1932

Abstract

Dormant and spores begin to grow when small molecules (germinants) trigger germination, potentially leading to food spoilage or disease. Germination-specific proteins sense germinants, transport small molecules, and hydrolyze specific bonds in cortex peptidoglycan and specific proteins. Major events in germination include () germinant sensing; () commitment to germinate; () release of spores’ depot of dipicolinic acid (DPA); () hydrolysis of spores’ peptidoglycan cortex; and () spore core swelling and water uptake, cell wall peptidoglycan remodeling, and restoration of core protein and inner spore membrane lipid mobility. Germination is similar between and , but some species differ in how germinants are sensed and how cortex hydrolysis and DPA release are triggered. Despite detailed knowledge of the proteins and signal transduction pathways involved in germination, precisely what some germination proteins do and how they do it remain unclear.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090816-093558
2017-09-08
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/71/1/annurev-micro-090816-093558.html?itemId=/content/journals/10.1146/annurev-micro-090816-093558&mimeType=html&fmt=ahah

Literature Cited

  1. Adams CM, Eckenroth BE, Putnam EE, Doublié S, Shen A. 1.  2013. Structural and functional analysis of the CspB protease required for Clostridium spore germination. PLOS Pathog 9:e1003165 https://doi.org/10.1371/journal.ppat.1003165 [Crossref] [Google Scholar]
  2. Al-Riyami B, Üstok FI, Stott K, Chirgadze DY, Christie G. 2.  2016. The crystal structure of Clostridium perfringens SleM, a muramidase involved in cortical hydrolysis during spore germination. Proteins 84:1681–89 [Google Scholar]
  3. Banawas S, Korza G, Paredes-Sabja D, Li Y, Hao B. 3.  et al. 2015. Location and stoichiometry of the protease CspB and the cortex-lytic enzyme SleC in Clostridium perfringens spores. Food Microbiol 50:83–87 [Google Scholar]
  4. Banawas S, Paredes-Sabja D, Korza G, Li Y, Hao B. 4.  et al. 2013. The Clostridium perfringens germinant receptor protein, GerKC, is located in the spore inner membrane and is crucial for spore germination. J. Bacteriol. 195:5084–91 [Google Scholar]
  5. Bernhards CB, Popham DL. 5.  2014. Role of YpeB in cortex hydrolysis during germination of Bacillus anthracis spores. J. Bacteriol. 196:3399–409 [Google Scholar]
  6. Bhattacharjee D, Francis MB, Ding X, McAllister KN, Shrestha R, Sorg JA. 6.  2016. Reexamining the germination phenotypes of several Clostridium difficile strains suggests another role for the CspC germinant receptor. J. Bacteriol. 198:777–86 [Google Scholar]
  7. Bhattacharjee D, McAllister KN, Sorg JA. 7.  2016. Germinants and their receptors in clostridia. J. Bacteriol. 198:2767–75 [Google Scholar]
  8. Blankenship BG, Heffron JD, Popham DL. 8.  2015. Lytic enzyme-assisted germination of Bacillus anthracis and Bacillus subtilis spores. J. Appl. Microbiol. 119:521–28 [Google Scholar]
  9. Brunt J, Plowman J, Gaskin DJ, Itchner M, Carter AT, Peck MW. 9.  2014. Functional characterisation of germinant receptors in Clostridium botulinum and Clostridium sporogenes presents novel insights into spore germination systems. PLOS Pathog 10:e1004382 https://doi.org/10.1371/journal.ppat.1004382 [Crossref] [Google Scholar]
  10. Brunt J, Van Vliet AHM, van den Bos F, Carter AT, Peck MW. 10.  2016. Diversity of the germination apparatus in Clostridium botulinum groups I, II, III and IV. Front. Microbiol. 7:1702 [Google Scholar]
  11. Butzin XY, Troiano AJ, Coleman WH, Griffiths KK, Doona CJ. 11.  et al. 2012. Analysis of the effects of a gerP mutation on the germination of spores of Bacillus subtilis. J. Bacteriol. 194:5749–58 [Google Scholar]
