1932

Abstract

is a major human pathogen and an important cause of livestock infections. The first genomes to be published, 15 years ago, provided the first view of genome structure and gene content. Since then, thousands of genomes from a wide array of strains from different sources have been sequenced. Comparison of these sequences has resulted in broad insights into population structure, bacterial evolution, clone emergence and expansion, and the molecular basis of niche adaptation. Furthermore, this information is now being applied clinically in outbreak investigations to inform infection control measures and to determine appropriate treatment regimens. In this review, we summarize some of the broad insights into biology gained from the analysis of genomes and discuss future directions and opportunities in this dynamic field of research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-102215-095547
2016-09-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/70/1/annurev-micro-102215-095547.html?itemId=/content/journals/10.1146/annurev-micro-102215-095547&mimeType=html&fmt=ahah

Literature Cited

  1. Akobi B, Aboderin O, Sasaki T, Shittu A. 1.  2012. Characterization of Staphylococcus aureus isolates from faecal samples of the Straw-Coloured Fruit Bat (Eidolon helvum) in Obafemi Awolowo University (OAU), Nigeria. BMC Microbiol. 12:279 [Google Scholar]
  2. Alam MT, Read TD, Petit RA 3rd, Boyle-Vavra S, Miller LG. 2.  et al. 2015. Transmission and microevolution of USA300 MRSA in U.S. households: evidence from whole-genome sequencing. mBio 6:e00054 [Google Scholar]
  3. Altman DR, Sebra R, Hand J, Attie O, Deikus G. 3.  et al. 2014. Transmission of methicillin-resistant Staphylococcus aureus via deceased donor liver transplantation confirmed by whole genome sequencing. Am. J. Transplant. 14:2640–44 [Google Scholar]
  4. Anderson DJ, Harris SR, Godofsky E, Toriscelli T, Rude TH. 4.  et al. 2014. Whole genome sequencing of a methicillin-resistant Staphylococcus aureus pseudo-outbreak in a professional football team. Open Forum Infect. Dis. 1:ofu096 [Google Scholar]
  5. Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K. 5.  et al. 2002. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359:1819–27 [Google Scholar]
  6. Barkema HW, Green MJ, Bradley AJ, Zadoks RN. 6.  2009. Invited review: The role of contagious disease in udder health. J. Dairy Sci. 92:4717–29 [Google Scholar]
  7. Bergonier D, de Cremoux R, Rupp R, Lagriffoul G, Berthelot X. 7.  2003. Mastitis of dairy small ruminants. Vet. Res. 34:689–716 [Google Scholar]
  8. Castillo-Ramírez S, Corander J, Marttinen P, Aldeljawi M, Hanage WP. 8.  et al. 2012. Phylogeographic variation in recombination rates within a global clone of methicillin-resistant Staphylococcus aureus. Genome Biol. 13:R126 [Google Scholar]
  9. Chen PE, Shapiro BJ. 9.  2015. The advent of genome-wide association studies for bacteria. Curr. Opin. Microbiol. 25:17–24 [Google Scholar]
  10. Chewapreecha C, Marttinen P, Croucher NJ, Salter SJ, Harris SR. 10.  et al. 2014. Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. PLOS Genet. 10:e1004547 [Google Scholar]
  11. Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ. 11.  2016. Within-host evolution of bacterial pathogens. Nat. Rev. Microbiol. 14:150–62 [Google Scholar]
  12. Didelot X, Wilson DJ. 12.  2015. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLOS Comput. Biol. 11:e1004041 [Google Scholar]
  13. Driebe EM, Sahl JW, Roe C, Bowers JR, Schupp JM. 13.  et al. 2015. Using whole genome analysis to examine recombination across diverse sequence types of Staphylococcus aureus. PLOS ONE 10:e0130955 [Google Scholar]
