1932

Abstract

One of the most exciting developments in the field of bacterial pathogenesis in recent years is the discovery that many pathogens utilize complex nanomachines to deliver bacterially encoded effector proteins into target eukaryotic cells. These effector proteins modulate a variety of cellular functions for the pathogen's benefit. One of these protein-delivery machines is the type III secretion system (T3SS). T3SSs are widespread in nature and are encoded not only by bacteria pathogenic to vertebrates or plants but also by bacteria that are symbiotic to plants or insects. A central component of T3SSs is the needle complex, a supramolecular structure that mediates the passage of the secreted proteins across the bacterial envelope. Working in conjunction with several cytoplasmic components, the needle complex engages specific substrates in sequential order, moves them across the bacterial envelope, and ultimately delivers them into eukaryotic cells. The central role of T3SSs in pathogenesis makes them great targets for novel antimicrobial strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-092412-155725
2014-09-08
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/68/1/annurev-micro-092412-155725.html?itemId=/content/journals/10.1146/annurev-micro-092412-155725&mimeType=html&fmt=ahah

Literature Cited

  1. Abby S, Rocha EPC. 1.  2012. The non-flagellar type III secretion system evolved from the bacterial fla-gellum and diversified into host-cell adapted systems. PLoS Genet. 8:e1002983 [Google Scholar]
  2. Abrusci P, Vergara-Irigaray M, Johnson S, Beeby M, Hendrixon D. 2.  et al. 2013. Architecture of the major component of the type III secretion system export apparatus. Nat. Struct. Mol. Biol. 20:99–104 [Google Scholar]
  3. Akeda Y, Galán JE. 3.  2004. Genetic analysis of the Salmonella enterica type III secretion-associated ATPase InvC defines discrete functional domains. J. Bacteriol. 186:2402–12 [Google Scholar]
  4. Akeda Y, Galán JE. 4.  2005. Chaperone release and unfolding of substrates in type III secretion. Nature 437:911–15 [Google Scholar]
  5. Akopyan K, Edgren T, Wang-Edgren H, Rosqvist R, Fahlgren A. 5.  et al. 2011. Translocation of surface-localized effectors in type III secretion. Proc. Natl. Acad. Sci. USA 108:1639–44 [Google Scholar]
  6. Allaoui A, Woestyn S, Sluiters C, Cornelis GR. 6.  1994. YscU, a Yersinia enterocolitica inner membrane protein involved in Yop secretion. J. Bacteriol. 176:4534–42 [Google Scholar]
  7. Alvarez-Martinez C, Christie P. 7.  2009. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 73:775–808 [Google Scholar]
  8. Anderson DM, Fouts DE, Collmer A, Schneewind O. 8.  1999. Reciprocal secretion of proteins by the bacterial type III machines of plant and animal pathogens suggests universal recognition of mRNA targeting signals. Proc. Natl. Acad. Sci. USA 96:12839–43 [Google Scholar]
  9. Anderson DM, Schneewind O. 9.  1997. A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science 278:1140–3 [Google Scholar]
  10. Anderson DM, Schneewind O. 10.  1999. Yersinia enterocolitica type III secretion: an mRNA signal that couples translation and secretion of YopQ. Mol. Microbiol. 31:1139–48 [Google Scholar]
  11. Arnold R, Jehl A, Rattei T. 11.  2010. Targeting effectors: the molecular recognition of type III secreted proteins. Microbes Infect. 12:346–58 [Google Scholar]
  12. Bahrani FK, Sansonetti PJ, Parsot C. 12.  1997. Secretion of Ipa proteins by Shigella flexneri: inducer molecules and kinetics of activation. Infect. Immun. 65:4005–10 [Google Scholar]
  13. Barta ML, Dickenson NE, Patil M, Keightley A, Wyckoff GJ. 13.  et al. 2012. The structures of coiled-coil domains from type III secretion system translocators reveal homology to pore-forming toxins. J. Mol. Biol. 417:395–405 [Google Scholar]
  14. Birtalan SC, Phillips RM, Ghosh P. 14.  2002. Three-dimensional secretion signals in chaperone-effector complexes of bacterial pathogens. Mol. Cell 9:971–80 [Google Scholar]
