1932

Abstract

The ability of bacteria to recognize kin provides a means to form social groups. In turn these groups can lead to cooperative behaviors that surpass the ability of the individual. Kin recognition involves specific biochemical interactions between a receptor(s) and an identification molecule(s). Recognition specificity, ensuring that nonkin are excluded and kin are included, is critical and depends on the number of loci and polymorphisms involved. After recognition and biochemical perception, the common ensuing cooperative behaviors include biofilm formation, quorum responses, development, and swarming motility. Although kin recognition is a fundamental mechanism through which cells might interact, microbiologists are only beginning to explore the topic. This review considers both molecular and theoretical aspects of bacterial kin recognition. Consideration is also given to bacterial diversity, genetic relatedness, kin selection theory, and mechanisms of recognition.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-102215-095325
2016-09-08
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/70/1/annurev-micro-102215-095325.html?itemId=/content/journals/10.1146/annurev-micro-102215-095325&mimeType=html&fmt=ahah

Literature Cited

  1. Achtman M, Wagner M. 1.  2008. Microbial diversity and the genetic nature of microbial species. Nat. Rev. Microbiol. 6:431–40 [Google Scholar]
  2. Alteri CJ, Himpsl SD, Pickens SR, Lindner JR, Zora JS. 2.  et al. 2013. Multicellular bacteria deploy the type VI secretion system to preemptively strike neighboring cells. PLOS Pathog. 9:e1003608 [Google Scholar]
  3. Anderson MS, Garcia EC, Cotter PA. 3.  2014. Kind discrimination and competitive exclusion mediated by contact-dependent growth inhibition systems shape biofilm community structure. PLOS Pathog. 10:e1004076 [Google Scholar]
  4. Ansaldi M, Marolt D, Stebe T, Mandic-Mulec I, Dubnau D. 4.  2002. Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants. Mol. Microbiol. 44:1561–73 [Google Scholar]
  5. Aoki SK, Diner EJ, de Roodenbeke CT, Burgess BR, Poole SJ. 5.  et al. 2010. A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature 468:439–42 [Google Scholar]
  6. Aoki SK, Malinverni JC, Jacoby K, Thomas B, Pamma R. 6.  et al. 2008. Contact-dependent growth inhibition requires the essential outer membrane protein BamA (YaeT) as the receptor and the inner membrane transport protein AcrB. Mol. Microbiol. 70:323–40 [Google Scholar]
  7. Armbruster CE, Mobley HL. 7.  2012. Merging mythology and morphology: The multifaceted lifestyle of Proteus mirabilis. Nat. Rev. Microbiol. 10:743–54 [Google Scholar]
  8. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. 8.  2005. Host-bacterial mutualism in the human intestine. Science 307:1915–20 [Google Scholar]
  9. Be'er A, Ariel G, Kalisman O, Helman Y, Sirota-Madi A. 9.  et al. 2010. Lethal protein produced in response to competition between sibling bacterial colonies. PNAS 107:6258–63 [Google Scholar]
  10. Be'er A, Florin EL, Fisher CR, Swinney HL, Payne SM. 10.  2011. Surviving bacterial sibling rivalry: Inducible and reversible phenotypic switching in Paenibacillus dendritiformis. mBio 2:e00069–11 [Google Scholar]
  11. Blouin MS. 11.  2003. DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends. Ecol. Evol. 18:503–11 [Google Scholar]
  12. Budding AE, Ingham CJ, Bitter W, Vandenbroucke-Grauls CM, Schneeberger PM. 12.  2009. The Dienes phenomenon: competition and territoriality in swarming Proteus mirabilis. J. Bacteriol. 191:3892–900 [Google Scholar]
  13. Cao P, Dey A, Vassallo CN, Wall D. 13.  2015. How myxobacteria cooperate. J. Mol. Biol. 427:3709–21 [Google Scholar]
  14. Cardarelli L, Saak C, Gibbs KA. 14.  2015. Two proteins form a heteromeric bacterial self-recognition complex in which variable subdomains determine allele-restricted binding. mBio 6:e00251 [Google Scholar]
