1932

Abstract

Histone-modifying enzymes are responsible for regulating transcription, recombination, DNA repair, DNA replication, chromatid cohesion, and chromosome segregation. Fungi are ideally suited for comparative chromatin biology because sequencing of numerous genomes from many clades is coupled to existing rich methodology that allows truly holistic approaches, integrating evolutionary biology with mechanistic molecular biology and ecology, promising applications in medicine or plant pathology. While genome information is rich, mechanistic studies on histone modifications are largely restricted to two yeasts, and , and one filamentous fungus, —three species that arguably are not representative of this diverse kingdom. Here, histone methylation serves as a paradigm to illustrate the roles chromatin modifications may play in more complex fungal life cycles. This review summarizes recent advances in our understanding of histone H3 methylation at two sites associated with active transcription, lysine 4 and lysine 36 (H3K4, H3K36); a site associated with the formation of constitutive heterochromatin, lysine 9 (H3K9); and a site associated with the formation of facultative heterochromatin, lysine 27 (H3K27). Special attention is paid to differences in how methylation marks interact in different taxa.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-102215-095757
2017-09-08
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/71/1/annurev-micro-102215-095757.html?itemId=/content/journals/10.1146/annurev-micro-102215-095757&mimeType=html&fmt=ahah

Literature Cited

  1. Adhvaryu KK, Gessaman JD, Honda S, Lewis ZA, Grisafi PL, Selker EU. 1.  2015. The cullin-4 complex DCDC does not require E3 ubiquitin ligase elements to control heterochromatin in Neurospora crassa. Eukaryot. Cell 14:25–28 [Google Scholar]
  2. Adhvaryu KK, Morris SA, Strahl BD, Selker EU. 2.  2005. Methylation of histone H3 lysine 36 is required for normal development in Neurospora crassa. Eukaryot. Cell 4:1455–64 [Google Scholar]
  3. Adhvaryu KK, Selker EU. 3.  2008. Protein phosphatase PP1 is required for normal DNA methylation in Neurospora. Genes Dev. 22:3391–96 [Google Scholar]
  4. Allis CD, Berger SL, Cote J, Dent S, Jenuwien T. 4.  et al. 2007. New nomenclature for chromatin-modifying enzymes. Cell 131:633–36 [Google Scholar]
  5. Allshire RC, Ekwall K. 5.  2015. Epigenetic regulation of chromatin states in Schizosaccharomyces pombe. Cold Spring Harb. Perspect. Biol. 7:a018770 [Google Scholar]
  6. Aramayo R, Selker EU. 6.  2013. Neurospora crassa, a model system for epigenetics research. Cold Spring Harb. Perspect. Biol. 5:a017921 [Google Scholar]
  7. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE. 7.  et al. 2007. High-resolution profiling of histone methylations in the human genome. Cell 129:823–37 [Google Scholar]
  8. Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T. 8.  2010. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143:470–84 [Google Scholar]
  9. Basenko EY, Sasaki T, Ji L, Prybol CJ, Burckhardt RM. 9.  et al. 2015. Genome-wide redistribution of H3K27me3 is linked to genotoxic stress and defective growth. PNAS 112:E6339–48 [Google Scholar]
  10. Beisel C, Paro R. 10.  2011. Silencing chromatin: comparing modes and mechanisms. Nat. Rev. Genet. 12:123–35 [Google Scholar]
  11. Belden WJ, Lewis ZA, Selker EU, Loros JJ, Dunlap JC. 11.  2011. CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency. PLOS Genet 7:e1002166 [Google Scholar]
  12. Binda O, Sevilla A, LeRoy G, Lemischka IR, Garcia BA, Richard S. 12.  2013. SETD6 monomethylates H2AZ on lysine 7 and is required for the maintenance of embryonic stem cell self-renewal. Epigenetics 8:177–83 [Google Scholar]
  13. Bok JW, Chiang YM, Szewczyk E, Reyes-Dominguez Y, Davidson AD. 13.  et al. 2009. Chromatin-level regulation of biosynthetic gene clusters. Nat. Chem. Biol. 5:462–64 [Google Scholar]
  14. Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE. 14.  et al. 2004. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68:1–108 [Google Scholar]