  12. Cangiano G, Sirec T, Panarella C, Isticato R, Baccigalupi L. 12.  et al. 2014. The sps gene products affect the germination, hydrophobicity, and protein adsorption of Bacillus subtilis spores. Appl. Environ. Microbiol. 80:7293–302 [Google Scholar]
  13. Carlson PE Jr., Kaiser AM, McColm SA, Bauer JM, Young VB. 13.  et al. 2015. Variation in germination of Clostridium difficile clinical isolates correlates to disease severity. Anaerobe 33:64–70 [Google Scholar]
  14. Celebi O, Buyuk F, Pottage T, Crook A, Hawkey S. 14.  et al. 2016. The use of germinants to potentiate the sensitivity of Bacillus anthracis spores to peracetic acid. Front. Microbiol. 7:18 https://doi.org/10.3389/fmicb.2016.00018 [Crossref] [Google Scholar]
  15. Chirakkal H, O'Rourke M, Atrik A, Foster SJ, Moir A. 15.  2002. Analysis of spore cortex lytic enzymes and related proteins in Bacillus subtilis endospore germination. Microbiology 148:2383–92 [Google Scholar]
  16. Christie G, Lowe CR. 16.  2007. Role of chromosomal and plasmid-borne receptor homologues in the response of Bacillus megaterium QM B1551 spores to germinants. J. Bacteriol. 189:4375–83 [Google Scholar]
  17. Dembek M, Stabler RA, Witney AA, Wren BW, Fairweather NF. 17.  2013. Transcriptional analysis of temporal gene expression in germinating Clostridium difficile 630 endospores. PLOS ONE 8:e64011 https://doi.org/10.1371/journal.pone.0064011 [Crossref] [Google Scholar]
  18. Donnelly ML, Fimlaid KA, Shen A. 18.  2016. Characterization of Clostridium difficile spores lacking either SpoVAC or dipicolinic acid synthetase. J. Bacteriol. 198:1694–707 [Google Scholar]
  19. Donnelly ML, Li W, Li Y-Q, Hinkel L, Setlow P, Shen A. 19.  2017. A Clostridium difficile-specific gel-forming protein required for optimal spore germination. mBio 8:e02085–16 [Google Scholar]
  20. Doona CJ, Feeherry FE, Setlow B, Wang S, Li W. 20.  et al. 2016. Effects of high pressure treatment on spores of Clostridium species. Appl. Environ. Microbiol. 82:5287–91 [Google Scholar]
  21. Doona CJ, Ghosh S, Feeherry FF, Ramirez-Peralta A, Huang Y. 21.  et al. 2014. High pressure germination of Bacillus subtilis spores with alterations in levels and types of germination proteins. J. Appl. Microbiol. 117:711–20 [Google Scholar]
  22. Driks A, Eichenberger P. 22.  2016. The spore coat. The Bacterial Spore A Driks, P Eichenberger 179–200 Washington, DC: ASM [Google Scholar]
  23. Dürre P. 23.  2014. Physiology and sporulation in Clostridium. The Bacterial Spore A Driks, P Eichenberger 315–30 Washington, DC: ASM [Google Scholar]
  24. Fimlaid KA, Jensen O, Donnelly ML, Francis MB, Sorg JA, Shen A. 24.  2015. Identification of a novel lipoprotein regulator of Clostridium difficile spore germination. PLOS Pathog 11:e1005239 https://doi.org/10.1371/journal.ppat.1005239 [Crossref] [Google Scholar]
  25. Francis MB, Allen CA, Shrestha R, Sorg JA. 25.  2013. Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLOS Pathog 9:e100356 https://doi.org/10.1371/journal.ppat.1003356 [Crossref] [Google Scholar]
  26. Francis MB, Allen CA, Sorg JA. 26.  2015. Spore cortex hydrolysis precedes dipicolinic acid release during Clostridium difficile spore germination. J. Bacteriol. 197:2276–83 [Google Scholar]
  27. Francis MB, Sorg JA. 27.  2016. Dipicolinic acid release by germinating Clostridium difficile spores occurs through a mechanosensing mechanism. mSphere 14:e00306–16 [Google Scholar]
  28. Ghosh S, Korza G, Maciejewski M, Setlow P. 28.  2015. Analysis of metabolism in dormant spores of Bacillus species by 31P-NMR of low molecular weight compounds. J. Bacteriol. 197:991–1001 [Google Scholar]