  15. Cascales E, Buchanan SK, Duche D, Kleanthous C, Lloubes R. 15.  et al. 2007. Colicin biology. Microbiol. Mol. Biol. Rev. 71:158–229 [Google Scholar]
  16. Claverys JP, Havarstein LS. 16.  2007. Cannibalism and fratricide: mechanisms and raisons d'etre. Nat. Rev. Microbiol. 5:219–29 [Google Scholar]
  17. Claverys JP, Martin B, Havarstein LS. 17.  2007. Competence-induced fratricide in streptococci. Mol. Microbiol. 64:1423–33 [Google Scholar]
  18. Cook LC, Federle MJ. 18.  2014. Peptide pheromone signaling in Streptococcus and Enterococcus. FEMS Microbiol. Rev. 38:473–92 [Google Scholar]
  19. Cornforth DM, Foster KR. 19.  2013. Competition sensing: the social side of bacterial stress responses. Nat. Rev. Microbiol. 11:285–93 [Google Scholar]
  20. Crozier RE. 20.  1986. Genetic clonal recognition abilities in marine invertebrates must be maintained by selection for something else. Evolution 40:1100–1 [Google Scholar]
  21. Dautin N, Bernstein HD. 21.  2007. Protein secretion in gram-negative bacteria via the autotransporter pathway. Annu. Rev. Microbiol. 61:89–112 [Google Scholar]
  22. Dawkins R. 22.  1976. The Selfish Gene. Oxford, UK: Oxford Univ. Press [Google Scholar]
  23. Dawkins R. 23.  1982. The Extended Phenotype: The Gene as the Unit of Selection. Oxford, UK: W. H. Freeman [Google Scholar]
  24. de Wit R, Bouvier T. 24.  2006. ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say?. Environ. Microbiol. 8:755–58 [Google Scholar]
  25. DeLeon-Rodriguez N, Lathem TL, Rodriguez RL, Barazesh JM, Anderson BE. 25.  et al. 2013. Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications. PNAS 110:2575–80 [Google Scholar]
  26. Denison RF. 26.  2000. Legume sanctions and the evolution of symbiotic cooperation by rhizobia. Am. Nat. 156:567–76 [Google Scholar]
  27. Dey A, Vassallo CN, Conklin AC, Pathak DT, Troselj V, Wall D. 27.  2016. Sibling rivalry in Myxococcus xanthus is mediated by kin recognition and a polyploid prophage. J. Bacteriol. 198:994–1004 [Google Scholar]
  28. Dunny GM, Antiporta MH, Hirt H. 28.  2001. Peptide pheromone-induced transfer of plasmid pCF10 in Enterococcus faecalis: probing the genetic and molecular basis for specificity of the pheromone response. Peptides 22:1529–39 [Google Scholar]
  29. Dworkin M. 29.  1972. The myxobacteria: new directions in studies of procaryotic development. CRC Crit. Rev. Microbiol. 1:435–52 [Google Scholar]
  30. Eldar A. 30.  2011. Social conflict drives the evolutionary divergence of quorum sensing. PNAS 108:13635–40 [Google Scholar]
  31. Ellermeier CD, Hobbs EC, Gonzalez-Pastor JE, Losick R. 31.  2006. A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell 124:549–59 [Google Scholar]
  32. Fletcher DJC, Michener CD. 32.  1987. Kin Recognition in Animals. Chichester, UK: John Wiley [Google Scholar]
  33. Foster KR, Parkinson K, Thompson CR. 33.  2007. What can microbial genetics teach sociobiology?. Trends Genet. 23:74–80 [Google Scholar]
  34. Fuqua C, Parsek MR, Greenberg EP. 34.  2001. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35:439–68 [Google Scholar]
  35. Gans J, Wolinsky M, Dunbar J. 35.  2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–90 [Google Scholar]
  36. Garcia EC, Anderson MS, Hagar JA, Cotter PA. 36.  2013. Burkholderia BcpA mediates biofilm formation independently of interbacterial contact-dependent growth inhibition. Mol. Microbiol. 89:1213–25 [Google Scholar]
  37. Gardner A, West SA. 37.  2007. Social evolution: the decline and fall of genetic kin recognition. Curr. Biol. 17:R810–12 [Google Scholar]
  38. Gardner A, West SA. 38.  2010. Greenbeards. Evolution 64:25–38 [Google Scholar]
  39. Gibbs KA, Greenberg EP. 39.  2011. Territoriality in Proteus: advertisement and aggression. Chem. Rev. 111:188–94 [Google Scholar]
  40. Gibbs KA, Urbanowski ML, Greenberg EP. 40.  2008. Genetic determinants of self identity and social recognition in bacteria. Science 321:256–59 [Google Scholar]