  15. Brakhage AA, Schroeckh V. 15.  2011. Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet. Biol. 48:15–22 [Google Scholar]
  16. Brosch G, Loidl P, Graessle S. 16.  2008. Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiol. Rev. 32:409–39 [Google Scholar]
  17. Brownell JE, Allis CD. 17.  1995. An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. PNAS 92:6364–68 [Google Scholar]
  18. Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG. 18.  et al. 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–51 [Google Scholar]
  19. Chang SS, Zhang Z, Liu Y. 19.  2012. RNA interference pathways in fungi: mechanisms and functions. Annu. Rev. Microbiol. 66:305–23 [Google Scholar]
  20. Chang Y, Levy D, Horton JR, Peng J, Zhang X. 20.  et al. 2011. Structural basis of SETD6-mediated regulation of the NF-κB network via methyl-lysine signaling. Nucleic Acids Res 39:6380–89 [Google Scholar]
  21. Chujo T, Scott B. 21.  2014. Histone H3K9 and H3K27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte-plant symbiosis. Mol. Microbiol. 92:413–34 [Google Scholar]
  22. Clissold PM, Ponting CP. 22.  2001. JmjC: cupin metalloenzyme-like domains in jumonji, hairless and phospholipase A2β.. Trends Biochem. Sci. 26:7–9 [Google Scholar]
  23. Collins RE, Tachibana M, Tamaru H, Smith KM, Jia D. 23.  et al. 2005. In vitro and in vivo analyses of a Phe/Tyr switch controlling product specificity of histone lysine methyltransferases. J. Biol. Chem. 280:5563–70 [Google Scholar]
  24. Connolly LR, Smith KM, Freitag M. 24.  2013. The Fusarium graminearum histone H3 K27 methyltransferase KMT6 regulates development and expression of secondary metabolite gene clusters. PLOS Genet 9:e1003916 [Google Scholar]
  25. Cuomo CA, Guldener U, Xu JR, Trail F, Turgeon BG. 25.  et al. 2007. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–2 [Google Scholar]
  26. Cuperlovic-Culf M, Culf AS. 26.  2014. Role of histone deacetylases in fungal phytopathogenesis: a review. Int. J. Mod. Bot. 4:48–60 [Google Scholar]
  27. Dang Y, Li L, Guo W, Xue Z, Liu Y. 27.  2013. Convergent transcription induces dynamic DNA methylation at disiRNA loci. PLOS Genet 9:e1003761 [Google Scholar]
  28. Dhillon B, Cavaletto JR, Wood KV, Goodwin SB. 28.  2010. Accidental amplification and inactivation of a methyltransferase gene eliminates cytosine methylation in Mycosphaerella graminicola. Genetics 186:67–77 [Google Scholar]
  29. Ding S, Mehrabi R, Koten C, Kang Z, Wei Y. 29.  et al. 2009. Transducin beta-like gene FTL1 is essential for pathogenesis in Fusarium graminearum. Eukaryot. Cell 8:867–76 [Google Scholar]
  30. Ding SL, Liu W, Iliuk A, Ribot C, Vallet J. 30.  et al. 2010. The tig1 histone deacetylase complex regulates infectious growth in the rice blast fungus Magnaporthe oryzae. Plant Cell 22:2495–508 [Google Scholar]
  31. Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ. 31.  et al. 2010. A three-dimensional model of the yeast genome. Nature 465:363–67 [Google Scholar]
  32. Dumesic PA, Homer CM, Moresco JJ, Pack LR, Shanle EK. 32.  et al. 2015. Product binding enforces the genomic specificity of a yeast Polycomb repressive complex. Cell 160:204–18 [Google Scholar]
  33. Eissenberg JC, Shilatifard A. 33.  2010. Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev. Biol. 339:240–49 [Google Scholar]
  34. Elgin SC, Reuter G. 34.  2013. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb. Perspect. Biol. 5:a017780 [Google Scholar]
  35. Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P. 35.  et al. 2008. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLOS Genet 4:e1000046 [Google Scholar]
  36. Fischer T, Cui B, Dhakshnamoorthy J, Zhou M, Rubin C. 36.  et al. 2009. Diverse roles of HP1 proteins in heterochromatin assembly and functions in fission yeast. PNAS 106:8998–9003 [Google Scholar]
  37. Fischle W, Wang Y, Jacobs SA, Kim Y, Allis CD, Khorasanizadeh S. 37.  2003. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev 17:1870–81 [Google Scholar]
  38. Flanagan JF, Mi LZ, Chruszcz M, Cymborowski M, Clines KL. 38.  et al. 2005. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438:1181–85 [Google Scholar]