  14. Ellington MJ, Hope R, Livermore DM, Kearns AM, Henderson K. 14.  et al. 2010. Decline of EMRSA-16 amongst methicillin-resistant Staphylococcus aureus causing bacteraemias in the UK between 2001 and 2007. J. Antimicrob. Chemother. 65:446–48 [Google Scholar]
  15. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. 15.  2000. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 38:1008–15 [Google Scholar]
  16. Espinosa-Gongora C, Moodley A, Lipinska U, Broens EM, Hermans K. 16.  et al. 2014. Phenotypes and genotypes of old and contemporary porcine strains indicate a temporal change in the S. aureus population structure in pigs. PLOS ONE 9:e101988 [Google Scholar]
  17. Everitt RG, Didelot X, Batty EM, Miller RR, Knox K. 17.  et al. 2014. Mobile elements drive recombination hotspots in the core genome of Staphylococcus aureus. Nat. Commun. 5:3956 [Google Scholar]
  18. Eyre DW, Golubchik T, Gordon NC, Bowden R, Piazza P. 18.  et al. 2012. A pilot study of rapid benchtop sequencing of Staphylococcus aureus and Clostridium difficile for outbreak detection and surveillance. BMJ Open 2:e001124 [Google Scholar]
  19. Feil EJ, Cooper JE, Grundmann H, Robinson DA, Enright MC. 19.  et al. 2003. How clonal is Staphylococcus aureus?. J. Bacteriol. 185:3307–16 [Google Scholar]
  20. Fitzgerald JR. 20.  2012. Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends Microbiol. 20:192–98 [Google Scholar]
  21. Fitzgerald JR, Reid SD, Ruotsalainen E, Tripp TJ, Liu M. 21.  et al. 2003. Genome diversification in Staphylococcus aureus: molecular evolution of a highly variable chromosomal region encoding the staphylococcal exotoxin-like family of proteins. Infect. Immun. 71:2827–38 [Google Scholar]
  22. Fitzgerald JR, Sturdevant DE, Mackie SM, Gill SR, Musser JM. 22.  2001. Evolutionary genomics of Staphylococcus aureus: insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic. PNAS 98:8821–26 [Google Scholar]
  23. Gao W, Chua K, Davies JK, Newton HJ, Seemann T. 23.  et al. 2010. Two novel point mutations in clinical Staphylococcus aureus reduce linezolid susceptibility and switch on the stringent response to promote persistent infection. PLOS Pathog. 6:e1000944 [Google Scholar]
  24. Garcia-Alvarez L, Holden MT, Lindsay H, Webb CR, Brown DF. 24.  et al. 2011. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet. Infect. Dis. 11:595–603 [Google Scholar]
  25. Golubchik T, Batty EM, Miller RR, Farr H, Young BC. 25.  et al. 2013. Within-host evolution of Staphylococcus aureus during asymptomatic carriage. PLOS ONE 8:e61319 [Google Scholar]
  26. Gordon NC, Price JR, Cole K, Everitt R, Morgan M. 26.  et al. 2014. Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing. J. Clin. Microbiol. 52:1182–91 [Google Scholar]
  27. Grundmann H, Schouls LM, Aanensen DM, Pluister GN, Tami A. 27.  et al. 2014. The dynamic changes of dominant clones of Staphylococcus aureus causing bloodstream infections in the European region: results of a second structured survey. Eurosurveillance 19:20987 [Google Scholar]
  28. Guerrero I, Ferrian S, Penades M, Garcia-Quiros A, Pascual JJ. 28.  et al. 2015. Host responses associated with chronic staphylococcal mastitis in rabbits. Vet. J. 204:338–44 [Google Scholar]
  29. Guinane CM, Ben Zakour NL, Tormo-Mas MA, Weinert LA, Lowder BV. 29.  et al. 2010. Evolutionary genomics of Staphylococcus aureus reveals insights into the origin and molecular basis of ruminant host adaptation. Genome Biol. Evol. 2:454–66 [Google Scholar]
  30. Hajek V, Marsalek E. 30.  1971. [The differentiation of pathogenic staphylococci and a suggestion for their taxonomic classification]. Zent. Bakteriol. Orig. 217:176–82 [Google Scholar]
