1932

Abstract

Respiration of perchlorate and chlorate [collectively, (per)chlorate] was only recognized in the last 20 years, yet substantial advances have been made in our understanding of the underlying metabolisms. Although it was once considered solely anthropogenic, pervasive natural sources, both terrestrial and extraterrestrial, indicate an ancient (per)chlorate presence across our solar system. These discoveries stimulated interest in (per)chlorate microbiology, and the application of advanced approaches highlights exciting new facets. Forward and reverse genetics revealed new information regarding underlying molecular biology and associated regulatory mechanisms. Structural and functional analysis characterized core enzymes and identified novel reaction sequences. Comparative genomics elucidated evolutionary aspects, and stress analysis identified novel response mechanisms to reactive chlorine species. Finally, systems biology identified unique metabolic versatility and novel mechanisms of (per)chlorate respiration, including symbiosis and a hybrid enzymatic-abiotic metabolism. While many published studies focus on (per)chlorate and their basic metabolism, this review highlights seminal advances made over the last decade and identifies new directions and potential novel applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-102215-095406
2016-09-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/70/1/annurev-micro-102215-095406.html?itemId=/content/journals/10.1146/annurev-micro-102215-095406&mimeType=html&fmt=ahah

Literature Cited

  1. Achenbach L, Coates J. 1.  2000. Disparity between bacterial phylogeny and physiology. ASM News 66:714–15 [Google Scholar]
  2. Afshar S, Johnson E, de Vries S, Schröder I. 2.  2001. Properties of a thermostable nitrate reductase from the hyperthermophilic archaeon Pyrobaculum aerophilum. J. Bacteriol. 183:5491–95 [Google Scholar]
  3. Ahn CH, Oh H, Ki D, Van Ginkel S, Rittmann B, Park J. 3.  2009. Bacterial biofilm-community selection during autohydrogenotrophic reduction of nitrate and perchlorate in ion-exchange brine. Appl. Microbiol. Biotechnol. 81:1169–77 [Google Scholar]
  4. Åslander A. 4.  1928. Experiments on the Eradication of Canada Thistle, Cirsium arvense, with Chlorates and other Herbicides Washington, DC: U. S. Gov. Print. Off. [Google Scholar]
  5. Bäcklund AS, Bohlin J, Gustavsson N, Nilsson T. 5.  2009. Periplasmic c cytochromes and chlorate reduction in Ideonella dechloratans. Appl. Environ. Microbiol. 75:2439–45 [Google Scholar]
  6. Bäcklund AS, Nilsson T. 6.  2011. Purification and characterization of a soluble cytochrome c capable of delivering electrons to chlorate reductase in Ideonella dechloratans. FEMS Microbiol. Lett. 321:115–20 [Google Scholar]
  7. Baeuerle PA, Huttner WB. 7.  1986. Chlorate—a potent inhibitor of protein sulfation in intact cells. Biochem. Biophys. Res. Com. 141:870–77 [Google Scholar]
  8. Balk M, van Gelder T, Weelink SA, Stams AJ. 8.  2008. (Per)chlorate reduction by the thermophilic bacterium Moorella perchloratireducens sp. nov., isolated from underground gas storage. Appl. Environ. Microbiol. 74:403–9 [Google Scholar]
  9. Bardiya N, Bae JH. 9.  2004. Role of Citrobacter amalonaticus and Citrobacter farmeri in dissimilatory perchlorate reduction. J. Basic Microbiol. 44:88–97 [Google Scholar]