  39. Freitag M, Hickey PC, Khlafallah TK, Read ND, Selker EU. 39.  2004. HP1 is essential for DNA methylation in Neurospora. Mol. Cell 13:427–34 [Google Scholar]
  40. Freitag M, Lee DW, Kothe GO, Pratt RJ, Aramayo R, Selker EU. 40.  2004. DNA methylation is independent of RNA interference in Neurospora. Science 304:1939 [Google Scholar]
  41. Gacek-Matthews A, Berger H, Sasaki T, Wittstein K, Gruber C. 41.  et al. 2016. KdmB, a Jumonji histone H3 demethylase, regulates genome-wide H3K4 trimethylation and is required for normal induction of secondary metabolism in Aspergillus nidulans. PLOS Genet 12:e1006222 [Google Scholar]
  42. Gacek-Matthews A, Noble LM, Gruber C, Berger H, Sulyok M. 42.  et al. 2015. KdmA, a histone H3 demethylase with bipartite function, differentially regulates primary and secondary metabolism in Aspergillus nidulans. Mol. Microbiol. 96:839–60 [Google Scholar]
  43. Galazka JM, Freitag M. 43.  2014. Variability of chromosome structure in pathogenic fungi—of ‘ends and odds’. Curr. Opin. Microbiol. 20:19–26 [Google Scholar]
  44. Galazka JM, Klocko AD, Uesaka M, Honda S, Selker EU, Freitag M. 44.  2016. Neurospora chromosomes are organized by blocks of importin alpha-dependent heterochromatin that are largely independent of H3K9me3. Genome Res 26:1069–80 [Google Scholar]
  45. Garcia JF, Al-Sady B, Madhani HD. 45.  2015. Intrinsic toxicity of unchecked heterochromatin spread is suppressed by redundant chromatin boundary functions in Schizosacchromyces pombe. G3 5:1453–61 [Google Scholar]
  46. Goto DB, Nakayama J. 46.  2012. RNA and epigenetic silencing: insight from fission yeast. Dev. Growth Differ. 54:129–41 [Google Scholar]
  47. Govindaraghavan M, Anglin SL, Osmani AH, Osmani SA. 47.  2014. The Set1/COMPASS histone H3 methyltransferase helps regulate mitosis with the CDK1 and NIMA mitotic kinases in Aspergillus nidulans. Genetics 197:1225–36 [Google Scholar]
  48. Greeson NT, Sengupta R, Arida AR, Jenuwein T, Sanders SL. 48.  2008. Di-methyl H4 lysine 20 targets the checkpoint protein Crb2 to sites of DNA damage. J. Biol. Chem. 283:33168–74 [Google Scholar]
  49. Grewal SI. 49.  2010. RNAi-dependent formation of heterochromatin and its diverse functions. Curr. Opin. Genet. Dev. 20:134–41 [Google Scholar]
  50. Grunstein M, Gasser SM. 50.  2013. Epigenetics in Saccharomyces cerevisiae. Cold Spring Harb. Perspect. Biol. 5:a017491 [Google Scholar]
  51. Hang M, Smith MM. 51.  2011. Genetic analysis implicates the Set3/Hos2 histone deacetylase in the deposition and remodeling of nucleosomes containing H2A.Z. Genetics 187:1053–66 [Google Scholar]
  52. Herz HM, Garruss A, Shilatifard A. 52.  2013. SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem. Sci. 38:621–39 [Google Scholar]
  53. Ho JW, Jung YL, Liu T, Alver BH, Lee S. 53.  et al. 2014. Comparative analysis of metazoan chromatin organization. Nature 512:449–52 [Google Scholar]
  54. Hohenauer T, Moore AW. 54.  2012. The Prdm family: expanding roles in stem cells and development. Development 139:2267–82 [Google Scholar]
  55. Honda S, Bicocca VT, Gessaman JD, Rountree MR, Yokoyama A. 55.  et al. 2016. Dual chromatin recognition by the histone deacetylase complex HCHC is required for proper DNA methylation in Neurospora crassa. PNAS 113:E6135–44 [Google Scholar]
  56. Honda S, Lewis ZA, Huarte M, Cho LY, David LL. 56.  et al. 2010. The DMM complex prevents spreading of DNA methylation from transposons to nearby genes in Neurospora crassa. Genes Dev. 24:443–54 [Google Scholar]
  57. Honda S, Lewis ZA, Shimada K, Fischle W, Sack R, Selker EU. 57.  2012. Heterochromatin protein 1 forms distinct complexes to direct histone deacetylation and DNA methylation. Nat. Struct. Mol. Biol. 19:471–77 [Google Scholar]
  58. Honda S, Selker EU. 58.  2008. Direct interaction between DNA methyltransferase DIM-2 and HP1 is required for DNA methylation in Neurospora crassa. Mol. Cell. Biol. 28:6044–55 [Google Scholar]