  29. Ghosh S, Scotland M, Setlow P. 29.  2012. Levels of germination proteins in dormant and superdormant spores of Bacillus subtilis. J. Bacteriol. 194:2221–27 [Google Scholar]
  30. Griffiths KK, Zhang J, Cowan AE, Yu J, Setlow P. 30.  2011. Germination proteins in the inner membrane of dormant Bacillus subtilis spores colocalize in a discrete cluster. Mol. Microbiol. 81:1061–77 [Google Scholar]
  31. Grimbergen AJ, Siebring J, Solopova A, Kuipers OP. 31.  2015. Microbial bet-hedging: the power of being different. Curr. Opin. Microbiol. 25:67–72 [Google Scholar]
  32. Gupta S, Üstok FI, Johnson CJ, Bailey DM, Lowe CR, Christie G. 32.  2013. Investigating the functional hierarchy of Bacillus megaterium PV361 spore germinant receptors. J. Bacteriol. 195:3045–53 [Google Scholar]
  33. Gupta S, Zhou KX, Bailey DM, Christie G. 33.  2015. Structure-function analysis of the Bacillus megaterium GerUD spore germinant receptor protein. FEMS Microbiol. Lett. 362:fnv210 https://doi.org/10.1093/femsle/fnv210 [Crossref] [Google Scholar]
  34. Gutelius D, Hokeness K, Logan SM, Reid CW. 34.  2014. Functional analysis of SleC from Clostridium difficile: an essential lytic transglycosylase involved in spore germination. Microbiology 160:209–16 [Google Scholar]
  35. Jing X, Robinson HR, Hoffman JD, Popham DL, Schubot FD. 35.  2012. The catalytic-domain of the germination-specific lytic transglycosylase SleB from Bacillus anthracis displays a unique active site topology. Proteins 80:2469–75 [Google Scholar]
  36. Kaieda S, Setlow B, Setlow P, Halle B. 36.  2013. Mobility of core water in Bacillus subtilis spores by 2H NMR. Biophys. J. 105:2016–23 [Google Scholar]
  37. Kevorkian Y, Shirley DJ, Shen A. 37.  2016. Regulation of Clostridium difficile spore germination by the CspA pseudoprotease domain. Biochimie 122:243–54 [Google Scholar]
  38. Knudsen S, Cermak N, Delgado FF, Setlow B, Setlow P, Manalis SR. 38.  2016. Water and small molecule permeation of dormant Bacillus subtilis spores. J. Bacteriol. 198:168–77 [Google Scholar]
  39. Koenigsknecht MJ, Theriot CM, Bergin IL, Schumacher CA, Schloss PD, Young VB. 39.  2015. Dynamics and establishment of Clostridium difficile infection in the murine gastrointestinal tract. Infect. Immun. 83:934–41 [Google Scholar]
  40. Kong L, Doona CJ, Setlow P, Li YQ. 40.  2014. Monitoring rates and heterogeneity of high pressure germination of Bacillus spores using phase contrast microscopy of individual spores. Appl. Environ. Microbiol. 80:345–53 [Google Scholar]
  41. Kong L, Zhang P, Wang G, Yu J, Setlow P, Li YQ. 41.  2011. Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers. Nat. Protoc. 6:625–39 [Google Scholar]
  42. Kong L, Zhang P, Yu J, Setlow P, Li Y-Q. 42.  2010. Monitoring the kinetics of uptake of a nucleic acid dye during the germination of single spores of Bacillus species. Anal. Chem. 82:8717–24 [Google Scholar]
  43. Korza G, Setlow B, Rao L, Li Q, Setlow P. 43.  2016. Changes in Bacillus spore small molecules, rRNA, germination and outgrowth after extended sub-lethal exposure to various temperatures: evidence that protein synthesis is not essential for spore germination. J. Bacteriol. 198:3254–64 [Google Scholar]
  44. Korza G, Setlow P. 44.  2013. Topology and accessibility of germination proteins in the Bacillus subtilis spore inner membrane. J. Bacteriol. 195:1484–91 [Google Scholar]
  45. Krawczyk AO, Berendsen EM, de Jong A, Boekhorst J, Wells-Bennik MH. 45.  et al. 2016. A transposon present in specific strains of Bacillus subtilis negatively affects nutrient- and dodecylamine-induced spore germination. Environ. Microbiol. 18:4830–46 https://doi.org/10.1111/1462-2920.13386 [Crossref] [Google Scholar]