  15. Blocker A, Deane J, Veenendaal A, Roversi P, Hodkinson J. 15.  et al. 2008. What's the point of the type III secretion needle?. Proc. Natl. Acad. Sci. USA 105:6507–13 [Google Scholar]
  16. Blocker A, Gounon P, Larquet E, Niebuhr K, Cabiaux V. 16.  et al. 1999. The tripartite type III secretion of Shigella flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol. 147:683–93 [Google Scholar]
  17. Blocker A, Jouihri N, Larquet E, Gounon P, Ebel F. 17.  et al. 2001. Structure and composition of the Shigella flexneri “needle complex”, a part of its type III secretion. Mol. Microbiol. 39:652–63 [Google Scholar]
  18. Botteaux A, Kayath C, Page A, Jouihri N, Sani M. 18.  et al. 2010. The 33 carboxyl-terminal residues of Spa40 orchestrate the multi-step assembly process of the type III secretion needle complex in Shigella flexneri. Microbiology 156:2807–17 [Google Scholar]
  19. Broz P, Mueller CA, Muller SA, Philippsen A, Sorg I. 19.  et al. 2007. Function and molecular architecture of the Yersinia injectisome tip complex. Mol. Microbiol. 65:1311–20 [Google Scholar]
  20. Buttner D. 20.  2012. Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol. Mol. Biol. Rev. 76:262–310 [Google Scholar]
  21. Buttner D, He S. 21.  2009. Type III protein secretion in plant pathogenic bacteria. Plant Physiol. 150:1656–64 [Google Scholar]
  22. Button JE, Galán JE. 22.  2011. Regulation of chaperone/effector complex synthesis in a bacterial type III secretion system. Mol. Microbiol. 81:1474–83 [Google Scholar]
  23. Cerveny L, Straskova A, Dankova V, Hartlova A, Ceckova M. 23.  et al. 2013. Tetratricopeptide repeat motifs in the world of bacterial pathogens: role in virulence mechanisms. Infect. Immun. 81:629–35 [Google Scholar]
  24. Chatterjee S, Battaile K, Lovell S, Plano G, De Guzman R. 24.  2013. Structure and biophysics of type III secretion in bacteria. Biochemistry 52:2508–17 [Google Scholar]
  25. Chatterjee S, Zhong D, Nordhues B, Battaile K, Lovell S, De Guzman RN. 25.  2011. The crystal structure of the Salmonella type III secretion system tip protein SipD in complex with deoxycholate and chenodeoxycholate. Protein Sci. 20:75–86 [Google Scholar]
  26. Cheng LW, Anderson DM, Schneewind O. 26.  1997. Two independent type III secretion mechanisms for YopE in Yersinia enterocolitica. Mol. Microbiol. 24:757–65 [Google Scholar]
  27. Cherradi Y, Schiavolin L, Moussa S, Megharoui A, Meksem A. 27.  et al. 2013. Interplay between predicted inner-rod and gatekeeper in controlling substrate specificity of the type III secretion system. Mol. Microbiol. 87:1183–99 [Google Scholar]
  28. Collazo C, Galán JE. 28.  1997. The invasion-associated type III system of Salmonella typhimurium directs the translocation of Sip proteins into the host cell. Mol. Microbiol. 24:747–56 [Google Scholar]
  29. Collazo CM, Galán JE. 29.  1996. Requirement for exported proteins in secretion through the invasion-associated type III system of Salmonella typhimurium. Infect. Immun. 64:3524–31 [Google Scholar]
  30. Collazo CM, Zierler MK, Galán JE. 30.  1995. Functional analysis of the Salmonella typhimurium invasion genes invI and invJ and identification of a target of the protein secretion apparatus encoded in the inv locus. Mol. Microbiol. 15:25–38 [Google Scholar]
  31. Cordes FS, Komoriya K, Larquet E, Yang S, Egelman EH. 31.  et al. 2003. Helical structure of the needle of the type III secretion system of Shigella flexneri. J. Biol. Chem. 9:17103–7 [Google Scholar]
  32. Cornelis G. 32.  2006. The type III secretion injectisome. Nat. Rev. Microbiol. 4:811–25 [Google Scholar]
  33. Cornelis GR, van Gijsegem F. 33.  2000. Assembly and function of type III secretory systems. Annu. Rev. Microbiol. 54:735–74 [Google Scholar]
  34. Correa V, Majerczak D, Ammar E-D, Merighi M, Pratt R. 34.  et al. 2012. The bacterium Pantoea stewartii uses two different type III secretion systems to colonize its plant host and insect vector. Appl. Environ. Microbiol. 78:6327–36 [Google Scholar]