  59. Hori T, Shang WH, Toyoda A, Misu S, Monma N. 59.  et al. 2014. Histone H4 Lys 20 monomethylation of the CENP-A nucleosome is essential for kinetochore assembly. Dev. Cell 29:740–49 [Google Scholar]
  60. Horn PJ, Bastie JN, Peterson CL. 60.  2005. A Rik1-associated, cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation. Genes Dev 19:1705–14 [Google Scholar]
  61. Huff JT, Zilberman D. 61.  2014. Dnmt1-independent CG methylation contributes to nucleosome positioning in diverse eukaryotes. Cell 156:1286–97 [Google Scholar]
  62. Hurley JM, Dasgupta A, Emerson JM, Zhou X, Ringelberg CS. 62.  et al. 2014. Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential. PNAS 111:16995–7002 [Google Scholar]
  63. Jackson JP, Lindroth AM, Cao X, Jacobsen SE. 63.  2002. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–60 [Google Scholar]
  64. Jain D, Hebden AK, Nakamura TM, Miller KM, Cooper JP. 64.  2010. HAATI survivors replace canonical telomeres with blocks of generic heterochromatin. Nature 467:223–27 [Google Scholar]
  65. Jamieson K, Rountree MR, Lewis ZA, Stajich JE, Selker EU. 65.  2013. Regional control of histone H3 lysine 27 methylation in Neurospora. PNAS 110:6027–32 [Google Scholar]
  66. Jamieson K, Wiles ET, McNaught KJ, Sidoli S, Leggett N. 66.  et al. 2016. Loss of HP1 causes depletion of H3K27me3 from facultative heterochromatin and gain of H3K27me2 at constitutive heterochromatin. Genome Res 26:97–107 [Google Scholar]
  67. Jeon J, Kwon S, Lee YH. 67.  2014. Histone acetylation in fungal pathogens of plants. Plant Pathol. J. 30:1–9 [Google Scholar]
  68. Jia S, Kobayashi R, Grewal SI. 68.  2005. Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nat. Cell Biol. 7:1007–13 [Google Scholar]
  69. Jiao L, Liu X. 69.  2015. Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science 350:aac4383 [Google Scholar]
  70. Joh RI, Khanduja JS, Calvo IA, Mistry M, Palmieri CM. 70.  et al. 2016. Survival in quiescence requires the euchromatic deployment of Clr4/SUV39H by Argonaute-associated small RNAs. Mol. Cell 64:1088–101 [Google Scholar]
  71. Joh RI, Palmieri CM, Hill IT, Motamedi M. 71.  2014. Regulation of histone methylation by noncoding RNAs. Biochim. Biophys. Acta 1839:1385–94 [Google Scholar]
  72. Kim T, Buratowski S. 72.  2009. Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5′ transcribed regions. Cell 137:259–72 [Google Scholar]
  73. Kim T, Xu Z, Clauder-Munster S, Steinmetz LM, Buratowski S. 73.  2012. Set3 HDAC mediates effects of overlapping noncoding transcription on gene induction kinetics. Cell 150:1158–69 [Google Scholar]
  74. Klocko AD, Ormsby T, Galazka JM, Leggett NA, Uesaka M. 74.  et al. 2016. Normal chromosome conformation depends on subtelomeric facultative heterochromatin in Neurospora crassa. PNAS 113:15048–53 [Google Scholar]
  75. Klocko AD, Rountree MR, Grisafi PL, Hays SM, Adhvaryu KK, Selker EU. 75.  2015. Neurospora Importin α is required for normal heterochromatic formation and DNA methylation. PLOS Genet 11:e1005083 [Google Scholar]
  76. Krogan NJ, Kim M, Tong A, Golshani A, Cagney G. 76.  et al. 2003. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 23:4207–18 [Google Scholar]
  77. Kuscu C, Zaratiegui M, Kim HS, Wah DA, Martienssen RA. 77.  et al. 2014. CRL4-like Clr4 complex in Schizosaccharomyces pombe depends on an exposed surface of Dos1 for heterochromatin silencing. PNAS 111:1795–800 [Google Scholar]
  78. Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T. 78.  2001. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–20 [Google Scholar]
  79. Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L. 79.  et al. 2003. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13:1192–200 [Google Scholar]
  80. Levy D, Kuo AJ, Chang Y, Schaefer U, Kitson C. 80.  et al. 2011. Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling. Nat. Immunol. 12:29–36 [Google Scholar]
  81. Lewis ZA, Adhvaryu KK, Honda S, Shiver AL, Knip M. 81.  et al. 2010. DNA methylation and normal chromosome behavior in Neurospora depend on five components of a histone methyltransferase complex, DCDC. PLOS Genet 6:e1001196 [Google Scholar]