  46. Lawson PA, Citron DM, Tyrell KL, Finegold SM. 46.  2016. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O'Toole 1935) Prévot 1938. Anaerobe 40:95–99 [Google Scholar]
  47. Li Y, Butzin X, Davis A, Setlow B, Korza G. 47.  et al. 2013. Activity and regulation of various forms of CwlJ, SleB and YpeB proteins in degrading cortex peptidoglycan of spores of Bacillus species in vitro and during spore germination. J. Bacteriol. 195:2530–40 [Google Scholar]
  48. Li Y, Jin K, Ghosh S, Devarakonda P, Carlson K. 48.  et al. 2014. Structural and functional analysis of the GerD spore germination protein of Bacillus species. J. Mol. Biol. 426:1995–2008 [Google Scholar]
  49. Li Y, Jin K, Setlow B, Setlow P, Hao B. 49.  2012. Crystal structure of the catalytic domain of the Bacillus cereus SleB protein important in cortex degradation during spore germination. J. Bacteriol. 194:4537–45 [Google Scholar]
  50. Li Y, Korza G, Zhang P, Li YQ, Setlow B. 50.  et al. 2012. Role of a SpoVA protein in dipicolinic acid uptake into developing spores of Bacillus subtilis. J. Bacteriol. 194:1875–84 [Google Scholar]
  51. Li Y, Setlow B, Setlow P, Hao B. 51.  2010. Crystal structure of the GerBC component of a Bacillus subtilis spore germinant receptor. J. Mol. Biol. 402:8–16 [Google Scholar]
  52. Liang J, Zhang P, Setlow P, Li YQ. 52.  2014. High precision fitting measurements of the kinetics of size changes during germination of individual Bacillus spores. Appl. Environ. Microbiol. 80:4606–15 [Google Scholar]
  53. Liu H, Ray WK, Helm RF, Popham DL, Melville SB. 53.  2016. Analysis of the spore membrane proteome in Clostridium perfringens implicates cyanophycin in spore assembly. J. Bacteriol. 198:1773–82 [Google Scholar]
  54. Loison P, Hosny NA, Gervais P, Champion D, Kuimova MK, Perrier-Cornet JM. 54.  2013. Direct investigation of viscosity of an atypical inner membrane of Bacillus spores: a molecular rotor/FLIM study. Biochim. Biophys. Acta 1828:2436–43 [Google Scholar]
  55. Luu S, Cruz-Mora J, Setlow B, Feeherry FE, Doona CJ, Setlow P. 55.  2015. The effects of heat activation on nutrient and high-pressure germination of spores of Bacillus species with and without germination proteins. Appl. Environ. Microbiol. 81:2927–38 [Google Scholar]
  56. Luu S, Setlow P. 56.  2014. Analysis of the loss in heat and acid resistance during germination of spores of Bacillus species. J. Bacteriol. 196:1733–40 [Google Scholar]
  57. Magge A, Granger AC, Wahome PG, Setlow B, Vepachedu VR. 57.  et al. 2008. Role of dipicolinic acid in the germination, stability, and viability of spores of Bacillus subtilis. J. Bacteriol. 190:4798–807 [Google Scholar]
  58. Magge A, Setlow B, Cowan AE, Setlow P. 58.  2009. Analysis of dye binding and membrane potential in spores of Bacillus species. J. Appl. Microbiol. 106:814–24 [Google Scholar]
  59. Meaney CA, Cartman ST, McClure PJ, Minton NP. 59.  2015. Optimal spore germination in Clostridium botulinum ATCC 3502 requires the presence of functional copies of SleB and YpeB, but not CwlJ. Anaerobe 34:86–93 [Google Scholar]
  60. Miyata S, Kozuka S, Yasuda Y, Chen Y, Moriyama R. 60.  et al. 1997. Localization of germination-specific spore-lytic enzymes in Clostridium perfringens S40 spores detected by immunoelectron microscopy. FEMS Microbiol. Lett. 152:243–47 [Google Scholar]
  61. Moir A, Cooper G. 61.  2016. Spore germination. The Bacterial Spore A Driks, P Eichenberger 217–236 Washington, DC: ASM [Google Scholar]
  62. Moriyama R, Fukuoka H, Miyata S, Kudoh S, Hattori A. 62.  et al. 1999. Expression of a germination specific amidase, SleB, of bacilli in the forespore compartment of sporulating cells and its localization on the exterior side of the cortex in dormant spores. J Bacteriol 181:2373–78 [Google Scholar]