  35. Costa S, Schmitz A, Jahufar F, Boyd J, Cho M. 35.  et al. 2012. A new means to identify type 3 secreted effectors: functionally interchangeable class IB chaperones recognize a conserved sequence. MBio 3:e00243–11 [Google Scholar]
  36. Creasey E, Friedberg D, Shaw R, Umanski T, Knutton S. 36.  et al. 2003. CesAB is an enteropathogenic Escherichia coli chaperone for the type III translocator proteins EspA and EspB. Microbiology 149:469–77 [Google Scholar]
  37. Crepin V, Shaw R, Abe C, Knutton S, Frankel G. 37.  2005. Polarity of enteropathogenic Escherichia coli EspA filament assembly and protein secretion. J. Bacteriol. 187:2881–89 [Google Scholar]
  38. Daniell S, Takahashi N, Wilson R, Friedberg D, Rosenshine I. 38.  et al. 2001. The filamentous type III secretion translocon of enteropathogenic Escherichia coli. Cell Microbiol. 3:865–71 [Google Scholar]
  39. Davis A, Mecsas J. 39.  2010. Mutations in the Yersinia pseudotuberculosis type III secretion system needle protein, YscF, that specifically abrogate effector translocation into host cells. J. Bacteriol. 189:83–97 [Google Scholar]
  40. Deane JE, Roversi P, Cordes F. 40.  2006. Molecular model of a type III secretion system needle: implications for host-cell sensing. Proc. Natl. Acad. Sci. USA 103:12529–33 [Google Scholar]
  41. DeBord K, Lee V, Schneewind O. 41.  2001. Roles of LcrG and LcrV during type III targeting of effector Yops by Yersinia enterocolitica. J. Bacteriol. 183:4588–98 [Google Scholar]
  42. Delalez N, Wadhams G, Rosser G, Xue Q, Brown M. 42.  et al. 2010. Signal-dependent turnover of the bacterial flagellar switch protein FliM. Proc. Natl. Acad. Sci. USA 107:11347–51 [Google Scholar]
  43. Demers J, Sgourakis N, Gupta R, Loquet A, Giller K. 43.  et al. 2013. The common structural architecture of Shigella flexneri and Salmonella typhimurium type three secretion needles. PLoS Pathog. 9:e1003245 [Google Scholar]
  44. Derewenda U, Mateja A, Devedjiev Y, Routzahn KM, Evdokimov AG. 44.  et al. 2004. The structure of Yersinia pestis V-antigen, an essential virulence factor and mediator of immunity against plague. Structure 12:301–6 [Google Scholar]
  45. Dickenson NE, Zhang L, Epier C, Adam P, Picking W, Picking WD. 45.  2011. Conformational changes in IpaD from Shigella flexneri upon binding bile salts provide insight into the second step of type III secretion. Biochemistry 50:172–80 [Google Scholar]
  46. Diepold A, Amstutz M, Abel S, Sorg I, Jenal U, Cornelis G. 46.  2010. Deciphering the assembly of the Yersinia type III secretion injectisome. EMBO J. 29:1928–40 [Google Scholar]
  47. Diepold A, Wiesand U, Cornelis G. 47.  2011. The assembly of the export apparatus (YscR,S,T,U,V) of the Yersinia type III secretion apparatus occurs independently of other structural components and involves the formation of an YscV oligomer. Mol. Microbiol. 82:502–14 [Google Scholar]
  48. Driks A, DeRosier D. 48.  1990. Additional structures associated with bacterial flagellar basal body. J. Mol. Biol. 211:669–72 [Google Scholar]
  49. Edqvist P, Olsson J, Lavander M, Sundberg L, Forsberg A. 49.  et al. 2003. YscP and YscU regulate substrate specificity of the Yersinia type III secretion system. J. Bacteriol. 185:2259–66 [Google Scholar]
  50. Ehrbar K, Friebel A, Miller S, Hardt W. 50.  2003. Role of the Salmonella pathogenicity island 1 (SPI-1) protein InvB in type III secretion of SopE and SopE2, two Salmonella effector proteins encoded outside of SPI-1. J. Bacteriol. 185:7279–84 [Google Scholar]
  51. Eichelberg K, Ginocchio C, Galán JE. 51.  1994. Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC: homology of InvC to the F0F1 ATPase family of proteins. J. Bacteriol. 176:4501–10 [Google Scholar]
  52. Epier C, Dickenson N, Bullitt E, Picking W. 52.  2012. Ultrastructural analysis of IpaD at the tip of the nascent MxiH type III secretion apparatus of Shigella flexneri. J. Mol. Biol. 420:29–39 [Google Scholar]
  53. Erhardt M, Namba K, Hughes K. 53.  2010. Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harb. Perspect. Biol. 2:a000299 [Google Scholar]