  31. Harris SR, Cartwright EJ, Török ME, Holden MT, Brown NM. 31.  et al. 2013. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect. Dis. 13:130–36 [Google Scholar]
  32. Harris SR, Feil EJ, Holden MT, Quail MA, Nickerson EK. 32.  et al. 2010. Evolution of MRSA during hospital transmission and intercontinental spread. Science 327:469–74 [Google Scholar]
  33. Harrison EM, Paterson GK, Holden MT, Ba X, Rolo J. 33.  et al. 2014. A novel hybrid SCCmec-mecC region in Staphylococcus sciuri. J. Antimicrob. Chemother. 69:911–18 [Google Scholar]
  34. Harrison EM, Paterson GK, Holden MT, Larsen J, Stegger M. 34.  et al. 2013. Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC. EMBO Mol. Med. 5:509–15 [Google Scholar]
  35. Herron-Olson L, Fitzgerald JR, Musser JM, Kapur V. 35.  2007. Molecular correlates of host specialization in Staphylococcus aureus. PLOS ONE 2:e1120 [Google Scholar]
  36. Holden MT, Feil EJ, Lindsay JA, Peacock SJ, Day NP. 36.  et al. 2004. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. PNAS 101:9786–91 [Google Scholar]
  37. Holden MT, Hsu LY, Kurt K, Weinert LA, Mather AE. 37.  et al. 2013. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 23:653–64 [Google Scholar]
  38. Holden MT, Lindsay JA, Corton C, Quail MA, Cockfield JD. 38.  et al. 2010. Genome sequence of a recently emerged, highly transmissible, multi-antibiotic- and antiseptic-resistant variant of methicillin-resistant Staphylococcus aureus, sequence type 239 (TW). J. Bacteriol. 192:888–92 [Google Scholar]
  39. Howden BP, McEvoy CR, Allen DL, Chua K, Gao W. 39.  et al. 2011. Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLOS Pathog. 7:e1002359 [Google Scholar]
  40. Howden BP, Peleg AY, Stinear TP. 40.  2014. The evolution of vancomycin intermediate Staphylococcus aureus (VISA) and heterogenous-VISA. Infection Genet. Evol. 21:575–82 [Google Scholar]
  41. Jarraud S, Peyrat MA, Lim A, Tristan A, Bes M. 41.  et al. 2001. egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J. Immunol. 166:669–77 [Google Scholar]
  42. Kapur V, Sischo WM, Greer RS, Whittam TS, Musser JM. 42.  1995. Molecular population genetic analysis of Staphylococcus aureus recovered from cows. J. Clin. Microbiol. 33:376–80 [Google Scholar]
  43. Kirby WM. 43.  1944. Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. Science 99:452–53 [Google Scholar]
  44. Kloos WE. 44.  1980. Natural populations of the genus Staphylococcus. Annu. Rev. Microbiol. 34:559–92 [Google Scholar]
  45. Köser CU, Holden MT, Ellington MJ, Cartwright EJ, Brown NM. 45.  et al. 2012. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N. Engl. J. Med. 366:2267–75 [Google Scholar]
  46. Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H. 46.  et al. 2001. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357:1225–40 [Google Scholar]
  47. Laabei M, Recker M, Rudkin JK, Aldeljawi M, Gulay Z. 47.  et al. 2014. Predicting the virulence of MRSA from its genome sequence. Genome Res. 24:839–49 [Google Scholar]
  48. Laabei M, Uhlemann AC, Lowy FD, Austin ED, Yokoyama M. 48.  et al. 2015. Evolutionary trade-offs underlie the multi-faceted virulence of Staphylococcus aureus. PLOS Biol. 13:e1002229 [Google Scholar]
  49. 49.  Deleted in proof
  50. Loeffler A, Boag AK, Sung J, Lindsay JA, Guardabassi L. 50.  et al. 2005. Prevalence of methicillin-resistant Staphylococcus aureus among staff and pets in a small animal referral hospital in the UK. J. Antimicrob. Chemother. 56:692–97 [Google Scholar]