  82. Lewis ZA, Adhvaryu KK, Honda S, Shiver AL, Selker EU. 82.  2010. Identification of DIM-7, a protein required to target the DIM-5 H3 methyltransferase to chromatin. PNAS 107:8310–15 [Google Scholar]
  83. Lewis ZA, Honda S, Khlafallah TK, Jeffress JK, Freitag M. 83.  et al. 2009. Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa. Genome Res. 19:427–37 [Google Scholar]
  84. Li F, Goto DB, Zaratiegui M, Tang X, Martienssen R, Cande WZ. 84.  2005. Two novel proteins, Dos1 and Dos2, interact with Rik1 to regulate heterochromatic RNA interference and histone modification. Curr. Biol. 15:1448–57 [Google Scholar]
  85. Li N, Joska TM, Ruesch CE, Coster SJ, Belden WJ. 85.  2015. The frequency natural antisense transcript first promotes, then represses, frequency gene expression via facultative heterochromatin. PNAS 112:4357–62 [Google Scholar]
  86. Li Y, Wang C, Liu W, Wang G, Kang Z. 86.  et al. 2011. The HDF1 histone deacetylase gene is important for conidiation, sexual reproduction, and pathogenesis in Fusarium graminearum. Mol. Plant Microbe Interact. 24:487–96 [Google Scholar]
  87. Liu Y, Liu N, Yin Y, Chen Y, Jiang J, Ma Z. 87.  2015. Histone H3K4 methylation regulates hyphal growth, secondary metabolism and multiple stress responses in Fusarium graminearum. Environ. Microbiol. 17:4615–30 [Google Scholar]
  88. Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ. 88.  et al. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–73 [Google Scholar]
  89. Margueron R, Reinberg D. 89.  2011. The Polycomb complex PRC2 and its mark in life. Nature 469:343–49 [Google Scholar]
  90. Marie-Nelly H, Marbouty M, Cournac A, Flot JF, Liti G. 90.  et al. 2014. High-quality genome (re)assembly using chromosomal contact data. Nat. Commun. 5:5695 [Google Scholar]
  91. Martienssen R, Moazed D. 91.  2015. RNAi and heterochromatin assembly. Cold Spring Harb. Perspect. Biol. 7:a019323 [Google Scholar]
  92. Millar CB, Xu F, Zhang K, Grunstein M. 92.  2006. Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast. Genes Dev 20:711–22 [Google Scholar]
  93. Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P. 93.  et al. 2001. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. PNAS 98:12902–7 [Google Scholar]
  94. Min J, Zhang X, Cheng X, Grewal SI, Xu RM. 94.  2002. Structure of the SET domain histone lysine methyltransferase Clr4. Nat. Struct. Biol. 9:828–32 [Google Scholar]
  95. Mishra PK, Baum M, Carbon J. 95.  2011. DNA methylation regulates phenotype-dependent transcriptional activity in Candida albicans. PNAS 108:11965–70 [Google Scholar]
  96. Miura A, Nakamura M, Inagaki S, Kobayashi A, Saze H, Kakutani T. 96.  2009. An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites. EMBO J 28:1078–86 [Google Scholar]
  97. Mizuguchi T, Fudenberg G, Mehta S, Belton JM, Taneja N. 97.  et al. 2014. Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe. Nature 516:432–35 [Google Scholar]
  98. Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI. 98.  2001. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292:110–13 [Google Scholar]
  99. Ng HH, Feng Q, Wang H, Erdjument-Bromage H, Tempst P. 99.  et al. 2002. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev 16:1518–27 [Google Scholar]
  100. Ng HH, Robert F, Young RA, Struhl K. 100.  2003. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 11:709–19 [Google Scholar]
  101. Niehaus EM, Kleigrewe K, Wiemann P, Studt L, Sieber CM. 101.  et al. 2013. Genetic manipulation of the Fusarium fujikuroi fusarin gene cluster yields insight into the complex regulation and fusarin biosynthetic pathway. Chem. Biol. 20:1055–66 [Google Scholar]
  102. Nobile CJ, Fox EP, Hartooni N, Mitchell KF, Hnisz D. 102.  et al. 2014. A histone deacetylase complex mediates biofilm dispersal and drug resistance in Candida albicans. mBio 5:e01201–14 [Google Scholar]
  103. Oppikofer M, Kueng S, Gasser SM. 103.  2013. SIR–nucleosome interactions: structure–function relationships in yeast silent chromatin. Gene 527:10–25 [Google Scholar]
