma AK, Simpson SD, Gulati S, McQuillen DP. 98.  et al. 1998. A novel sialic acid binding site on factor H mediates serum resistance of sialylated Neisseria gonorrhoeae. J. Exp. Med. 187:743–52 [Google Scholar]
  99. Ram S, Shaughnessy J, DeOliveira RB, Lewis LA, Gulati S, Rice PA. 99.  2016. Utilizing complement evasion strategies to design complement-based antibacterial immunotherapeutics: lessons from the pathogenic Neisseriae. Immunobiology 221:1110–23 [Google Scholar]
  100. Rest RF, Fischer SH, Ingham ZZ, Jones JF. 100.  1982. Interactions of Neisseria gonorrhoeae with human neutrophils: effects of serum and gonococcal opacity on phagocyte killing and chemiluminescence. Infect. Immun. 36:737–44 [Google Scholar]
  101. Rest RF, Frangipane JV. 101.  1992. Growth of Neisseria gonorrhoeae in CMP-N-acetylneuraminic acid inhibits nonopsonic (opacity-associated outer membrane protein-mediated) interactions with human neutrophils. Infect. Immun. 60:989–97 [Google Scholar]
  102. Rice PA. 102.  2005. Gonococcal arthritis (disseminated gonococcal infection). Infect. Dis. Clin. North Am. 19:853–61 [Google Scholar]
  103. Rice PA, Gulati S, McQuillen DP, Ram S. 103.  1996. Is there protective immunity to gonococcal disease? Presented at Int. Pathog. Neisseria Conf (IPNC), , 10th., Baltimore, MD:
  104. Rice PA, Vayo HE, Tam MR, Blake MS. 104.  1986. Immunoglobulin G antibodies directed against protein III block killing of serum-resistant Neisseria gonorrhoeae by immune serum. J. Exp. Med. 164:1735–48 [Google Scholar]
  105. Rotman E, Seifert HS. 105.  2014. The genetics of Neisseria species. Annu. Rev. Genet. 48:405–31 [Google Scholar]
  106. Rouquette C, Harmon JB, Shafer WM. 106.  1999. Induction of the mtrCDE-encoded efflux pump system of Neisseria gonorrhoeae requires MtrA, an AraC-like protein. Mol. Microbiol 33:651–58 [Google Scholar]
  107. Russell MW, Hedges SR, Wu HY, Hook EW 3rd, Mestecky J. 107.  1999. Mucosal immunity in the genital tract: prospects for vaccines against sexually transmitted diseases—a review. Am. J. Reprod. Immunol. 42:58–63 [Google Scholar]
  108. Sadarangani M, Pollard AJ, Gray-Owen SD. 108.  2011. Opa proteins and CEACAMs: pathways of immune engagement for pathogenic Neisseria. FEMS Microbiol. Rev. 35:498–514 [Google Scholar]
  109. Seib KL, Simons MP, Wu HJ, McEwan AG, Nauseef WM. 109.  et al. 2005. Investigation of oxidative stress defenses of Neisseria gonorrhoeae by using a human polymorphonuclear leukocyte survival assay. Infect. Immun. 73:5269–72 [Google Scholar]
  110. Seib KL, Tseng HJ, McEwan AG, Apicella MA, Jennings MP. 110.  2004. Defenses against oxidative stress in Neisseria gonorrhoeae and Neisseria meningitidis: distinctive systems for different lifestyles. J. Infect. Dis 190:136–47 [Google Scholar]
  111. Semchenko EA, Day CJ, Seib KL. 111.  2016. MetQ of Neisseria gonorrhoeae is a surface expressed antigen that elicits bactericidal and functional blocking antibodies. Infect. Immun. 85:e00898–16 [Google Scholar]
  112. Simms AN, Jerse AE. 112.  2006. In vivo selection for Neisseria gonorrhoeae opacity protein expression in the absence of human carcinoembryonic antigen cell adhesion molecules. Infect. Immun. 74:2965–74 [Google Scholar]
  113. Sintsova A, Wong H, MacDonald KS, Kaul R, Virji M, Gray-Owen SD. 113.  2015. Selection for a CEACAM receptor-specific binding phenotype during Neisseria gonorrhoeae infection of the human genital tract. Infect. Immun. 83:1372–83 [Google Scholar]
  114. Soler-Garcia AA, Jerse AE. 114.  2007. Neisseria gonorrhoeae catalase is not required for experimental genital tract infection despite the induction of a localized neutrophil response. Infect. Immun. 75:2225–33 [Google Scholar]
  115. Stork M, Bos MP, Jongerius I, de Kok N, Schilders I. 115.  et al. 2010. An outer membrane receptor of Neisseria meningitidis involved in zinc acquisition with vaccine potential. PLOS Pathog 6:e1000969 [Google Scholar]
  116. Straub RH. 116.  2007. The complex role of estrogens in inflammation. Endocr. Rev. 28:521–74 [Google Scholar]
  117. Stupiansky NW, Van Der Pol B, Williams JA, Weaver B, Taylor SE, Fortenberry JD. 117.  2011. The natural history of incident gonococcal infection in adolescent women. Sex. Transm. Dis. 38:750–54 [Google Scholar]