  41. Gonzalez-Pastor JE, Hobbs EC, Losick R. 41.  2003. Cannibalism by sporulating bacteria. Science 301:510–13 [Google Scholar]
  42. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. 42.  2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57:81–91 [Google Scholar]
  43. Grafen A. 43.  1990. Do animals really recognize kin?. Anim. Behav. 39:42–54 [Google Scholar]
  44. Haig D. 44.  1996. Gestational drive and the green-bearded placenta. PNAS 93:6547–51 [Google Scholar]
  45. Haig D. 45.  1997. The social gene. In Behavioural Ecology: An Evolutionary Approach. JR Krebs, NB Davies 284–304 Cambridge, UK: Wiley-Blackwell [Google Scholar]
  46. Hamilton WD. 46.  1964. The genetical evolution of social behaviour. I. J. Theor. Biol. 7:1–16 [Google Scholar]
  47. Hamilton WD. 47.  1964. The genetical evolution of social behaviour. II. J. Theor. Biol. 7:17–52 [Google Scholar]
  48. Hayes CS, Koskiniemi S, Ruhe ZC, Poole SJ, Low DA. 48.  2014. Mechanisms and biological roles of contact-dependent growth inhibition systems. Cold Spring Harb. Perspect. Med. 4:a010025 [Google Scholar]
  49. Hepper PG. 49.  1986. Kin recognition: functions and mechanisms; a review. Biol. Rev. Camb. Philos. Soc. 61:63–93 [Google Scholar]
  50. Heras B, Totsika M, Peters KM, Paxman JJ, Gee CL. 50.  et al. 2014. The antigen 43 structure reveals a molecular Velcro-like mechanism of autotransporter-mediated bacterial clumping. PNAS 111:457–62 [Google Scholar]
  51. Holman L, van Zweden JS, Linksvayer TA, d'Ettorre P. 51.  2013. Crozier's paradox revisited: maintenance of genetic recognition systems by disassortative mating. BMC Evol. Biol. 13:211 [Google Scholar]
  52. Hooper LV, Gordon JI. 52.  2001. Commensal host-bacterial relationships in the gut. Science 292:1115–18 [Google Scholar]
  53. Iannelli F, Oggioni MR, Pozzi G. 53.  2005. Sensor domain of histidine kinase ComD confers competence pherotype specificity in Streptoccoccus pneumoniae. FEMS Microbiol. Lett. 252:321–26 [Google Scholar]
  54. Jamet A, Nassif X. 54.  2015. New players in the toxin field: polymorphic toxin systems in bacteria. mBio 6:e00285–15 [Google Scholar]
  55. Ji G, Beavis R, Novick RP. 55.  1997. Bacterial interference caused by autoinducing peptide variants. Science 276:2027–30 [Google Scholar]
  56. Klaenhammer TR. 56.  1988. Bacteriocins of lactic acid bacteria. Biochimie 70:337–49 [Google Scholar]
  57. Kourtev PS, Hill KA, Shepson PB, Konopka A. 57.  2011. Atmospheric cloud water contains a diverse bacterial community. Atmos. Environ. 45:5399–405 [Google Scholar]
  58. Kraemer SA, Velicer GJ. 58.  2011. Endemic social diversity within natural kin groups of a cooperative bacterium. PNAS 108:Suppl. 210823–30 [Google Scholar]
  59. Lambais MR, Crowley DE, Cury JC, Bull RC, Rodrigues RR. 59.  2006. Bacterial diversity in tree canopies of the Atlantic forest. Science 312:1917 [Google Scholar]
  60. LeRoux M, Kirkpatrick RL, Montauti EI, Tran BQ, Peterson SB. 60.  et al. 2015. Kin cell lysis is a danger signal that activates antibacterial pathways of Pseudomonas aeruginosa. eLife 4:e05701 [Google Scholar]
  61. LeRoux M, Peterson SB, Mougous JD. 61.  2015. Bacterial danger sensing. J. Mol. Biol. 427:3744–53 [Google Scholar]
  62. Lukjancenko O, Wassenaar TM, Ussery DW. 62.  2010. Comparison of 61 sequenced Escherichia coli genomes. Microb. Ecol. 60:708–20 [Google Scholar]
  63. Luo C, Walk ST, Gordon DM, Feldgarden M, Tiedje JM, Konstantinidis KT. 63.  2011. Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. PNAS 108:7200–5 [Google Scholar]
  64. Lyons NA, Kraighter B, Stefanic P, Mandic-Mulec I, Kolter R. 64.  2016. A combinatorial kin discrimination system in Bacillus subtilis. Curr. Biol. 26:733–42 [Google Scholar]
  65. Munson EL, Pfaller MA, Doern GV. 65.  2002. Modification of dienes mutual inhibition test for epidemiological characterization of Pseudomonas aeruginosa isolates. J. Clin. Microbiol. 40:4285–88 [Google Scholar]