  54. Erskine PT, Knight MJ, Ruaux A, Mikolajek H, Wong Fat Sang N. 54.  et al. 2006. High resolution structure of BipD: an invasion protein associated with the Type III secretion system of Burkholderia pseudomallei. J. Mol. Biol. 363:125–36 [Google Scholar]
  55. Evans L, Poulter S, Terentjev E, Hughes C, Fraser G. 55.  2013. A chain mechanism for flagellar growth. Nature 504:287–90 [Google Scholar]
  56. Ferris H, Furukawa Y, Minamino T, Kroetz M, Kihara M. 56.  et al. 2005. FlhB regulates ordered export of flagellar components via autocleavage mechanism. J. Biol. Chem. 280:41236–42 [Google Scholar]
  57. Fields KA, Plano GV, Straley SC. 57.  1994. A low-Ca2+ response (LCR) secretion (ysc) locus lies within the lcrB region of the LCR plasmid in Yersinia pestis. J. Bacteriol. 176:569–79 [Google Scholar]
  58. Fuji T, Cheung M, Blanco A, Kato T, Blocker A, Namba K. 58.  2012. Structure of a type III secretion needle at 7 Å resolution provides insight into its assembly and signaling mechanisms. Proc. Natl. Acad. Sci. USA 109:4461–66 [Google Scholar]
  59. Galán J. 59.  2009. Common themes in the design and function of bacterial effectors. Cell Host Microbe 5:571–79 [Google Scholar]
  60. Galán JE, Curtiss R III. 60.  1989. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc. Natl. Acad. Sci. USA 86:6383–87 [Google Scholar]
  61. Galán JE, Ginocchio C, Costeas P. 61.  1992. Molecular and functional characterization of the Salmonella invasion gene invA: homology of InvA to members of a new protein family. J. Bacteriol. 17:4338–49 [Google Scholar]
  62. Galán JE, Wolf-Watz H. 62.  2006. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444:567–73 [Google Scholar]
  63. Galkin V, Schmied W, Schriadt O, Marlovits T, Egelman E. 63.  2010. The structure of the Salmonella typhimurium type III secretion system needle shows divergence from the flagellar system. J. Mol. Biol. 396:1392–97 [Google Scholar]
  64. Gauthier A, Finlay BB. 64.  2003. Translocated intimin receptor and its chaperone interact with ATPase of the type III secretion apparatus of enteropathogenic Escherichia coli. J. Bacteriol. 185:6747–55 [Google Scholar]
  65. Ginocchio CC, Galán JE. 65.  1995. Functional conservation among members of the Salmonella typhimurium InvA family of proteins. Infect. Immun. 63:729–32 [Google Scholar]
  66. Groisman EA, Ochman H. 66.  1993. Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J. 12:3779–87 [Google Scholar]
  67. Harmon D, Murphy J, Davis A, Mecsas J. 67.  2013. A mutant with aberrant extracellular LcrV-YscF interactions fails to form pores and translocate Yop effector proteins but retains the ability to trigger Yop secretion in response to cell contact. J. Bacteriol. 195:2244–54 [Google Scholar]
  68. Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW. 68.  1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–3 [Google Scholar]
  69. Hodgkinson JL, Horsley A, Stabat D, Simon M, Johnson S. 69.  et al. 2009. Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout. Nat. Struct. Mol. Biol. 16:477–85 [Google Scholar]
  70. Hueck CJ. 70.  1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62:379–433 [Google Scholar]
  71. Hume PJ, McGhie EJ, Hayward RD, Koronakis V. 71.  2003. The purified Shigella IpaB and Salmonella SipB translocators share biochemical properties and membrane topology. Mol. Microbiol. 49:425–39 [Google Scholar]
  72. Ibuki T, Imada K, Minamino T, Kato T, Miyata T, Namba K. 72.  2011. Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases. Nat. Struct. Mol. Biol. 18:277–82 [Google Scholar]
  73. Jackson M, Plano G. 73.  2000. Interactions between type III secretion apparatus components from Yersinia pestis detected using the yeast two-hybrid system. FEMS Microbiol. Lett. 186:85–90 [Google Scholar]
  74. Johnson S, Roversi P, Espina M, Olive A, Deane JE. 74.  et al. 2007. Self-chaperoning of the type III secretion system needle tip proteins IpaD and BipD. J. Biol. Chem. 282:4035–44 [Google Scholar]