  10. Beil S, Timmis KN, Pieper DH. 10.  1999. Genetic and biochemical analyses of the tec operon suggest a route for evolution of chlorobenzene degradation genes. J. Bacteriol. 181:341–46 [Google Scholar]
  11. Bell LC, Richardson DJ, Ferguson SJ. 11.  2001. Periplasmic and membrane-bound respiratory nitrate reductases in Thiosphaera pantotropha: The periplasmic enzyme catalyzes the first step in aerobic denitrification. FEBS Lett. 265:85–87 [Google Scholar]
  12. Bender KS, Rice MR, Fugate WH, Coates JD, Achenbach LA. 12.  2004. Metabolic primers for detection of (per)chlorate-reducing bacteria in the environment and phylogenetic analysis of cld gene sequences. Appl. Environ. Microbiol. 70:5651–58 [Google Scholar]
  13. Bohlin J, Bäcklund AS, Gustavsson N, Wahlberg S, Nilsson T. 13.  2010. Characterization of a cytochrome c gene located at the gene cluster for chlorate respiration in Ideonella dechloratans. Microbiol. Res. 165:450–57 [Google Scholar]
  14. Bohlke JK, Ericksen GE, Revesz K. 14.  1997. Stable isotope evidence for an atmospheric origin of desert nitrate deposits in Northern Chile and Southern California, U.S.A. Chem. Geol. 136:135–52 [Google Scholar]
  15. Bohlke JK, Sturchio NC, Gu B, Horita J, Brown GM. 15.  et al. 2005. Perchlorate isotope forensics. Anal. Chem. 77:7838–42 [Google Scholar]
  16. Boll M, Fuchs G. 16.  1995. Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism: ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain k172. Eur. J. Biochem. 234:921–33 [Google Scholar]
  17. Bruce RA, Achenbach LA, Coates JD. 17.  1999. Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environ. Microbiol. 1:319–29 [Google Scholar]
  18. Carlson HK, Kuehl JV, Hazra AB, Justice NB, Stoeva MK. 18.  et al. 2014. Mechanisms of direct inhibition of the respiratory sulfate-reduction pathway by (per)chlorate and nitrate. ISME J. 9:1295–305 [Google Scholar]
  19. Carlström CI, Loutey DE, Bauer S, Clark IC, Rohde RA. 19.  et al. 2015. (Per)chlorate-reducing bacteria can utilize aerobic and anaerobic pathways of aromatic degradation with (per)chlorate as an electron acceptor. mBio 6:e02287–14 [Google Scholar]
  20. Carlström CI, Loutey DE, Wang O, Engelbrektson A, Clark I. 20.  et al. 2015. Phenotypic and genotypic description of Sedimenticola selenatireducens strain CUZ, a marine (per)chlorate-respiring gammaproteobacterium, and its close relative the chlorate-respiring Sedimenticola strain NSS. Appl. Environ. Microbiol. 81:2717–26 [Google Scholar]
  21. Carlström CI, Wang O, Melnyk RA, Bauer S, Lee J. 21.  et al. 2013. Physiological and genetic description of dissimilatory perchlorate reduction by the novel marine bacterium Arcobacter sp. Strain CAB. mBio 4:e00217–13 [Google Scholar]
  22. Catling DC, Claire MW, Zahnle KJ, Quinn RC, Clark BC. 22.  et al. 2010. Atmospheric origins of perchlorate on Mars and in the Atacama. J. Geophys. Res. 115:E00E11 [Google Scholar]
  23. Chakraborty R, O'Connor SM, Chan E, Coates JD. 23.  2005. Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB. Appl. Environ. Microbiol. 71:8649–55 [Google Scholar]
  24. Chaudhuri SK, O'Connor SM, Gustavson RL, Achenbach LA, Coates JD. 24.  2002. Environmental factors that control microbial perchlorate reduction. Appl. Environ. Microbiol. 68:4425–30 [Google Scholar]
  25. Chung J, Shin S, Oh J. 25.  2009. Characterization of a microbial community capable of reducing perchlorate and nitrate in high salinity. Biotechnol. Letts. 31:959–66 [Google Scholar]