  66. Novick RP, Geisinger E. 66.  2008. Quorum sensing in staphylococci. Annu. Rev. Genet. 42:541–64 [Google Scholar]
  67. Nowak MA. 67.  2006. Five rules for the evolution of cooperation. Science 314:1560–63 [Google Scholar]
  68. Nudleman E, Wall D, Kaiser D. 68.  2005. Cell-to-cell transfer of bacterial outer membrane lipoproteins. Science 309:125–27 [Google Scholar]
  69. Pathak DT, Wei X, Bucuvalas A, Haft DH, Gerloff DL, Wall D. 69.  2012. Cell contact-dependent outer membrane exchange in myxobacteria: genetic determinants and mechanism. PLOS Genet. 8:e1002626 [Google Scholar]
  70. Pathak DT, Wei X, Dey A, Wall D. 70.  2013. Molecular recognition by a polymorphic cell surface receptor governs cooperative behaviors in bacteria. PLOS Genet. 9:e1003891 [Google Scholar]
  71. Petersen L, Bollback JP, Dimmic M, Hubisz M, Nielsen R. 71.  2007. Genes under positive selection in Escherichia coli. Genome Res. 17:1336–43 [Google Scholar]
  72. Porwollik S, Boyd EF, Choy C, Cheng P, Florea L. 72.  et al. 2004. Characterization of Salmonella enterica subspecies I genovars by use of microarrays. J. Bacteriol. 186:5883–98 [Google Scholar]
  73. Queller DC. 73.  2011. Expanded social fitness and Hamilton's rule for kin, kith and kind. PNAS 108:10792–99 [Google Scholar]
  74. Queller DC, Goodnight KF. 74.  1989. Estimating relatedness using genetic markers. Evolution 43:258–75 [Google Scholar]
  75. Rendueles O, Zee PC, Dinkelacker I, Amherd M, Wielgoss S, Velicer GJ. 75.  2015. Rapid and widespread de novo evolution of kin discrimination. PNAS 112:9076–81 [Google Scholar]
  76. Riley MA, Wertz JE. 76.  2002. Bacteriocins: Evolution, ecology, and application. Annu. Rev. Microbiol. 56:117–37 [Google Scholar]
  77. Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK. 77.  et al. 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1:283–90 [Google Scholar]
  78. Rossbach S, Rasul G, Schneider M, Eardly B, de Bruijn FJ. 78.  1995. Structural and functional conservation of the rhizopine catabolism (moc) locus is limited to selected Rhizobium meliloti strains and unrelated to their geographical origin. Mol. Plant Microbe Interact. 8:549–59 [Google Scholar]
  79. Rossello-Mora R, Amann R. 79.  2015. Past and future species definitions for Bacteria and Archaea. Syst. Appl. Microbiol. 38:209–16 [Google Scholar]
  80. Ruhe ZC, Low DA, Hayes CS. 80.  2013. Bacterial contact-dependent growth inhibition. Trends Microbiol. 21:230–37 [Google Scholar]
  81. Ruhe ZC, Townsley L, Wallace AB, King A, Van der Woude MW. 81.  et al. 2015. CdiA promotes receptor-independent intercellular adhesion. Mol. Microbiol. 98:175–92 [Google Scholar]
  82. Ruhe ZC, Wallace AB, Low DA, Hayes CS. 82.  2013. Receptor polymorphism restricts contact-dependent growth inhibition to members of the same species. mBio 4:e00480–13 [Google Scholar]
  83. Russell AB, Peterson SB, Mougous JD. 83.  2014. Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12:137–48 [Google Scholar]
  84. Rutherford ST, Bassler BL. 84.  2012. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2:a012427 [Google Scholar]
  85. Senior BW. 85.  1977. The Dienes phenomenon: Identification of the determinants of compatibility. J. Gen. Microbiol. 102:235–44 [Google Scholar]
  86. Senior BW, Larsson P. 86.  1983. A highly discriminatory multi-typing scheme for Proteus mirabilis and Proteus vulgaris. J. Med. Microbiol. 16:193–202 [Google Scholar]
  87. Sherlock O, Vejborg RM, Klemm P. 87.  2005. The TibA adhesin/invasin from enterotoxigenic Escherichia coli is self recognizing and induces bacterial aggregation and biofilm formation. Infect. Immun. 73:1954–63 [Google Scholar]
  88. Smith DR, Dworkin M. 88.  1994. Territorial interactions between two Myxococcus species. J. Bacteriol. 176:1201–5 [Google Scholar]
  89. Stefanic P, Kraigher B, Lyons NA, Kolter R, Mandic-Mulec I. 89.  2015. Kin discrimination between sympatric Bacillus subtilis isolates. PNAS 112:14042–47 [Google Scholar]