  51. Loeffler A, Pfeiffer DU, Lindsay JA, Soares Magalhaes RJ, Lloyd DH. 51.  2011. Prevalence of and risk factors for MRSA carriage in companion animals: a survey of dogs, cats and horses. Epidemiol. Infect. 139:1019–28 [Google Scholar]
  52. Long SW, Beres SB, Olsen RJ, Musser JM. 52.  2014. Absence of patient-to-patient intrahospital transmission of Staphylococcus aureus as determined by whole-genome sequencing. mBio 5:e01692–14 [Google Scholar]
  53. Lowder BV, Guinane CM, Ben Zakour NL, Weinert LA, Conway-Morris A. 53.  et al. 2009. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus. PNAS 106:19545–50 [Google Scholar]
  54. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE. 54.  et al. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. PNAS 95:3140–45 [Google Scholar]
  55. McAdam PR, Templeton KE, Edwards GF, Holden MTG, Feil EJ. 55.  et al. 2012. Molecular tracing of the emergence, adaptation, and transmission of hospital-associated methicillin-resistant Staphylococcus aureus. PNAS 109:1–6 [Google Scholar]
  56. McCarthy AJ, Loeffler A, Witney AA, Gould KA, Lloyd DH, Lindsay JA. 56.  2014. Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo. Genome Biol. Evol. 6:2697–708 [Google Scholar]
  57. Menegotto F, Gonzalez-Cabrero S, Lorenzo B, Cubero A, Cuervo W. 57.  et al. 2012. Molecular epidemiology of methicillin-resistant Staphylococcus aureus in a Spanish hospital over a 4-year period: clonal replacement, decreased antimicrobial resistance, and identification of community-acquired and livestock-associated clones. Diagn. Microbiol. Infect. Dis. 74:332–37 [Google Scholar]
  58. Meyer W. 58.  1966. [Schema for the differentiation of habitat variants of Staphylococcus aureus]. Zent. Bakteriol. Orig. 201:465–81 [Google Scholar]
  59. Miller RM, Price JR, Batty EM, Didelot X, Wyllie D. 59.  et al. 2014. Healthcare-associated outbreak of meticillin-resistant Staphylococcus aureus bacteraemia: role of a cryptic variant of an epidemic clone. J. Hosp. Infect. 86:83–89 [Google Scholar]
  60. Mossong J, Decruyenaere F, Moris G, Ragimbeau C, Olinger CM. 60.  et al. 2015. Investigation of a staphylococcal food poisoning outbreak combining case-control, traditional typing and whole genome sequencing methods, Luxembourg, June 2014.. Eurosurveillance 20:30059 doi: 10.2807/1560-7917.ES.2015.20.45.30059 [Google Scholar]
  61. Musser JM, Schlievert PM, Chow AW, Ewan P, Kreiswirth BN. 61.  et al. 1990. A single clone of Staphylococcus aureus causes the majority of cases of toxic shock syndrome. PNAS 87:225–29 [Google Scholar]
  62. Mwangi MM, Wu SW, Zhou Y, Sieradzki K, de Lencastre H. 62.  et al. 2007. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. PNAS 104:9451–56 [Google Scholar]
  63. Nubel U, Nachtnebel M, Falkenhorst G, Benzler J, Hecht J. 63.  et al. 2013. MRSA transmission on a neonatal intensive care unit: epidemiological and genome-based phylogenetic analyses. PLOS ONE 8:e54898 [Google Scholar]
  64. Ogston A. 64.  1881. Report upon micro-organisms in surgical diseases. Br. Med. J. 1:369.b2–75 [Google Scholar]
  65. Paterson GK, Harrison EM, Holmes MA. 65.  2014. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol. 22:42–47 [Google Scholar]
  66. Paterson GK, Harrison EM, Murray GG, Welch JJ, Warland JH. 66.  et al. 2015. Capturing the cloud of diversity reveals complexity and heterogeneity of MRSA carriage, infection and transmission. Nat. Commun. 6:6560 [Google Scholar]
  67. Paterson GK, Larsen AR, Robb A, Edwards GE, Pennycott TW. 67.  et al. 2012. The newly described mecA homologue, mecALGA251, is present in methicillin-resistant Staphylococcus aureus isolates from a diverse range of host species. J. Antimicrob. Chemother. 67:2809–13 [Google Scholar]