  26. Cladera AM, García-Valdés E, Lalucat J. 26.  2006. Genotype versus phenotype in the circumscription of bacterial species: The case of Pseudomonas stutzeri and Pseudomonas chloritidismutans. Arch. Microbiol. 184:353–61 [Google Scholar]
  27. Clark IC, Melnyk RA, Engelbrektson A, Coates JD. 27.  2013. Structure and evolution of chlorate reduction composite transposons. mBio 4:e00379–13 [Google Scholar]
  28. Clark IC, Melnyk RA, Iavarone AT, Novichkov PS, Coates JD. 28.  2014. Chlorate reduction in Shewanella algae ACDC is a recently acquired metabolism characterized by gene loss, suboptimal regulation and oxidative stress. Mol. Microbiol. 94:107–25 [Google Scholar]
  29. Clark IC, Melnyk RA, Youngblut MD, Carlson HK, Iavarone AT, Coates JD. 29.  2015. Synthetic and evolutionary construction of a chlorate-reducing Shewanella oneidensis MR-1. mBio 6:e00282–15 [Google Scholar]
  30. Clark IC, Youngblut MD, Jacobsen G, Wetmore KM, Deutschbauer AM. 30.  et al. 2015. Genetic dissection of chlorate respiration in Pseudomonas stutzeri PDA reveals syntrophic (per)chlorate reduction. Environ. Microbiol. In press. doi: 10.1111/1462-2920.13068
  31. Clark JJJ. 31.  2000. Toxicology of perchlorate. Perchlorate in the Environment ET Urbansky, chap. 3 New York: Kluwer Acad./Plenum [Google Scholar]
  32. Coates JD, Achenbach LA. 32.  2004. Microbial perchlorate reduction: rocket fuelled metabolism. Nat. Rev. Microbiol. 2:569–80 [Google Scholar]
  33. Coates JD, Bruce RA, Haddock JD. 33.  1998. Anoxic bioremediation of hydrocarbons. Nature 396:730 [Google Scholar]
  34. Coates JD, Bruce RA, Patrick JA, Achenbach LA. 34.  1999. Hydrocarbon bioremediative potential of (per)chlorate-reducing bacteria. Bioremed. J. 3:323–34 [Google Scholar]
  35. Coates JD, Chakraborty R, Lack JG, O'Connor SM, Cole KA. 35.  et al. 2001. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411:1039–43 [Google Scholar]
  36. Coates JD, Jackson A. 36.  2008. Principles of perchlorate treatment. In Situ Bioremediation of Perchlorate in Groundwater CH Ward, HF Stroo, pp. 29–53 Norwell, MA: Springer [Google Scholar]
  37. Coates JD, Michaelidou U, Bruce RA, O'Connor SM, Crespi JN, Achenbach LA. 37.  1999. Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl. Environ. Microbiol. 65:5234–41 [Google Scholar]
  38. Condie L. 38.  1986. Toxicological problems associated with chlorine dioxide. J. Am. Water Works Assoc. 78:73–78 [Google Scholar]
  39. Creevey NL, McEwan AG, Bernhardt PV. 39.  2008. A mechanistic and electrochemical study of the interaction between dimethyl sulfide dehydrogenase and its electron transfer partner cytochrome c2. J. Biolog. Inorg. Chem. 13:1231–38 [Google Scholar]
  40. Daniel F, Condie L, Robinson M, Stober J, York R. 40.  et al. 1990. Comparative subchronic toxicity studies of three disinfectants. J. Am. Water Works Assoc. 82:61–69 [Google Scholar]
  41. Davila AF, Willson D, Coates JD, McKay CP. 41.  2013. Perchlorate on Mars: a chemical hazard and a resource for humans. Int. J. Astrobiol. 12:321–25 [Google Scholar]
  42. Dudley M, Salmone A, Nerenberg R. 42.  2008. Kinetics of a chlorate-accumulating, perchlorate-reducing bacterium. Water Res. 42:2403–10 [Google Scholar]
  43. Engelbrektson A, Hubbard CG, Tom LM, Boussina A, Jin YT. 43.  et al. 2014. Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment. Front. Microbiol. 5:315 doi: 10.3389/fmicb.2014.00315 [Google Scholar]
  44. Furdui VI, Tomassini F. 44.  2010. Trends and sources of perchlorate in Arctic snow. Environ. Sci. Technol. 44:558–92 [Google Scholar]