  63. Nagler K, Setlow P, Reineke K, Driks A, Moeller R. 63.  2015. Involvement of coat proteins in Bacillus subtilis spore germination at high salinity. Appl. Environ. Microbiol. 82:6725–35 [Google Scholar]
  64. Olguin-Araneda V, Banawas S, Sarker MR, Paredes-Sabja D. 64.  2015. Recent advances in germination of Clostridium spores. Res. Microbiol. 166:236–43 [Google Scholar]
  65. Omotade TO, Bernhards RC, Klimko CP, Matthews ME, Hill AJ. 65.  et al. 2014. The impact of inducing germination of Bacillus anthracis and Bacillus thuringiensis spores on potential secondary decontamination strategies. J. Appl. Microbiol. 117:1614–33 [Google Scholar]
  66. Paidhungat M, Setlow P. 66.  2000. Role of Ger-proteins in nutrient and non-nutrient triggering of spore germination in Bacillus subtilis. J. Bacteriol. 182:2513–19 [Google Scholar]
  67. Pandey R, Peiper GH, Ter Beek A, Vischer NO, Smelt JP. 67.  et al. 2015. Quantifying the effect of sorbic acid, heat and combination of both on germination and outgrowth of Bacillus subtilis spores at single cell resolution. Food Microbiol 52:88–96 [Google Scholar]
  68. Paredes-Sabja D, Shen A, Sorg JA. 68.  2014. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol 22:406–16 [Google Scholar]
  69. Perez-Valdespino A, Li Y, Setlow B, Ghosh S, Pan D. 69.  et al. 2014. Properties and function of the SpoVAEa and SpoVAF proteins in Bacillus subtilis spores. J. Bacteriol. 196:2077–88 [Google Scholar]
  70. Popham DL, Bernhards CB. 70.  2016. Spore peptidoglycan. The Bacterial Spore A Driks, P Eichenberger 157–77 Washington, DC: ASM [Google Scholar]
  71. Ramirez-Peralta A, Gupta S, Butzin XY, Setlow B, Korza G. 71.  et al. 2013. Identification of new proteins that modulate the germination of spores of Bacillus species. J. Bacteriol. 195:3009–21 [Google Scholar]
  72. Ramirez-Peralta A, Stewart KAV, Thomas SK, Setlow B, Chen Z. 72.  et al. 2012. Effects of the SpoVT regulatory protein on the germination and germination protein levels of spores of Bacillus subtilis. J. Bacteriol. 194:3417–25 [Google Scholar]
  73. Ramirez-Peralta A, Zhang P, Li YQ, Setlow P. 73.  2012. Effects of sporulation conditions on the germination and germination protein levels of spores of Bacillus subtilis. Appl. Environ. Microbiol. 78:2689–97 [Google Scholar]
  74. Rode LJ, Foster JW. 74.  1962. Ionic and non-ionic compounds in the germination of spores of Bacillus megaterium Texas. Arkiv Mikrobiol 43:201–12 [Google Scholar]
  75. Rode LJ, Foster JW. 75.  1962. Ionic germination of spores of Bacillus megaterium QM B1551. Arkiv Mikrobiol 43:183–200 [Google Scholar]
  76. Rosenberg A, Soufi B, Ravikumar V, Soares NC, Krug K. 76.  et al. 2015. Phosphoproteome dynamics mediate revival of bacterial spores. BMC Biol 13:76 https://doi.org/10.1186/s12915-015-0184-7 [Crossref] [Google Scholar]
  77. Saggese A, Scamardella V, Sirec T, Cangiano G, Isticato R. 77.  et al. 2014. Antagonistic role of CotG and CotH on spore germination and coat formation in Bacillus subtilis. PLOS ONE 9:e104900 https://doi.org/10.1371/journal.pone.0104900 [Crossref] [Google Scholar]
  78. Salas JA, Johnstone K, Ellar DJ. 78.  1985. Role of uricase in the triggering of germination of Bacillus fastidiosus spores. Biochem. J. 229:241–49 [Google Scholar]
  79. Scott IR, Ellar DJ. 79.  1978. Metabolism and triggering of germination of Bacillus megaterium: concentrations of amino acids, organic acids, adenine nucleotides and nicotinamide nucleotides during germination. Biochem. J. 174:627–34 [Google Scholar]