  75. Journet L, Agrain C, Broz P, Cornelis GR. 75.  2003. The needle length of bacterial injectisomes is determined by a molecular ruler. Science 302:1757–60 [Google Scholar]
  76. Kawamoto A, Morimoto Y, Miyata T, Minamino T, Hughes K. 76.  et al. 2013. Common and distinct structural features of Salmonella injectisome and flagellar basal body. Sci. Rep. 3:3369 [Google Scholar]
  77. Kenjale R, Wilson J, Zenk S, Saurya S, Picking W. 77.  et al. 2005. The needle component of the type III secretion of Shigella regulates the activity of the secretion apparatus. J. Biol. Chem. 280:42929–37 [Google Scholar]
  78. Khan I, Reese T, Khan S. 78.  1992. The cytoplasmic component of the bacterial flagellar motor. Proc. Natl. Acad. Sci. USA 89:5956–60 [Google Scholar]
  79. Knutton S, Rosenshine I, Pallen MJ, Nisan I, Neves BC. 79.  et al. 1998. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17:2166–76 [Google Scholar]
  80. Konovalova A, Petters T, Sagaard-Andersen L. 80.  2010. Extracellular biology of Mycococcus xanthus. FEMS Microbiol. Rev. 34:89–106 [Google Scholar]
  81. Kosarewicz A, Konigsmaier L, Marlovits T. 81.  2012. The blueprint of the type 3 injectisome. Philos. Trans. R. Soc. Lond. B 367:1140–54 [Google Scholar]
  82. Kubori T, Matsushima Y, Nakamura D, Uralil J, Lara-Tejero M. 82.  et al. 1998. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280:602–5 [Google Scholar]
  83. Kubori T, Sukhan A, Aizawa SI, Galán JE. 83.  2000. Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc. Natl. Acad. Sci. USA 97:10225–30 [Google Scholar]
  84. Kudryashev M, Stenta M, Schmelz S, Amstutz M, Wiesand U. 84.  et al. 2013. In situ structural analysis of the Yersinia enterocolitica injectisome. eLife 2:e00792 [Google Scholar]
  85. Lara-Tejero M, Galán JE. 85.  2009. Salmonella enterica serovar Typhimurium pathogenicity island 1-encoded type III secretion system translocases mediate intimate attachment to nonphagocytic cells. Infect. Immun. 77:2635–42 [Google Scholar]
  86. Lara-Tejero M, Galán JE. 86.  2009. The Salmonella typhimurium SPI-1 type III secretion translocases mediate intimate attachment to non-phagocytic cells. Infect. Immun. 77:2635–42 [Google Scholar]
  87. Lara-Tejero M, Kato J, Wagner S, Liu X, Galán JE. 87.  2011. A sorting platform determines the order of protein secretion in bacterial type III systems. Science 331:1188–91 [Google Scholar]
  88. Lavander M, Sundberg L, Edqvist P, Lloyd S, Wolf-Watz H, Forsberg A. 88.  2002. Proteolytic cleavage of the FlhB homologue YscU of Yersinia pseudotuberculosis is essential for bacterial survival but not for type III secretion. J. Bacteriol. 184:4500–9 [Google Scholar]
  89. Lee SH, Galán JE. 89.  2003. InvB is a type III secretion-associated chaperone for the Salmonella enterica effector protein SopE. J. Bacteriol. 185:7279–84 [Google Scholar]
  90. Lee SH, Galán JE. 90.  2004. Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol. Microbiol. 51:483–95 [Google Scholar]
  91. Lefevre M, Galan J. 91.  2014. The inner rod protein controls substrate switching and needle length in a Salmonella type III secretion system. Proc. Natl. Acad. Sci. USA 2:817–22 [Google Scholar]
  92. Lele P, Branch R, Nathan V, Berg H. 92.  2012. Mechanism for adaptive remodeling of the bacterial flagellar switch. Proc. Natl. Acad. Sci. USA 109:20018–22 [Google Scholar]
  93. Lilic M, Vujanac M, Stebbins C. 93.  2006. A common structural motif in the binding of virulence factors to bacterial secretion chaperones. Mol. Cell 21:653–64 [Google Scholar]
  94. Llosa M, Roy C, Dehio C. 94.  2009. Bacterial type IV secretion systems in human disease. Mol. Microbiol. 73:141–51 [Google Scholar]
  95. Loquet A, Sgourakis N, Gupta R, Giller K, Riedel D. 95.  et al. 2012. Atomic model of the type III secretion system needle. Nature 486:276–79 [Google Scholar]
  96. Lunelli M, Hurwitz R, Lambers J, Kolbe M. 96.  2011. Crystal structure of PrgI-SipD: insight into a secretion competent state of the type three secretion system needle tip and its interaction with host ligands. PLoS Pathog. 7:e1002163 [Google Scholar]