  45. Gregoire P, Engelbrektson A, Hubbard CG, Metlagel Z, Csencsits R. 45.  et al. 2014. Control of sulfidogenesis through bio-oxidation of H2S coupled to (per)chlorate reduction. Environ. Microbiol. Rep. 6:558–64 [Google Scholar]
  46. Hatzinger PB. 46.  2005. Perchlorate biodegradation for water treatment. Environ. Sci. Technol. 39:239A–47A [Google Scholar]
  47. Hecht MH, Kounaves SP, Quinn RC, West SJ, Young SMM. 47.  et al. 2009. Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander site. Science 325:64–67 [Google Scholar]
  48. Heinnickel M, Smith SC, Koo J, O'Connor SM, Coates JD. 48.  2011. A bioassay for the detection of perchlorate in the ppb range. Environ. Sci. Technol. 45:2958–64 [Google Scholar]
  49. Hellberg Lindqvist M, Johansson N, Nilsson T, Rova M. 49.  2012. Expression of chlorite dismutase and chlorate reductase in the presence of oxygen and/or chlorate as the terminal electron acceptor in Ideonella dechloratans. Appl. Environ. Microbiol. 78:4380–85 [Google Scholar]
  50. Hellberg Lindqvist M, Nilsson T, Sundin P, Rova M. 50.  2015. Chlorate reductase is cotranscribed with cytochrome c and other downstream genes in the gene cluster for chlorate respiration of Ideonella dechloratans. FEMS Microbiol. Lett. 362:fnv019 [Google Scholar]
  51. Hille R, Hall J, Basu P. 51.  2014. The mononuclear molybdenum enzymes. Chem. Rev. 114:3963–4038 [Google Scholar]
  52. Hirsch W, Schägger H, Fuchs G. 52.  1998. Phenylglyoxylate:NAD+ oxidoreductase (CoA benzoylating), a new enzyme of anaerobic phenylalanine metabolism in the denitrifying bacterium Azoarcus evansii. Eur. J. Biochem. 251:907–15 [Google Scholar]
  53. Hofbauer S, Gruber C, Pirker KF, Sündermann A, Schaffner I. 53.  et al. 2014. Transiently produced hypochlorite is responsible for the irreversible inhibition of chlorite dismutase. Biochemistry 53:3145–57 [Google Scholar]
  54. Hogue C. 54.  2003. Rocket-fueled river. Chem. Eng. News 81:37–46 [Google Scholar]
  55. Hynes RK, Knowles R. 55.  1983. Inhibition of chemoautotrophic nitrification by sodium chlorate and sodium chlorite: a reexamination. Appl. Environ. Microbiol. 45:1178–82 [Google Scholar]
  56. Jackson WA, Anandam SK, Anderson TA, Lehman T, Rainwater K. 56.  et al. 2005. Perchlorate occurrence in the Texas Southern High Plains aquifer system. Groundw. Monit. Remed. 25:137–49 [Google Scholar]
  57. Jackson WA, Böhlke JK, Andraski BJ, Fahlquist L, Bexfield L. 57.  et al. 2015. Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments. Geochim. Cosmochim. Acta 164:502–22 [Google Scholar]
  58. Jackson WA, Davila AF, Estrada N, Lyons WB, Coates JD, Priscu JC. 58.  2012. Perchlorate and chlorate biogeochemistry in ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Geochim. Cosmochim. Acta 98:19–30 [Google Scholar]
  59. Jackson WA, Davila AF, Sears DWG, Coates JD, McKay CP. 59.  et al. 2015. Widespread occurrence of (per)chlorate in the Solar System. Earth Planet Sci. Lett. 430:470–76 [Google Scholar]
  60. Ju X, Field JA, Sierra-Alvarez R, Salazar M, Bentley H, Bentley R. 60.  2007. Chemolithotrophic perchlorate reduction linked to the oxidation of elemental sulfur. Biotechnol. Bioeng. 96:1073–82 [Google Scholar]
  61. Kang N, Anderson TA, Jackson WA. 61.  2006. Photochemical formation of perchlorate from aqueous oxychlorine anions. Analyt. Chim. Acta 567:48–56 [Google Scholar]
