1932

Abstract

The basic elements of animal behavior that are critical to survival include energy, arousal, and motivation: Energy intake and expenditure are fundamental to all organisms for the performance of any type of function; according to the Yerkes-Dodson law, an optimal level of arousal is required for animals to perform normal functions; and motivation is critical to goal-oriented behaviors in higher animals. The brain is the primary organ that controls these elements and, through evolution, has developed specialized structures to accomplish this task. The orexin/hypocretin system in the perifornical/lateral hypothalamus, which was discovered 15 years ago, is one such specialized area. This review summarizes a fast-growing body of evidence discerning how the orexin/hypocretin system integrates internal and external cues to regulate energy intake that can then be used to generate sufficient arousal for animals to perform innate and goal-oriented behaviors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-071013-013855
2014-07-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/neuro/37/1/annurev-neuro-071013-013855.html?itemId=/content/journals/10.1146/annurev-neuro-071013-013855&mimeType=html&fmt=ahah

Literature Cited

  1. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L. 2007. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–24 [Google Scholar]
  2. Adams WJ, Lorens SA, Mitchell CL. 1972. Morphine enhances lateral hypothalamic self-stimulation in the rat. Proc. Soc. Exp. Biol. Med. 140:770–71 [Google Scholar]
  3. Adeghate E, Fernandez-Cabezudo M, Hameed R, El-Hasasna H, El Wasila M. et al. 2010. Orexin-1 receptor co-localizes with pancreatic hormones in islet cells and modulates the outcome of streptozotocin-induced diabetes mellitus. PLoS ONE 5:1e8587 [Google Scholar]
  4. Akinnusi ME, Saliba R, Porhomayon J, El-Solh AA. 2012. Sleep disorders in morbid obesity. Eur. J. Intern. Med. 23:3219–26 [Google Scholar]
  5. Anand BK, Brobeck JR. 1951a. Hypothalamic control of food intake in rats and cats. Yale J. Biol. Med. 24:123–40 [Google Scholar]
  6. Anand BK, Brobeck JR. 1951b. Localization of a “feeding center” in the hypothalamus of the rat. Proc. Soc. Exp. Biol. Med. 77:323–24 [Google Scholar]
  7. Asakawa A, Inui A, Goto K, Yuzuriha H, Takimoto Y. et al. 2002. Effects of agouti-related protein, orexin and melanin-concentrating hormone on oxygen consumption in mice. Int. J. Mol. Med. 10:523–25 [Google Scholar]
  8. Baimel C, Borgland SL. 2012. Hypocretin modulation of drug-induced synaptic plasticity. Prog. Brain Res. 198:123–31 [Google Scholar]
  9. Baldo BA, Gual-Bonilla L, Sijapati K, Daniel RA, Landry CF, Kelley AE. 2004. Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment. Eur. J. Neurosci. 19:376–86 [Google Scholar]
  10. Beck B, Richy S, Dimitrov T, Stricker-Krongrad A. 2001. Opposite regulation of hypothalamic orexin and neuropeptide Y receptors and peptide expressions in obese Zucker rats. Biochem. Biophys. Res. Commun. 286:518–23 [Google Scholar]
  11. Benington JH, Heller HC. 1995. Restoration of brain energy metabolism as the function of sleep. Prog. Neurobiol. 45:347–60 [Google Scholar]
  12. Blanco-Centurion C, Liu M, Konadhode R, Pelluru D, Shiromani PJ. 2013. Effects of orexin gene transfer in the dorsolateral pons in orexin knockout mice. Sleep 36:131–40 [Google Scholar]
  13. Borgland SL, Chang S-J, Bowers MS, Thompson J, Vittoz N. et al. 2009. Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J. Neurosci. 29:11215–25 [Google Scholar]
  14. Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A. 2006. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 49:589–601 [Google Scholar]
  15. Bourgin P, Huitrón-Résendiz S, Spier AD, Fabre V, Morte B. et al. 2000. Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J. Neurosci. 20:7760–65 [Google Scholar]
  16. Boutrel B, Kenny PJ, Specio SE, Martin-Fardon R, Markou A. et al. 2005. Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc. Natl. Acad. Sci. USA 102:19168–73 [Google Scholar]
  17. Boyle PJ, Scott JC, Krentz AJ, Nagy RJ, Comstock E, Hoffman C. 1994. Diminished brain glucose metabolism is a significant determinant for falling rates of systemic glucose utilization during sleep in normal humans. J. Clin. Invest. 93:529–35 [Google Scholar]