  97. Marenne M, Journet L, Mota L, Cornelis G. 97.  2003. Genetic analysis of the formation of the Ysc-Yop translocation pore in macrophages by Yersinia enterocolitica: role of LcrV, YscF and YopN. Microb. Pathog. 35:243–58 [Google Scholar]
  98. Marlovits TC, Kubori T, Lara-Tejero M, Thomas D, Unger VM, Galán JE. 98.  2006. Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 441:637–40 [Google Scholar]
  99. Marlovits TC, Kubori T, Sukhan A, Thomas DR, Galán JE, Unger VM. 99.  2004. Structural insights into the assembly of the type III secretion needle complex. Science 306:1040–42 [Google Scholar]
  100. Matson JS, Nilles ML. 100.  2001. LcrG-LcrV interaction is required for control of Yops secretion in Yersinia pestis. J. Bacteriol. 183:5082–91 [Google Scholar]
  101. McDermott J, Corrigan A, Peterson E, Oehmen C, Niemann G. 101.  et al. 2011. Computational prediction of type III and IV secreted effectors in gram-negative bacteria. Infect. Immun. 79:23–32 [Google Scholar]
  102. Ménard R, Sansonetti P, Parsot C, Vasselon T. 102.  1994. Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri.. Cell 4:515–25 [Google Scholar]
  103. Ménard R, Sansonetti PJ, Parsot C. 103.  1994. The secretion of the Shigella flexneri Ipa invasins is induced by the epithelial cell and controlled by IpaB and IpaD. EMBO J. 13:5293–302 [Google Scholar]
  104. Michiels T, Cornelis GR. 104.  1991. Secretion of hybrid proteins by the Yersinia Yop export system. J. Bacteriol. 173:1677–85 [Google Scholar]
  105. Minamino T, Macnab R. 105.  2000. Domain structure of Salmonella FlhB, a flagellar export component responsible for substrate specificity switching. J. Bacteriol. 182:4906–14 [Google Scholar]
  106. Minamino T, Morimoto Y, Hara N, Namba K. 106.  2011. An energy transduction mechanism used in bacterial flagellar type III protein export. Nat. Commun. 2:475–83 [Google Scholar]
  107. Minamino T, Shimada M, Okabe M, Saijo-Hamano Y, Imada K. 107.  et al. 2010. Role of the C-terminal cytoplasmic domain of FlhA in bacterial flagella type III protein export. J. Bacteriol. 192:1929–36 [Google Scholar]
  108. Montagner C, Arquint C, Cornelis GR. 108.  2011. Translocators YopB and YopD from Yersinia enterocolitica form a multimeric integral membrane complex in eukaryotic cell membranes. J. Bacteriol. 193:6923–28 [Google Scholar]
  109. Morita-Ishihara T, Ogawa M, Sagara H, Yoshida M, Katayama E, Sasakawa C. 109.  2006. Shigella Spa33 is an essential C-ring component of type III secretion machinery. J. Biol. Chem. 281:599–60 [Google Scholar]
  110. Mueller C, Broz P, Müller S, Ringler P, Erne-Brand F. 110.  et al. 2005. The V-antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science 310:674–76 [Google Scholar]
  111. Neyt C, Cornelis GR. 111.  1999. Insertion of a Yop translocation pore into the macrophage plasma membrane by Yersinia enterocolitica: requirement for translocators YopB and YopD, but not LcrG. Mol. Microbiol. 33:971–81 [Google Scholar]
  112. Ochman H, Soncini FC, Solomon F, Groisman EA. 112.  1996. Identification of a pathogenicity island required for Salmonella survival in host cells. Proc. Natl. Acad. Sci. USA 93:7800–4 [Google Scholar]
  113. Olive A, Kenjale R, Espina M, Moore D, Picking W, Picking W. 113.  2007. Bile salts stimulate recruitment of IpaB to the Shigella flexneri surface, where it colocalizes with IpaD at the tip of the type III secretion needle. Infect. Immun. 75:2626–29 [Google Scholar]
  114. Pallen M, Beatson S, Bailey C. 114.  2005. Bioinformatics, genomics and evolution of non-flagellar type-III secretion systems: a Darwinian perspective. FEMS Microbiol. Rev. 29:201–29 [Google Scholar]
  115. Parsot C, Hamiaux C, Page A-L. 115.  2003. The various and varying roles of specific chaperones in type III secretion systems. Curr. Opin. Microbiol. 56:7–14 [Google Scholar]
  116. Plano GV, Barve SS, Straley SC. 116.  1991. LcrD, a membrane-bound regulator of the Yersinia pestis low-calcium response. J. Bacteriol. 173:7293–303 [Google Scholar]