  62. Karlsson J, Nilsson T. 62.  2005. The C subunit of Ideonella dechloratans chlorate reductase: expression, purification, refolding, and heme reconstitution. Prot. Express Purif. 41:306–12 [Google Scholar]
  63. Keith JM, Abu-Omar MM, Hall MB. 63.  2011. Computational investigation of the concerted dismutation of chlorite ion by water-soluble iron porphyrins. Inorg. Chem. 50:7928–30 [Google Scholar]
  64. Kengen SWM, Rikken GB, Hagen WR, van Ginkel CG, Stams AJM. 64.  1999. Purification and characterization of (per)chlorate reductase from the chlorate-respiring strain GR-1. J. Bacteriol. 181:6706–11 [Google Scholar]
  65. Koppenol WH. 65.  1988. The paradox of oxygen: thermodynamics versus toxicity. Oxidases and Related Redox Systems T King, HS Mason, M Morrison 93–109 New York: Pergamon [Google Scholar]
  66. Kounaves SP, Carrier BL, O'Neil GD, Stroble ST, Claire MW. 66.  2014. Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: implications for oxidants and organics. Icarus 229:206–13 [Google Scholar]
  67. Lee AQ, Streit BR, Zdilla MJ, Abu-Omar MM, DuBois JL. 67.  2008. Mechanism of and exquisite selectivity for O–O bond formation by the heme-dependent chlorite dismutase. PNAS 105:15654–59 [Google Scholar]
  68. Lees H, Simpson JR. 68.  1957. The biochemistry of the nitrifying organisms. V. Nitrite oxidation by Nitrobacter. Biochem. J. 65:297–305 [Google Scholar]
  69. Liebensteiner MG, Pinkse MW, Schaap PJ, Stams AJ, Lomans BP. 69.  2013. Archaeal (per) chlorate reduction at high temperature: an interplay of biotic and abiotic reactions. Science 340:85–87 [Google Scholar]
  70. Liebensteiner MG, Pinkse MWH, Nijsse B, Verhaert PD, Tsesmetzis N. 70.  et al. 2015. Perchlorate and chlorate reduction by the Crenarchaeon Aeropyrum pernix and two thermophilic Firmicutes. Environ. Microbiol. Rep. 7:936–45 [Google Scholar]
  71. Liebensteiner MG, Stams AJM, Lomans BP. 71.  2014. (Per)chlorate reduction at high temperature: Physiological study of Archaeoglobus fulgidus and potential implications for novel souring mitigation strategies. Int. Biodeterior. Biodeg. 96:216–22 [Google Scholar]
  72. Lowe EC, Bydder S, Hartshorne RS, Tape HLU, Dridge EJ. 72.  et al. 2010. Quinol-cytochrome c oxidoreductase and cytochrome c4 mediate electron transfer during selenate respiration in Thauera selenatis.  J. Biol. Chem 285:18433–42 [Google Scholar]
  73. Maixner F, Wagner M, Lücker S, Pelletier E, Schmitz-Esser S. 73.  et al. 2008. Environmental genomics reveals a functional chlorite dismutase in the nitrite-oxidizing bacterium ‘Candidatus Nitrospira defluvii’. Environ. Microbiol. 10:3043–56 [Google Scholar]
  74. Malmqvist Å, Welander T, Moore E, Ternström A, Molin G, Stenström I. 74.  1994. Ideonella dechloratans gen.nov., sp.nov., a new bacterium capable of growing anaerobically with chlorate as an electron acceptor. Sys. Appl. Microbiol. 17:58–64 [Google Scholar]
  75. Marangon J, Paes de Sousa PM, Moura I, Brondino CD, Moura JJG, González PJ. 75.  2012. Substrate-dependent modulation of the enzymatic catalytic activity: Reduction of nitrate, chlorate and perchlorate by respiratory nitrate reductase from Marinobacter hydrocarbonoclasticus 617. Biochim. Biophys. Acta 1817:1072–82 [Google Scholar]
  76. Martínez-Espinosa RM, Dridge EJ, Bonete MJ, Butt JN, Butler CS. 76.  et al. 2007. Look on the positive side! The orientation, identification and bioenergetics of ‘Archaeal’ membrane-bound nitrate reductases. FEMS Microbiol. Lett. 276:129–39 [Google Scholar]