  68. Peton V, Le Loir Y. 68.  2014. Staphylococcus aureus in veterinary medicine. Infect. Genet. Evol. 21:602–15 [Google Scholar]
  69. Price LB, Stegger M, Hasman H, Aziz M, Larsen J. 69.  et al. 2012. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. mBio 3:e00305–11 [Google Scholar]
  70. Ray MD, Boundy S, Archer GL. 70.  2016. Transfer of the methicillin resistance genomic island among staphylococci by conjugation. Mol. Microbiol. 100:675–85 [Google Scholar]
  71. Robinson DA, Enright MC. 71.  2004. Evolution of Staphylococcus aureus by large chromosomal replacements. J. Bacteriol. 186:1060–64 [Google Scholar]
  72. Schaumburg F, Alabi AS, Kock R, Mellmann A, Kremsner PG. 72.  et al. 2012. Highly divergent Staphylococcus aureus isolates from African non-human primates. Environ. Microbiol. Rep. 4:141–46 [Google Scholar]
  73. Schijffelen MJ, Boel CH, van Strijp JA, Fluit AC. 73.  2010. Whole genome analysis of a livestock-associated methicillin-resistant Staphylococcus aureus ST398 isolate from a case of human endocarditis. BMC Genom. 11:376 [Google Scholar]
  74. Senn L, Clerc O, Zanetti G, Basset P, Prod'hom G. 74.  et al. 2016. The stealthy superbug: the role of asymptomatic enteric carriage in maintaining a long-term hospital outbreak of ST228 methicillin-resistant Staphylococcus aureus. mBio 7:e02039–15 [Google Scholar]
  75. Seybold U, Kourbatova EV, Johnson JG, Halvosa SJ, Wang YF. 75.  et al. 2006. Emergence of community-associated methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of health care-associated blood stream infections. Clin. Infect. Dis. 42:647–56 [Google Scholar]
  76. Shepheard MA, Fleming VM, Connor TR, Corander J, Feil EJ. 76.  et al. 2013. Historical zoonoses and other changes in host tropism of Staphylococcus aureus, identified by phylogenetic analysis of a population dataset. PLOS ONE 8:e62369 [Google Scholar]
  77. Sheppard SK, Didelot X, Meric G, Torralbo A, Jolley KA. 77.  et al. 2013. Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. PNAS 110:11923–27 [Google Scholar]
  78. Smith EM, Green LE, Medley GF, Bird HE, Fox LK. 78.  et al. 2005. Multilocus sequence typing of intercontinental bovine Staphylococcus aureus isolates. J. Clin. Microbiol. 43:4737–43 [Google Scholar]
  79. Smyth DS, Feil EJ, Meaney WJ, Hartigan PJ, Tollersrud T. 79.  et al. 2009. Molecular genetic typing reveals further insights into the diversity of animal-associated Staphylococcus aureus. J. Med. Microbiol. 58:1343–53 [Google Scholar]
  80. Spoor LE, McAdam PR, Weinert LA, Rambaut A, Hasman H. 80.  et al. 2013. Livestock origin for a human pandemic clone of community-associated methicillin-resistant Staphylococcus aureus. mBio 4:e00356–13 [Google Scholar]
  81. Spoor LE, Richardson E, Richards AC, Wilson GJ, Mendonca C. 80a.  et al. 2015. Recombination-mediated remodelling of host–pathogen interactions during Staphylococcus aureus niche adaptation. Microb. Genom. 1:4 10.1099/mgen.0.000036 [Google Scholar]
  82. Stryjewski ME, Corey GR. 81.  2014. Methicillin-resistant Staphylococcus aureus: an evolving pathogen. Clin. Infect. Dis. 58:Suppl. 1S10–19 [Google Scholar]
  83. Tenover FC, Arbeit R, Archer G, Biddle J, Byrne S. 82.  et al. 1994. Comparison of traditional and molecular methods of typing isolates of Staphylococcus aureus. J. Clin. Microbiol. 32:407–15 [Google Scholar]
  84. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. 83.  2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28:603–61 [Google Scholar]