  90. Stefanic P, Mandic-Mulec I. 90.  2009. Social interactions and distribution of Bacillus subtilis pherotypes at microscale. J. Bacteriol. 191:1756–64 [Google Scholar]
  91. Strassmann JE, Gilbert OM, Queller DC. 91.  2011. Kin discrimination and cooperation in microbes. Annu. Rev. Microbiol. 65:349–67 [Google Scholar]
  92. Thiel V, Kunze B, Verma P, Wagner-Dobler I, Schulz S. 92.  2009. New structural variants of homoserine lactones in bacteria. Chembiochem 10:1861–68 [Google Scholar]
  93. Thoendel M, Kavanaugh JS, Flack CE, Horswill AR. 93.  2011. Peptide signaling in the staphylococci. Chem. Rev. 111:117–51 [Google Scholar]
  94. Vassallo C, Pathak DT, Cao P, Zuckerman DM, Hoiczyk E, Wall D. 94.  2015. Cell rejuvenation and social behaviors promoted by LPS exchange in myxobacteria. PNAS 112:E2939–46 [Google Scholar]
  95. Vassallo C, Wall D. 95.  2016. Tissue repair in myxobacteria: a cooperative strategy to heal cellular damage. BioEssays 38:306–15 [Google Scholar]
  96. Vejborg RM, Klemm P. 96.  2009. Cellular chain formation in Escherichia coli biofilms. Microbiology 155:1407–17 [Google Scholar]
  97. Velicer GJ, Vos M. 97.  2009. Sociobiology of the myxobacteria. Annu. Rev. Microbiol. 63:599–623 [Google Scholar]
  98. Vos M, Velicer GJ. 98.  2006. Genetic population structure of the soil bacterium Myxococcus xanthus at the centimeter scale. Appl. Environ. Microbiol. 72:3615–25 [Google Scholar]
  99. Vos M, Velicer GJ. 99.  2009. Social conflict in centimeter- and global-scale populations of the bacterium Myxococcus xanthus. Curr. Biol. 19:1763–67 [Google Scholar]
  100. Wagner-Dobler I, Thiel V, Eberl L, Allgaier M, Bodor A. 100.  et al. 2005. Discovery of complex mixtures of novel long-chain quorum sensing signals in free-living and host-associated marine alphaproteobacteria. Chembiochem 6:2195–206 [Google Scholar]
  101. Waldman B, Frumhoff PC, Sherman PW. 101.  1988. Problems of kin recognition. Trends Ecol. Evol. 3:8–13 [Google Scholar]
  102. Wall D. 102.  2014. Molecular recognition in myxobacterial outer membrane exchange: functional, social and evolutionary implications. Mol. Microbiol. 91:209–20 [Google Scholar]
  103. Wei X, Pathak DT, Wall D. 103.  2011. Heterologous protein transfer within structured myxobacteria biofilms. Mol. Microbiol. 81:315–26 [Google Scholar]
  104. Wenren LM, Sullivan NL, Cardarelli L, Septer AN, Gibbs KA. 104.  2013. Two independent pathways for self-recognition in Proteus mirabilis are linked by type VI-dependent export. mBio 4:e00374–13 [Google Scholar]
  105. West SA, Gardner A. 105.  2010. Altruism, spite, and greenbeards. Science 327:1341–44 [Google Scholar]
  106. West SA, Griffin AS, Gardner A. 106.  2007. Evolutionary explanations for cooperation. Curr. Biol. 17:R661–72 [Google Scholar]
  107. West SA, Griffin AS, Gardner A, Diggle SP. 107.  2006. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4:597–607 [Google Scholar]
  108. Wielgoss S, Didelot X, Chaudhuri RR, Liu X, Weedall GD. 108.  et al. 2016. A barrier to homologous recombination between sympatric strains of the cooperative soil bacterium Myxococcus xanthus. ISME J. In press. doi: 10.1038/ismej.2016.34
  109. Wright JS 3rd, Traber KE, Corrigan R, Benson SA, Musser JM, Novick RP. 109.  2005. The agr radiation: An early event in the evolution of staphylococci. J. Bacteriol. 187:5585–94 [Google Scholar]
  110. Zee PC, Bever JD. 110.  2014. Joint evolution of kin recognition and cooperation in spatially structured rhizobium populations. PLOS ONE 9:e95141 [Google Scholar]
  111. Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L. 111.  2012. Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol. Dir. 7:18 [Google Scholar]
/content/journals/10.1146/annurev-micro-102215-095325
Loading
/content/journals/10.1146/annurev-micro-102215-095325
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error