  77. Martínez-Espinosa RM, Richardson DJ, Bonete MJ. 77.  2015. Characterisation of chlorate reduction in the haloarchaeon Haloferax mediterranei. Biochim. Biophys. Acta 1850:587–94 [Google Scholar]
  78. Melnyk R, Coates JD. 78.  2015. The perchlorate reduction genomic island: Mechanisms and pathways of evolution by horizontal gene transfer. BMC Genomics 16:862 [Google Scholar]
  79. Melnyk RA, Clark IC, Liao A, Coates JD. 79.  2013. Transposon and deletion mutagenesis of genes involved in perchlorate reduction in Azospira suillum PS. mBio 5:e00769–13 [Google Scholar]
  80. Melnyk RA, Engelbrektson A, Clark IC, Carlson HK, Byrne-Bailey K, Coates JD. 80.  2011. Identification of a perchlorate reduction genomic island with novel regulatory and metabolic genes. Appl. Environ. Microbiol. 77:7401–4 [Google Scholar]
  81. Melnyk RA, Youngblut MD, Clark IC, Carlson HK, Wetmore KM. 81.  et al. 2015. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase. mBio 6:e00233–15 [Google Scholar]
  82. Miller LG, Baesman SM, Carlstrom CI, Coates JD, Oremland RS. 82.  2014. Methane oxidation linked to chlorite dismutation. Front. Microbiol. 5:1–8 [Google Scholar]
  83. Ming DW, Archer PD, Glavin DP, Eigenbrode JL. 83.  2014. Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars. Science 343:1245267 doi: 10.1126/science.1245267 [Google Scholar]
  84. Mlynek G, Kostan J, Fu S, Maixner F, Gysel K. 84.  et al. 2011. Unexpected diversity of chlorite dismutases: a catalytically efficient dimeric enzyme from Nitrobacter winogradskyi. J. Bacteriol. 193:2408–17 [Google Scholar]
  85. Motzer WE. 85.  2001. Perchlorate: problems, detection, and solutions. Environ. Forensics 2:301–11 [Google Scholar]
  86. Nerenberg R, Kawagoshi Y, Rittmann BE. 86.  2008. Microbial ecology of a perchlorate-reducing, hydrogen-based membrane biofilm reactor. Water Res. 42:1151–59 [Google Scholar]
  87. Nerenberg R, Rittmann BE. 87.  2004. Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants. Water Sci. Technol. 49:223–30 [Google Scholar]
  88. Ojha L, Wilhelm MB, Murchie SL, McEwen AS, Wray JJ. 88.  et al. 2015. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8:829–32 doi: 10.1038/NGEO2546 [Google Scholar]
  89. Okeke BC, Giblin T, Frankenberger WT. 89.  2002. Reduction of perchlorate and nitrate by salt tolerant bacteria. Environ. Pollut. 118:357–63 [Google Scholar]
  90. Oosterkamp MJ, Veuskens T, Plugge CM, Langenhoff AAM, Gerritse J. 90.  et al. 2011. Genome sequences of Alicycliphilus denitrificans strains BC and K601T. J. Bacteriol. 193:5028–29 [Google Scholar]
  91. Oren A, Elevi Bardavid R, Mana L. 91.  2014. Perchlorate and halophilic prokaryotes: implications for possible halophilic life on Mars. Extremophiles 18:75–80 [Google Scholar]
  92. Pattison DI, Davies MJ. 92.  2001. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem. Res. Toxicol. 14:1453–64 [Google Scholar]
  93. Postgate JR. 93.  1952. Competitive and non-competitive inhibitors of bacterial sulphate reduction. J. Gen. Microbiol. 6:128–42 [Google Scholar]
  94. Rajagopalan S, Anderson TA, Cox S, Harvey GJ, Cheng Q, Jackson WA. 94.  2009. Perchlorate in wet deposition across North America. Environ. Sci. Technol. 43:616–22 [Google Scholar]
  95. Rao B, Hatzinger PB, Böhlke JK, Sturchio NC, Andraski BJ. 95.  et al. 2010. Natural chlorate in the environment: application of a new IC-ESI/MS/MS method with a Cl18O3 internal standard.. Environ. Sci. Technol. 44:8429–34 [Google Scholar]