  104. Pai CC, Deegan RS, Subramanian L, Gal C, Sarkar S. 104.  et al. 2014. A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice. Nat. Commun. 5:4091 [Google Scholar]
  105. Palmer JM, Bok JW, Lee S, Dagenais TR, Andes DR. 105.  et al. 2013. Loss of CclA, required for histone 3 lysine 4 methylation, decreases growth but increases secondary metabolite production in Aspergillus fumigatus. PeerJ 1:e4 [Google Scholar]
  106. Palmer JM, Keller NP. 106.  2010. Secondary metabolism in fungi: Does chromosomal location matter?. Curr. Opin. Microbiol. 13:431–36 [Google Scholar]
  107. Pham KT, Inoue Y, Vu BV, Nguyen HH, Nakayashiki T. 107.  et al. 2015. MoSET1 (histone H3K4 methyltransferase in Magnaporthe oryzae) regulates global gene expression during infection-related morphogenesis. PLOS Genet 11:e1005385 Correction. 2015 PLOS Genet. 11:e1005752 [Google Scholar]
  108. Pijnappel WW, Schaft D, Roguev A, Shevchenko A, Tekotte H. 108.  et al. 2001. The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes Dev 15:2991–3004 [Google Scholar]
  109. Qiu Y, Zhang W, Zhao C, Wang Y, Wang W. 109.  et al. 2012. Solution structure of the Pdp1 PWWP domain reveals its unique binding sites for methylated H4K20 and DNA. Biochem. J. 442:527–38 [Google Scholar]
  110. Raduwan H, Isola AL, Belden WJ. 110.  2013. Methylation of histone H3 on lysine 4 by the lysine methyltransferase SET1 protein is needed for normal clock gene expression. J. Biol. Chem. 288:8380–90 [Google Scholar]
  111. Rando OJ, Winston F. 111.  2012. Chromatin and transcription in yeast. Genetics 190:351–87 [Google Scholar]
  112. Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW. 112.  et al. 2000. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–99 [Google Scholar]
  113. Reyes-Dominguez Y, Boedi S, Sulyok M, Wiesenberger G, Stoppacher N. 113.  et al. 2012. Heterochromatin influences the secondary metabolite profile in the plant pathogen Fusarium graminearum. Fungal Genet. Biol. 49:39–47 [Google Scholar]
  114. Reyes-Dominguez Y, Bok JW, Berger H, Shwab EK, Basheer A. 114.  et al. 2010. Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Mol. Microbiol. 76:1376–86 [Google Scholar]
  115. Rivera C, Gurard-Levin ZA, Almouzni G, Loyola A. 115.  2014. Histone lysine methylation and chromatin replication. Biochim. Biophys. Acta 1839:1433–39 [Google Scholar]
  116. Roche B, Arcangioli B, Martienssen RA. 116.  2016. RNA interference is essential for cellular quiescence. Science 354:aah5651 [Google Scholar]
  117. Roguev A, Schaft D, Shevchenko A, Pijnappel WW, Wilm M. 117.  et al. 2001. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 20:7137–48 [Google Scholar]
  118. Rose NR, Klose RJ. 118.  2014. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim. Biophys. Acta 1839:1362–72 [Google Scholar]
  119. Rountree MR, Selker EU. 119.  2010. DNA methylation and the formation of heterochromatin in Neurospora crassa. Heredity 105:38–44 [Google Scholar]
  120. Saze H, Shiraishi A, Miura A, Kakutani T. 120.  2008. Control of genic DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana. Science 319:462–65 [Google Scholar]
  121. Schotanus K, Soyer JL, Connolly LR, Grandaubert J, Happel P. 121.  et al. 2015. Histone modifications rather than the novel regional centromeres of Zymoseptoria tritici distinguish core and accessory chromosomes. Epigenet. Chromatin 8:41 [Google Scholar]
  122. Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R. 122.  et al. 2004. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18:1251–62 [Google Scholar]
  123. Schuettengruber B, Martinez AM, Iovino N, Cavalli G. 123.  2011. Trithorax group proteins: switching genes on and keeping them active. Nat. Rev. Mol. Cell Biol. 12:799–814 [Google Scholar]
  124. Schwartz YB, Pirrotta V. 124.  2013. A new world of Polycombs: unexpected partnerships and emerging functions. Nat. Rev. Genet. 14:853–64 [Google Scholar]
  125. Shankaranarayana GD, Motamedi MR, Moazed D, Grewal SI. 125.  2003. Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast. Curr. Biol. 13:1240–46 [Google Scholar]