  80. Segev E, Rosenberg A, Mamou G, Sinai L, Ben-Yehuda S. 80.  2013. Molecular kinetics of reviving bacterial spores. J. Bacteriol. 195:1875–82 [Google Scholar]
  81. Segev E, Smith Y, Ben-Yehuda S. 81.  2012. RNA dynamics in aging bacterial spores. Cell 148:139–49 [Google Scholar]
  82. Setlow P. 82.  2013. When the sleepers wake: the germination of spores of Bacillus species. J. Appl. Microbiol. 115:1251–68 [Google Scholar]
  83. Setlow P. 83.  2014. The germination of spores of Bacillus species: what we know and don't know. J. Bacteriol. 196:1297–305 [Google Scholar]
  84. Setlow P. 84.  2016. Spore resistance properties. The Bacterial Spore A Driks, P Eichenberger 201–16 Washington, DC: ASM [Google Scholar]
  85. Setlow P, Liu J, Faeder JR. 85.  2012. Heterogeneity in bacterial spore populations. Bacterial Spores: Current Research and Applications E Abel-Santos 201–216 Norwich, UK: Horizon Sci [Google Scholar]
  86. Shah IM, Laaberki MH, Popham DL, Dworkin J. 86.  2008. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135:486–96 [Google Scholar]
  87. Sinai L, Rosenberg A, Smith Y, Segev E, Ben-Yehuda S. 87.  2015. The molecular timeline of a reviving bacterial spore. Mol. Cell 57:695–707 [Google Scholar]
  88. Stewart KAV, Setlow P. 88.  2013. Numbers of individual nutrient germinant receptors and other germination proteins in spores of Bacillus subtilis. J. Bacteriol. 195:3575–82 [Google Scholar]
  89. Stewart KAV, Yi X, Ghosh S, Setlow P. 89.  2012. Germination protein levels and rates of germination of spores of Bacillus subtilis with overexpressed or deleted genes encoding germination proteins. J. Bacteriol. 194:3156–64 [Google Scholar]
  90. Sturm A, Dworkin J. 90.  2015. Phenotypic diversity as a mechanism to exit cellular dormancy. Curr. Biol. 25:1–6 [Google Scholar]
  91. Tan IS, Ramamurthi KS. 91.  2014. Spore formation in Bacillus subtilis. Environ. Microbiol. Rep. 6:212–25 [Google Scholar]
  92. Traag BA, Ramirez-Peralta A, Wang-Erickson AF, Setlow P, Losick R. 92.  2013. A novel RNA polymerase-binding protein controlling genes involved in spore germination in Bacillus subtilis. Mol. Microbiol. 89:113–22 [Google Scholar]
  93. Troiano AJ, Zhang J, Cowan AE, Yu J, Setlow P. 93.  2015. Analysis of the dynamics of a Bacillus subtilis spore germination protein complex during spore germination and outgrowth. J. Bacteriol. 197:252–61 [Google Scholar]
  94. Üstok FI, Chirgadze DY, Christie G. 94.  2015. Crystal structure of the PepSY-containing domain of the YpeB protein involved in germination of Bacillus spores. Proteins 83:1914–21 [Google Scholar]
  95. Üstok FI, Chirgadze DY, Christie G. 95.  2015. Structural and functional analysis of SleL, a peptidoglycan lysin involved in germination of Bacillus spores. Proteins 83:1787–99 [Google Scholar]
  96. Üstok FI, Packman LC, Lowe CR, Christie G. 96.  2014. Spore germination mediated by Bacillus megaterium QM B1551 SleL and YpeB. J. Bacteriol. 196:1045–54 [Google Scholar]
  97. Van Vliet S. 97.  2015. Bacterial dormancy: how to decide when to wake up. Curr. Biol. 25:R753–55 [Google Scholar]
  98. Velásquez J, Schuurman-Wolters G, Birkner JP, Abee T, Poolman B. 98.  2014. Bacillus subtilis spore protein SpoVAC functions as a mechanosensitive channel. Mol. Microbiol. 92:813–23 [Google Scholar]
  99. Vepachedu VR, Setlow P. 99.  2004. Analysis of the germination of spores of Bacillus subtilis with temperature sensitive spo mutations in the spoVA operon. FEMS Microbiol. Lett. 239:71–77 [Google Scholar]
  100. Vepachedu VR, Setlow P. 100.  2007. Analysis of interactions between nutrient germinant receptors and SpoVA proteins of Bacillus subtilis spores. FEMS Microbiol. Lett. 274:42–47 [Google Scholar]