  96. Rao B, Mohan S, Neuber A, Jackson WA. 96.  2012. Production of perchlorate by laboratory simulated lightning process. Water Air Soil Pollut. 223:275–87 [Google Scholar]
  97. Rikken GB, Kroon AGM, Van Ginkel CG. 97.  1996. Transformation of (per) chlorate into chloride by a newly isolated bacterium: reduction and dismutation. Appl. Microbiol. Biotechnol. 45:420–26 [Google Scholar]
  98. Rusmana I, Nedwell DB. 98.  2004. Use of chlorate as a selective inhibitor to distinguish membrane-bound nitrate reductase (Nar) and periplasmic nitrate reductase (Nap) of dissimilative nitrate reducing bacteria in sediment. FEMS Microbiol. Ecol. 48:379–86 [Google Scholar]
  99. Sahu AK, Conneely T, Nüsslein KR, Ergas SJ. 99.  2009. Biological perchlorate reduction in packed bed reactors using elemental sulfur. Environ. Sci. Technol. 43:4466–71 [Google Scholar]
  100. Salinero K, Keller K, Feil WS, Feil H, Trong S. 100.  et al. 2009. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC Genomics 10:351 [Google Scholar]
  101. Sen D, Yano H, Suzuki H, Król JE, Rogers L. 101.  et al. 2010. Comparative genomics of pAKD4, the prototype IncP-1δ plasmid with a complete backbone. Plasmid 63:98–107 [Google Scholar]
  102. Siddiqui M. 102.  1996. Chlorine-ozone interactions: formation of chlorate. Water Res. 30:2160–70 [Google Scholar]
  103. Simon J, Sänger M, Schuster SC, Gross R. 103.  2003. Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein. Mol. Microbiol. 49:69–79 [Google Scholar]
  104. Stanbury JB, Wyngaarden JB. 104.  1952. Effect of perchlorate on the human thyroid gland. Metabolism 1:533–39 [Google Scholar]
  105. Stepanov VG, Xiao Y, Tran Q, Rojas M, Willson RC. 105.  et al. 2014. The presence of nitrate dramatically changed the predominant microbial community in perchlorate degrading cultures under saline conditions. BMC Microbiol. 14:225 [Google Scholar]
  106. Stewart V. 106.  1988. Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol. Rev. 52:190–232 [Google Scholar]
  107. Streit BR, DuBois JL. 107.  2008. Chemical and steady-state kinetic analyses of a heterologously expressed heme dependent chlorite dismutase. Biochemistry 47:5271–80 [Google Scholar]
  108. Sun S, Li Z-S, Chen S-L. 108.  2014. A dominant homolytic O–Cl bond cleavage with low-spin triplet-state Fe(iv)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase. Dalton Trans. 43:973–81 [Google Scholar]
  109. Sun Y, Gustavson RL, Ali N, Weber KA, Westphal LL, Coates JD. 109.  2009. Behavioral response of dissimilatory perchlorate-reducing bacteria to different electron acceptors. Appl. Microbiol. Biotechnol. 84:955–63 [Google Scholar]
  110. Thorell HD, Stenklo K, Karlsson J, Nilsson T. 110.  2003. A gene cluster for chlorate metabolism in Ideonella dechloratans. Appl. Environ. Microbiol. 69:5585–92 [Google Scholar]
  111. Thrash JC, Pollock J, Torok T, Coates JD. 111.  2010. Description of the novel perchlorate-reducing bacteria Dechlorobacter hydrogenophilus gen. nov., sp. nov. and Propionivibrio militaris, sp. nov. Appl. Microbiol. Biotechnol. 86:335–43 [Google Scholar]
  112. Thrash JC, Van Trump JI, Weber KA, Miller E, Achenbach LA, Coates JD. 112.  2007. Electrochemical stimulation of microbial perchlorate reduction. Environ. Sci. Technol. 41:1740–46 [Google Scholar]
  113. Top EM, Springael D, Boon N. 113.  2002. Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. FEMS Microbiol. Ecol. 42:199–208 [Google Scholar]