  126. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR. 126.  et al. 2004. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–53 [Google Scholar]
  127. Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP. 127.  2007. Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot. Cell 6:1656–64 [Google Scholar]
  128. Sieber CM, Lee W, Wong P, Munsterkotter M, Mewes HW. 128.  et al. 2014. The Fusarium graminearum genome reveals more secondary metabolite gene clusters and hints of horizontal gene transfer. PLOS ONE 9:e110311 [Google Scholar]
  129. Simon JA, Kingston RE. 129.  2009. Mechanisms of Polycomb gene silencing: knowns and unknowns. Nat. Rev. Mol. Cell Biol. 10:697–708 [Google Scholar]
  130. Smith KM, Dobosy JR, Reifsnyder JE, Rountree MR, Anderson DC. 130.  et al. 2010. H2B- and H3-specific histone deacetylases are required for DNA methylation in Neurospora crassa. Genetics 186:1207–16 [Google Scholar]
  131. Smith KM, Kothe GO, Matsen CB, Khlafallah TK, Adhvaryu KK. 131.  et al. 2008. The fungus Neurospora crassa displays telomeric silencing mediated by multiple sirtuins and by methylation of histone H3 lysine 9. Epigenet. Chromatin 1:5 [Google Scholar]
  132. Smith KM, Phatale PA, Bredeweg EL, Connolly LR, Pomraning KR, Freitag M. 132.  2012. Epigenetics of filamentous fungi. Epigenetic Regulation and Epigenomics RA Myers 1063–105 Weinheim, Germ: Wiley-VCH Verlag [Google Scholar]
  133. Smith KM, Phatale PA, Sullivan CM, Pomraning KR, Freitag M. 133.  2011. Heterochromatin is required for normal distribution of Neurospora crassa CenH3. Mol. Cell. Biol. 31:2528–42 [Google Scholar]
  134. Smith KM, Sancar G, Dekhang R, Sullivan CM, Li S. 134.  et al. 2010. Transcription factors in light and circadian clock signaling networks revealed by genomewide mapping of direct targets for Neurospora white collar complex. Eukaryot. Cell 9:1549–56 [Google Scholar]
  135. Smolle M, Workman JL, Venkatesh S. 135.  2013. reSETting chromatin during transcription elongation. Epigenetics 8:10–15 [Google Scholar]
  136. Soyer JL, El Ghalid M, Glaser N, Ollivier B, Linglin J. 136.  et al. 2014. Epigenetic control of effector gene expression in the plant pathogenic fungus Leptosphaeria maculans. PLOS Genet. 10:e1004227 [Google Scholar]
  137. Strahl BD, Grant PA, Briggs SD, Sun ZW, Bone JR. 137.  et al. 2002. Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol. Cell. Biol. 22:1298–306 [Google Scholar]
  138. Studt L, Rosler SM, Burkhardt I, Arndt B, Freitag M. 138.  et al. 2016. Knock-down of the methyltransferase Kmt6 relieves H3K27me3 and results in induction of cryptic and otherwise silent secondary metabolite gene clusters in Fusarium fujikuroi. Environ. Microbiol. 18:4037–54 [Google Scholar]
  139. Studt L, Schmidt FJ, Jahn L, Sieber CM, Connolly LR. 139.  et al. 2013. Two histone deacetylases, FfHda1 and FfHda2, are important for Fusarium fujikuroi secondary metabolism and virulence. Appl. Environ. Microbiol. 79:7719–34 [Google Scholar]
  140. Takahashi YH, Schulze JM, Jackson J, Hentrich T, Seidel C. 140.  et al. 2011. Dot1 and histone H3K79 methylation in natural telomeric and HM silencing. Mol. Cell 42:118–26 [Google Scholar]
  141. Takahashi YH, Westfield GH, Oleskie AN, Trievel RC, Shilatifard A, Skiniotis G. 141.  2011. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human. PNAS 108:20526–31 [Google Scholar]
  142. Tamaru H, Selker EU. 142.  2001. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414:277–83 [Google Scholar]
  143. Tamaru H, Zhang X, McMillen D, Singh PB, Nakayama J. 143.  et al. 2003. Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat. Genet. 34:75–79 [Google Scholar]
  144. Tanizawa H, Iwasaki O, Tanaka A, Capizzi JR, Wickramasinghe P. 144.  et al. 2010. Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. Nucleic Acids Res 38:8164–77 [Google Scholar]
  145. Thinnes CC, England KS, Kawamura A, Chowdhury R, Schofield CJ, Hopkinson RJ. 145.  2014. Targeting histone lysine demethylases—progress, challenges, and the future. Biochim. Biophys. Acta 1839:1416–32 [Google Scholar]