  85. Tong SY, Holden MT, Nickerson EK, Cooper BS, Köser CU. 84.  et al. 2015. Genome sequencing defines phylogeny and spread of methicillin-resistant Staphylococcus aureus in a high transmission setting. Genome Res. 25:111–18 [Google Scholar]
  86. Török ME, Harris SR, Cartwright EJ, Raven KE, Brown NM. 85.  et al. 2014. Zero tolerance for healthcare-associated MRSA bacteraemia: Is it realistic?. J. Antimicrob. Chemother. 69:2238–45 [Google Scholar]
  87. Udo EE, Aly NY, Sarkhoo E, Al-Sawan R, Al-Asar AS. 86.  2011. Detection and characterization of an ST97-SCCmec-V community-associated meticillin-resistant Staphylococcus aureus clone in a neonatal intensive care unit and special care baby unit. J. Med. Microbiol. 60:600–4 [Google Scholar]
  88. Uhlemann AC, Dordel J, Knox JR, Raven KE, Parkhill J. 87.  et al. 2014a. Molecular tracing of the emergence, diversification, and transmission of S. aureus sequence type 8 in a New York community. PNAS 1116738–43 [Google Scholar]
  89. Uhlemann AC, Otto M, Lowy FD, DeLeo FR. 88.  2014b. Evolution of community- and healthcare-associated methicillin-resistant Staphylococcus aureus. Infect. Genet. Evol. 21:563–74 [Google Scholar]
  90. van Belkum A, Verkaik NJ, de Vogel CP, Boelens HA, Verveer J. 89.  et al. 2009. Reclassification of Staphylococcus aureus nasal carriage types. J. Infect. Dis. 199:1820–26 [Google Scholar]
  91. Viana D, Comos M, McAdam PR, Ward MJ, Selva L. 90.  et al. 2015. A single natural nucleotide mutation alters bacterial pathogen host tropism. Nat. Genet. 47:361–66 [Google Scholar]
  92. Warne B, Harkins CP, Harris SR, Vatsiou A, Stanley-Wall N. 91.  et al. 2016. The Ess/Type VII secretion system of Staphylococcus aureus shows unexpected genetic diversity. BMC Genom. 17:222 [Google Scholar]
  93. Watanabe S, Ito T, Sasaki T, Li S, Uchiyama I. 92.  et al. 2009. Genetic diversity of staphylocoagulase genes (coa): insight into the evolution of variable chromosomal virulence factors in Staphylococcus aureus. PLOS ONE 4:e5714 [Google Scholar]
  94. Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK. 93.  et al. 2003. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302:1569–71 [Google Scholar]
  95. Weinert LA, Welch JJ, Suchard MA, Lemey P, Rambaut A, Fitzgerald JR. 94.  2012. Molecular dating of human-to-bovid host jumps by Staphylococcus aureus reveals an association with the spread of domestication. Biol. Lett. 8:829–32 [Google Scholar]
  96. Wendt JM, Kaul D, Limbago BM, Ramesh M, Cohle S. 95.  et al. 2014. Transmission of methicillin-resistant Staphylococcus aureus infection through solid organ transplantation: confirmation via whole genome sequencing. Am. J. Transplant. 14:2633–39 [Google Scholar]
  97. Wideman RF Jr. 96.  2016. Bacterial chondronecrosis with osteomyelitis and lameness in broilers: a review. Poultry Sci. 95:325–44 [Google Scholar]
  98. Wilson GJ, Seo KS, Cartwright RA, Connelley T, Chuang-Smith ON. 97.  et al. 2011. A novel core genome-encoded superantigen contributes to lethality of community-associated MRSA necrotizing pneumonia. PLOS Pathog. 7:e1002271 [Google Scholar]
  99. Witney AA, Marsden GL, Holden MT, Stabler RA, Husain SE. 98.  et al. 2005. Design, validation, and application of a seven-strain Staphylococcus aureus PCR product microarray for comparative genomics. Appl. Environ. Microbiol. 71:7504–14 [Google Scholar]
  100. Young BC, Golubchik T, Batty EM, Fung R, Larner-Svensson H. 99.  et al. 2012. Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease. PNAS 109:4550–55 [Google Scholar]
/content/journals/10.1146/annurev-micro-102215-095547
Loading
/content/journals/10.1146/annurev-micro-102215-095547
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error