  114. Urbansky ET. 114.  1998. Perchlorate chemistry: implications for analysis and remediation. Bioremed. J. 2:81–95 [Google Scholar]
  115. van Ginkel CG, Rikken GB, Kroon AGM, Kengen SW. 115.  1996. Purification and characterization of chlorite dismutase: a novel oxygen-generating enzyme. Arch. Microbiol. 166:321–26 [Google Scholar]
  116. Van Ginkel SW, Lamendella R, Kovacik WP, Santo Domingo JW, Rittmann BE. 116.  2010. Microbial community structure during nitrate and perchlorate reduction in ion-exchange brine using the hydrogen-based membrane biofilm reactor (MBfR). Biores. Technol. 101:3747–50 [Google Scholar]
  117. van Wijk DJ, Hutchinson TH. 117.  1995. The ecotoxicity of chlorate to aquatic organisms: a critical review. Ecotoxicol. Environ. Safety 32:244–53 [Google Scholar]
  118. Vijaya NA, Gangadharan PVP, Bhaskaran K. 118.  2013. Perchlorate reduction by an isolated Serratia marcescens strain under high salt and extreme pH. FEMS Microbiol. Lett. 339:117–21 [Google Scholar]
  119. Weelink SA, Tan NC, ten Broeke H, van den Kieboom C, van Doesburg W. 119.  et al. 2008. Isolation and characterization of Alicycliphilus denitrificans strain BC, which grows on benzene with chlorate as the electron acceptor. Appl. Environ. Microbiol. 74:6672–81 [Google Scholar]
  120. Wolff J. 120.  1998. Perchlorate and the thyroid gland. Pharmacol. Rev. 50:89–105 [Google Scholar]
  121. Wolterink AFWM, Jonker AB, Kengen SWM, Stams AJM. 121.  2002. Pseudomonas chloritidismutans sp. nov., a non-denitrifying, chlorate-reducing bacterium. Int. J. Sys. Evol. Microbiol. 52:2183–90 [Google Scholar]
  122. Wolterink AFWM, Schiltz E, Hagedoorn PL, Hagen WR, Kengen SWM, Stams AJM. 122.  2003. Characterization of the chlorate reductase from Pseudomonas chloritidismutans. J. Bacteriol. 185:3210 [Google Scholar]
  123. Wyndham RC, Cashore AE, Nakatsu CH, Peel MC. 123.  1994. Catabolic transposons. Biodegradation 5:323–57 [Google Scholar]
  124. Xiao Y, Roberts DJ. 124.  2013. Kinetics analysis of a salt-tolerant perchlorate-reducing bacterium: effects of sodium, magnesium, and nitrate. Environ. Sci. Technol. 47:8666–73 [Google Scholar]
  125. Xiao Y, Roberts DJ, Zuo G, Badruzzaman M, Lehman GS. 125.  2010. Characterization of microbial populations in pilot-scale fluidized-bed reactors treating perchlorate- and nitrate-laden brine. Water Res. 44:4029–36 [Google Scholar]
  126. Xu J, Song Y, Min B, Steinberg L, Logan B. 126.  2003. Microbial degradation of perchlorate: principles and applications. Environ. Eng. Sci. 20:405–22 [Google Scholar]
  127. Yoshimatsu K, Sakurai T, Fujiwara T. 127.  2000. Purification and characterization of dissimilatory nitrate reductase from a denitrifying halophilic archaeon, Haloarcula marismortui. FEBS Lett. 470:216–20 [Google Scholar]
  128. Youngblut MD, Tsai C-L, Clark IC, Carlson HK, Maglaqui AP. 128.  et al. 2016. Perchlorate reductase is distinguished by active site aromatic gate residues. J. Biol. Chem. 291:9190–202 [Google Scholar]
  129. Zuo G, Roberts DJ, Lehman SG, Jackson GW, Fox GE, Willson RC. 129.  2009. Molecular assessment of salt-tolerant, perchlorate- and nitrate-reducing microbial cultures. Water Sci. Technol. 60:1745–56 [Google Scholar]
/content/journals/10.1146/annurev-micro-102215-095406
Loading
/content/journals/10.1146/annurev-micro-102215-095406
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error