  101. Vepachedu VR, Setlow P. 101.  2007. Role of SpoVA proteins in the release of dipicolinic acid during germination of Bacillus subtilis spores triggered by dodecylamine or lysozyme. J. Bacteriol. 189:1565–72 [Google Scholar]
  102. Wang G, Zhang P, Paredes-Sabja D, Green C, Setlow P. 102.  et al. 2011. Analysis of the germination of individual Clostridium perfringens spores and its heterogeneity. J. Appl. Microbiol. 111:1212–23 [Google Scholar]
  103. Wang S, Faeder JR, Setlow P, Li YQ. 103.  2015. Memory of germinant stimuli in bacterial spores. mBio 6:e01859–15 https://doi.org/10.1128/mBio.01859-15 [Crossref] [Google Scholar]
  104. Wang S, Setlow P, Li YQ. 104.  2015. Slow leakage of Ca-dipicolinic acid from individual Bacillus spores during initiation of spore germination. J. Bacteriol. 197:1095–103 [Google Scholar]
  105. Wang S, Shen A, Setlow P, Li YQ. 105.  2015. Characterization of the dynamic germination of individual Clostridium difficile spores using Raman spectroscopy and differential interference contrast microscopy. J. Bacteriol. 197:2361–73 [Google Scholar]
  106. Wilson MJ, Carlson PE, Janes BK, Hanna PC. 106.  2012. Membrane topology of the Bacillus anthracis GerH germinant receptor proteins. J. Bacteriol. 194:1369–77 [Google Scholar]
  107. Wu X, Grover N, Paskaleva EE, Mundra RV, Page MA. 107.  et al. 2015. Characterization of the activity of the spore cortex lytic enzyme CwlJ1. Biotechnol. Bioeng. 112:1365–75 [Google Scholar]
  108. Yi X, Setlow P. 108.  2010. Studies of the commitment step in the germination of spores of Bacillus species. J. Bacteriol. 192:3424–33 [Google Scholar]
  109. Zabrocka L, Langer K, Michalski A, Kocik J, Langer JJ. 109.  2015. A microfluidic device for real-time monitoring of Bacillus subtilis bacterial spores during germination based on non-specific physicochemical interactions on the nanoscale level. Lab Chip 15:274–82 [Google Scholar]
  110. Zhang J, Garner W, Setlow P, Yu J. 110.  2011. Quantitative analysis of spatial-temporal correlations during germination of spores of Bacillus species. J. Bacteriol. 193:3765–72 [Google Scholar]
  111. Zhang J, Griffiths KK, Cowan A, Setlow P, Yu J. 111.  2013. Expression level of Bacillus subtilis germinant receptors determines the average rate but not the heterogeneity of spore germination. J. Bacteriol. 195:1735–40 [Google Scholar]
  112. Zhang P, Kong L, Wang G, Scotland M, Ghosh S. 112.  et al. 2012. Analysis of the germination of multiple individual superdormant Bacillus subtilis spores using multifocus Raman microscopy and DIC microscopy. J. Appl. Microbiol. 112:526–36 [Google Scholar]
  113. Zhang P, Liang J, Yi X, Setlow P, Li Y-Q. 113.  2014. Monitoring of commitment, blocking, and continuation of nutrient germination of individual Bacillus subtilis spores. J. Bacteriol. 196:2443–54 [Google Scholar]
  114. Zhang P, Thomas S, Li YQ, Setlow P. 114.  2012. Effects of cortex peptidoglycan structure and cortex hydrolysis on the kinetics of Ca2+-dipicolinic acid release during Bacillus subtilis spore germination. J. Bacteriol. 194:646–52 [Google Scholar]
  115. Zheng L, Abhyankar W, Ouwerling N, Dekker HL, van Veen H. 115.  et al. 2016. Bacillus subtilis spore inner membrane proteome. J. Proteome Res. 15:585–94 [Google Scholar]
  116. Zhou T, Song Z, Setlow P, Li YQ. 116.  2013. Kinetics of germination of individual spores of Geobacillus stearothermophilus as measured by Raman spectroscopy and differential interference contrast microscopy. PLOS ONE 8:374987 https://doi.org/10.1371/journal.pone.0074987 [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-090816-093558
Loading
/content/journals/10.1146/annurev-micro-090816-093558
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error