  146. Thon G, Hansen KR, Altes SP, Sidhu D, Singh G. 146.  et al. 2005. The Clr7 and Clr8 directionality factors and the Pcu4 cullin mediate heterochromatin formation in the fission yeast Schizosaccharomyces pombe. Genetics 171:1583–95 [Google Scholar]
  147. Torres-Machorro AL, Clark LG, Chang CS, Pillus L. 147.  2015. The Set3 complex antagonizes the MYST acetyltransferase Esa1 in the DNA damage response. Mol. Cell. Biol. 35:3714–25 [Google Scholar]
  148. Tschiersch B, Hofmann A, Krauss V, Dorn R, Korge G, Reuter G. 148.  1994. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3–9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13:3822–31 [Google Scholar]
  149. Upadhyay AK, Cheng X. 149.  2011. Dynamics of histone lysine methylation: structures of methyl writers and erasers. Prog. Drug Res. 67:107–24 [Google Scholar]
  150. van Holde K. 150.  1988. Chromatin New York: Springer Verlag
  151. van Werven FJ, Neuert G, Hendrick N, Lardenois A, Buratowski S. 151.  et al. 2012. Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell 150:1170–81 [Google Scholar]
  152. Veerappan CS, Avramova Z, Moriyama EN. 152.  2008. Evolution of SET-domain protein families in the unicellular and multicellular Ascomycota fungi. BMC Evol. Biol. 8:190 [Google Scholar]
  153. Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA. 153.  2002. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–37 [Google Scholar]
  154. Wang J, Cohen AL, Letian A, Tadeo X, Moresco JJ. 154.  et al. 2016. The proper connection between shelterin components is required for telomeric heterochromatin assembly. Genes Dev 30:827–39 [Google Scholar]
  155. Wang Y, Reddy B, Thompson J, Wang H, Noma K. 155.  et al. 2009. Regulation of Set9-mediated H4K20 methylation by a PWWP domain protein. Mol. Cell 33:428–37 [Google Scholar]
  156. Wiemann P, Sieber CM, von Bargen KW, Studt L, Niehaus EM. 156.  et al. 2013. Deciphering the cryptic genome: Genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLOS Pathog 9:e1003475 [Google Scholar]
  157. Wozniak GG, Strahl BD. 157.  2014. Hitting the ‘mark’: interpreting lysine methylation in the context of active transcription. Biochim. Biophys. Acta 1839:1353–61 [Google Scholar]
  158. Xu H, Wang J, Hu Q, Quan Y, Chen H. 158.  et al. 2010. DCAF26, an adaptor protein of Cul4-based E3, is essential for DNA methylation in Neurospora crassa. PLOS Genet 6:e1001132 [Google Scholar]
  159. Zemach A, McDaniel IE, Silva P, Zilberman D. 159.  2010. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–19 [Google Scholar]
  160. Zhang T, Cooper S, Brockdorff N. 160.  2015. The interplay of histone modifications—writers that read. EMBO Rep 16:1467–81 [Google Scholar]
  161. Zhang X, Tamaru H, Khan S, Horton J, Keefe L. 161.  et al. 2002. Structure of the Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell 111:117–27 [Google Scholar]
  162. Zhang X, Yang Z, Khan SI, Horton JR, Tamaru H. 162.  et al. 2003. Structural basis for the product specificity of histone lysine methyltransferases. Mol. Cell 12:177–85 [Google Scholar]
  163. Zhao Y, Garcia BA. 163.  2015. Comprehensive catalog of currently documented histone modifications. Cold Spring Harb. Perspect. Biol. 7:a025064 [Google Scholar]
  164. Zhao Y, Shen Y, Yang S, Wang J, Hu Q. 164.  et al. 2010. Ubiquitin ligase components Cullin4 and DDB1 are essential for DNA methylation in Neurospora crassa. J. Biol. Chem. 285:4355–65 [Google Scholar]
  165. Zhou VW, Goren A, Bernstein BE. 165.  2011. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 12:7–18 [Google Scholar]
  166. Zofall M, Grewal SI. 166.  2006. Swi6/HP1 recruits a JmjC domain protein to facilitate transcription of heterochromatic repeats. Mol. Cell 22:681–92 [Google Scholar]
  167. Zofall M, Smith DR, Mizuguchi T, Dhakshnamoorthy J, Grewal SI. 167.  2016. Taz1-Shelterin promotes facultative heterochromatin assembly at chromosome-internal sites containing late replication origins. Mol. Cell 62:862–74 [Google Scholar]
/content/journals/10.1146/annurev-micro-102215-095757
Loading
/content/journals/10.1146/annurev-micro-102215-095757
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error