  117. Poyraz O, Schmidt H, Seidel K, Delissen F, Ader C. 117.  et al. 2010. Protein refolding is required for assembly of the type three secretion needle. Nat. Struct. Mol. Biol. 17:788–92 [Google Scholar]
  118. Radics J, Konigsmaier L, Marlovits T. 118.  2014. Structure of a pathogenic type 3 secretion system in action. Nat. Struct. Mol. Biol. 21:82–87 [Google Scholar]
  119. Rathinavelan T, Tang C, De Guzman RN. 119.  2011. Characterization of the interaction between the Salmonella type III secretion system tip protein SipD and the needle protein PrgI by paramagnetic relaxation enhancement. J. Biol. Chem. 286:4922–30 [Google Scholar]
  120. Riordan KE, Schneewind O. 120.  2008. YscU cleavage and the assembly of Yersinia type III secretion machine complexes. Mol. Microbiol. 68:1485–501 [Google Scholar]
  121. Rosqvist R, Persson C, Hakansson S, Nordfeldt R, Wolf-Watz H. 121.  1995. Translocation of the Yersinia YopE and YopH virulence proteins into target cells is mediated by YopB and YopD. Contrib. Microbiol. Immunol. 13:230–34 [Google Scholar]
  122. Russmann H, Kubori T, Sauer J, Galán J. 122.  2002. Molecular and functional analysis of the type III secretion signal of the Salmonella enterica InvJ protein. Mol. Microbiol. 46:769–79 [Google Scholar]
  123. Ryndak MB, Chung H, London E, Bliska JB. 123.  2005. Role of predicted transmembrane domains for type III translocation, pore formation, and signaling by the Yersinia pseudotuberculosis YopB protein. Infect. Immun. 73:2433–43 [Google Scholar]
  124. Schesser K, Frithz-Lindsten E, Wolf-Watz H. 124.  1996. Delineation and mutational analysis of the Yersinia pseudotuberculosis YopE domains which mediate translocation across bacterial and eukaryotic cellular membranes. J. Bacteriol. 178:7227–33 [Google Scholar]
  125. Schlumberger M, Muller A, Ehrbar K, Winnen B, Duss I. 125.  et al. 2005. Real time imaging of type III secretion: Salmonella SipA injection into host cells. Proc. Natl. Acad. Sci. USA 102:12548–53 [Google Scholar]
  126. Schraidt O, Lefebre M, Brunner M, Schmied W, Schmidt A. 126.  et al. 2010. Topology and organization of the Salmonella typhimurium type III secretion needle complex components. PLoS Pathog. 6:e1000824 [Google Scholar]
  127. Schraidt O, Marlovits T. 127.  2011. Three-dimensional model of Salmonella's needle complex at subnanometer resolution. Science 331:1192–95 [Google Scholar]
  128. Sekiya K, Ohishi M, Ogino T, Tamano K, Sasakawa C, Abe A. 128.  2001. Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc. Natl. Acad. Sci. USA 98:11638–43 [Google Scholar]
  129. Silver A, Kikuchi Y, Fadl A, Sha J, Chopra A, Graf J. 129.  2007. Interaction between innate immune cells and a bacterial type III secretion system in mutualistic and pathogenic associations. Proc. Natl. Acad. Sci. USA 104:9481–86 [Google Scholar]
  130. Sory M-P, Boland A, Lambermount I, Cornelis G. 130.  1995. Identification of the YopE and YopH domains required for secretion and internalization into the cytosol of macrophages, using the cyaA gene fusion approach. Proc. Natl. Acad. Sci. USA 92:11998–2002 [Google Scholar]
  131. Spaeth K, Chen Y, Valdivia R. 131.  2009. The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex. PLoS Pathog. 5:e1000579 [Google Scholar]
  132. Spreter T, Yip CK, Sanowar S, André I, Kimbrough TG. 132.  et al. 2009. A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system. Nat. Struct. Mol. Biol. 16:468–76 [Google Scholar]
  133. Stebbins CE, Galán JE. 133.  2001. Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414:77–81 [Google Scholar]
  134. Stebbins CE, Galán JE. 134.  2003. Priming virulence factors for delivery into the host. Nat. Rev. Mol. Cell Biol. 4:738–43 [Google Scholar]
  135. Sukhan A, Kubori T, Wilson J, Galán JE. 135.  2001. Genetic analysis of assembly of the Salmonella enterica serovar Typhimurium type III secretion-associated needle complex. J. Bacteriol. 183:1159–67 [Google Scholar]
  136. Thomas N, Ma I, Preasad M, Rafuse C. 136.  2012. Expanded roles for multicargo and class 1B effector chaperones in type III secretion. J. Bacteriol. 194:3767–73 [Google Scholar]