  118. Taylor-Robinson D, Furr PM, Hetherington CM. 118.  1990. Neisseria gonorrhoeae colonises the genital tract of oestradiol-treated germ-free female mice. Microb. Pathog. 9:369–73 [Google Scholar]
  119. Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A, Sednaoui P. 119.  2012. High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob. Agents Chemother 56:1273–80 [Google Scholar]
  120. Unemo M, Nicholas RA, Jerse AE, Davies C, Shafer WM. 120.  2014. Molecular mechanisms of antibiotic resistance expressed by the pathogenic Neisseria. Pathogenic Neisseria: Genomics, Molecular Biology and Disease Intervention JK Davies, CM Kahler 161–92 Wymondham, UK: Horizon Sci [Google Scholar]
  121. Unemo M, Shafer WM. 121.  2014. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin. Microbiol. Rev. 27:587–613 [Google Scholar]
  122. Unemo M, Shafer WM. 122.  2015. Future treatment of gonorrhea—Novel emerging drugs are essential and in progress?. Expert Opin. Emerg. Drugs 20:357–60 [Google Scholar]
  123. Veal WL, Nicholas RA, Shafer WM. 123.  2002. Overexpression of the MtrC-MtrD-MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. J. Bacteriol. 184:5619–24 [Google Scholar]
  124. Virji M, Makepeace K, Ferguson DJ, Achtman M, Moxon ER. 124.  1993. Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial cells. Mol. Microbiol. 10:499–510 [Google Scholar]
  125. Vonck RA, Darville T, O'Connell CM, Jerse AE. 125.  2011. Chlamydial infection increases gonococcal colonization in a novel murine coinfection model. Infect. Immun. 79:1566–77 [Google Scholar]
  126. Warner DM, Folster JP, Shafer WM, Jerse AE. 126.  2007. Regulation of the MtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. J. Infect. Dis. 196:1804–12 [Google Scholar]
  127. Warner DM, Shafer WM, Jerse AE. 127.  2008. Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol. Microbiol. 70:462–78 [Google Scholar]
  128. Wetzler LM, Gotschlich EC, Blake MS, Koomey JM. 128.  1989. The construction and characterization of Neisseria gonorrhoeae lacking protein III in its outer membrane. J. Exp. Med. 169:2199–209 [Google Scholar]
  129. Wu H, Jerse AE. 129.  2006. α-2,3-sialyltransferase enhances Neisseria gonorrhoeae survival during experimental murine genital tract infection. Infect. Immun. 74:4094–103 [Google Scholar]
  130. Wu H, Soler-Garcia AA, Jerse AE. 130.  2009. A strain-specific catalase mutation and mutation of the metal-binding transporter gene mntC attenuate Neisseria gonorrhoeae in vivo but not by increasing susceptibility to oxidative killing by phagocytes. Infect. Immun 77:1091–102 [Google Scholar]
  131. Yao XD, Fernandez S, Kelly MM, Kaushic C, Rosenthal KL. 131.  2007. Expression of Toll-like receptors in murine vaginal epithelium is affected by the estrous cycle and stromal cells. J. Reprod. Immunol. 75:106–19 [Google Scholar]
  132. Yedery RD, Jerse AE. 132.  2015. Augmentation of cationic antimicrobial peptide production with histone deacetylase inhibitors as a novel epigenetic therapy for bacterial infections. Antibiotics 4:44–61 [Google Scholar]
  133. Zarantonelli ML, Szatanik M, Giorgini D, Hong E, Huerre M. 133.  et al. 2007. Transgenic mice expressing human transferrin as a model for meningococcal infection. Infect. Immun. 75:5609–14 [Google Scholar]
  134. Zhu W, Chen CJ, Thomas CE, Anderson JE, Jerse AE, Sparling PF. 134.  2011. Vaccines for gonorrhea: Can we rise to the challenge?. Front. Microbiol. 2:124 [Google Scholar]
  135. Zhu W, Thomas CE, Chen CJ, Van Dam CN, Johnston RE. 135.  et al. 2005. Comparison of immune responses to gonococcal PorB delivered as outer membrane vesicles, recombinant protein, or Venezuelan equine encephalitis virus replicon particles. Infect. Immun. 73:7558–68 [Google Scholar]
  136. Zhu W, Ventevogel MS, Knilans KJ, Anderson JE, Oldach LM. 136.  et al. 2012. Neisseria gonorrhoeae suppresses dendritic cell-induced, antigen-dependent CD4 T cell proliferation. PLOS ONE 7:e41260 [Google Scholar]
  137. Zielke RA, Wierzbicki IH, Baarda BI, Gafken PR, Soge OO. 137.  et al. 2016. Proteomics-driven antigen discovery for development of vaccines against gonorrhea. Mol. Cell. Proteom. 15:2338–55 [Google Scholar]
/content/journals/10.1146/annurev-micro-090816-093530
Loading
/content/journals/10.1146/annurev-micro-090816-093530
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error