  137. Turner L, Stern A, Berg H. 137.  2012. Growth of flagellar filaments of Escherichia coli is independent of filament length. J. Bacteriol. 194:2437–42 [Google Scholar]
  138. Veenendaal A, Hodkinson J, Schwarzer L, Stabat D, Zenk S, Blocker A. 138.  2007. The type III secretion system needle tip complex mediates host cell sensing and translocon insertion. Mol. Microbiol. 63:1719–30 [Google Scholar]
  139. Wagner S, Königsmaier L, Lara-Tejero M, Lefebre M, Marlovits T, Galán J. 139.  2010. Organization and coordinated assembly of the type III secretion export apparatus. Proc. Natl. Acad. Sci. USA 107:17745–50 [Google Scholar]
  140. Wang Y, Nordhues B, Zhong D, De Guzman R. 140.  2010. NMR characterization of the interaction of the Salmonella type III secretion system protein SipD and bile salts. Biochemistry 49:4220–26 [Google Scholar]
  141. Wang Y, Yu X, Yip C, Strynadka N, Egelman E. 141.  2006. Structural polymorphism in bacterial EspA filaments revealed by cryo-EM and an improved approach to helical reconstruction. Structure 14:75–81 [Google Scholar]
  142. Wattiau P, Bernier B, Deslée P, Michiels T, Cornelis GR. 142.  1994. Individual chaperones required for Yop secretion by Yersinia. Proc. Natl. Acad. Sci. USA 91:10493–97 [Google Scholar]
  143. Wattiau P, Cornelis GR. 143.  1993. SycE, a chaperone-like protein of Yersinia enterocolitica involved in the secretion of YopE. Mol. Microbiol. 8:123–31 [Google Scholar]
  144. Wilharm G, Lehmann V, Krauss K, Lehnert B, Richter S. 144.  et al. 2004. Yersinia enterocolitica type III secretion depends on the proton motive force but not on the flagellar motor components MotA and MotB. Infect. Immun. 72:4004–9 [Google Scholar]
  145. Woestyn S, Allaoui A, Wattiau P, Cornelis GR. 145.  1994. YscN, the putative energizer of the Yersinia Yop secretion machinery. J. Bacteriol. 176:1561–69 [Google Scholar]
  146. Woestyn S, Sory MP, Boland A, Lequenne O, Cornelis GR. 146.  1996. The cytosolic SycE and SycH chaperones of Yersinia protect the region of YopE and YopH involved in translocation across eukaryotic cell membranes. Mol. Microbiol. 20:1261–71 [Google Scholar]
  147. Wood S, Jin J, Lloyd S. 147.  2008. YscP and YscU switch the substrate specificity of the Yersinia type III secretion system by regulating export of the inner rod protein YscI. J. Bacteriol. 190:4252–62 [Google Scholar]
  148. Worral L, Lameignere E, Strynadka N. 148.  2011. Structural overview of the bacterial injectisome. Curr. Opin. Microbiol. 14:3–8 [Google Scholar]
  149. Yip C, Finlay B, Strynadka N. 149.  2005. Structural characterization of a type III secretion system filament protein in complex with its chaperone. Nat. Struct. Mol. Biol. 12:75–81 [Google Scholar]
  150. Yuan J, Berg H. 150.  2010. Thermal and solvent-isotope effects on the flagellar rotary motor near zero load. Biophys. J. 98:21212126 [Google Scholar]
  151. Zhang L, Wang Y, Olive AJ, Smith ND, Picking WD. 151.  et al. 2007. Identification of the MxiH needle protein residues responsible for anchoring invasion plasmid antigen D to the type III secretion needle tip. J. Biol. Chem. 282:32144–51 [Google Scholar]
  152. Zhang L, Wang Y, Picking WL, Picking WD, De Guzman RN. 152.  2006. Solution structure of monomeric BsaL, the type III secretion needle protein of Burkholderia pseudomallei. J. Mol. Biol. 359:322–30 [Google Scholar]
  153. Zhong D, Lefebre M, Kaur K, McDowell MA, Gdowski C. 153.  et al. 2012. The Salmonella type III secretion system inner rod protein PrgJ is partially folded. J. Biol. Chem. 287:25303–11 [Google Scholar]
  154. Zierler MK, Galán JE. 154.  1995. Contact with cultured epithelial cells stimulates secretion of Salmonella typhimurium invasion protein InvJ. Infect. Immun. 63:4024–28 [Google Scholar]
/content/journals/10.1146/annurev-micro-092412-155725
Loading
/content/journals/10.1146/annurev-micro-092412-155725
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error