  18. Burdakov D, Jensen LT, Alexopoulos H, Williams RH, Fearon IM. et al. 2006. Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose. Neuron 50:5711–22 [Google Scholar]
  19. Burt J, Alberto CO, Parsons MP, Hirasawa M. 2011. Local network regulation of orexin neurons in the lateral hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301:3R572–80 [Google Scholar]
  20. Cai XJ, Evans ML, Lister CA, Leslie RA, Arch JRS. et al. 2001. Hypoglycemia activates orexin neurons and selectively increases hypothalamic orexin-B levels. Responses inhibited by feeding and possibly mediated by the nucleus of the solitary tract. Diabetes 50:105–12 [Google Scholar]
  21. Cai XJ, Lister CA, Buckingham RE, Pickavance L, Wilding J. et al. 2000. Down-regulation of orexin gene expression by severe obesity in the rats: studies in Zucker fatty and zucker diabetic fatty rats and effects of rosiglitazone. Brain Res. Mol. Brain Res. 77:131–37 [Google Scholar]
  22. Cai XJ, Widdowson PS, Harrold J, Wilson S, Buckingham RE. et al. 1999. Hypothalamic orexin expression: modulation by blood glucose and feeding. Diabetes 48:2132–37 [Google Scholar]
  23. Camfferman D, McEvoy RD, O'Donoghue F, Lushington K. 2008. Prader Willi Syndrome and excessive daytime sleepiness. Sleep Med. Rev. 12:65–75 [Google Scholar]
  24. Carr KD. 2011. Food scarcity, neuroadaptations, and the pathogenic potential of dieting in an unnatural ecology: binge eating and drug abuse. Physiol. Behav. 104:162–67 [Google Scholar]
  25. Carroll ME, France CP, Meisch RA. 1979. Food deprivation increases oral and intravenous drug intake in rats. Science 205:319–21 [Google Scholar]
  26. Cazala P, Darracq C, Saint-Marc M. 1987. Self-administration of morphine into the lateral hypothalamus in the mouse. Brain Res. 416:283–88 [Google Scholar]
  27. Chandra R, Liddle RA. 2009. Neural and hormonal regulation of pancreatic secretion. Curr. Opin. Gastroenterol. 25:441–46 [Google Scholar]
  28. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T. et al. 1999. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–51 [Google Scholar]
  29. Davis SF, Williams KW, Xu W, Glatzer NR, Smith BN. 2003. Selective enhancement of synaptic inhibition by hypocretin (orexin) in rat vagal motor neurons: implications for autonomic regulation. J. Neurosci. 23:3844–54 [Google Scholar]
  30. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE. et al. 1998. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA 95:322–27 [Google Scholar]
  31. de Lecea L, Sutcliffe JG. 2005. The hypocretins and sleep. FEBS J. 272:5675–88 [Google Scholar]
  32. Delgado J, Anand BK. 1953. Increase of food intake induced by electrical stimulation of the lateral hypothalamus. Am. J. Physiol. 172:162–68 [Google Scholar]
  33. Dube MG, Kalra SP, Kalra PS. 1999. Food intake elicited by central administration of orexins/hypocretins: identification of hypothalamic sites of action. Brain Res. 842:473–77 [Google Scholar]
  34. España RA. 2012. Hypocretin/orexin involvement in reward and reinforcement. Vitam. Horm. 89:185–208 [Google Scholar]
  35. España RA, Baldo BA, Kelley AE, Berridge CW. 2001. Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience 106:699–715 [Google Scholar]
  36. España RA, Melchior JR, Roberts DC, Jones SR. 2011. Hypocretin 1/orexin A in the ventral tegmental area enhances dopamine responses to cocaine and promotes cocaine self-administration. Psychopharmacology 214:415–26 [Google Scholar]
  37. España RA, Oleson EB, Locke JL, Brookshire BR, Roberts DC, Jones SR. 2010. The hypocretin-orexin system regulates cocaine self-administration via actions on the mesolimbic dopamine system. Eur. J. Neurosci. 31:336–48 [Google Scholar]
  38. Estabrooke IV, McCarthy MT, Ko E, Chou TC, Chemelli RM. et al. 2001. Fos expression in orexin neurons varies with behavioral state. J. Neurosci. 21:1656–62 [Google Scholar]
  39. Fronczek R, Lammers GJ, Balesar R, Unmehopa UA, Swaab DF. 2005. The number of hypothalamic hypocretin (orexin) neurons is not affected in Prader-Willi syndrome. J. Clin. Endocrinol. Metab. 90:95466–70 [Google Scholar]
  40. Fujiki N, Yoshida Y, Ripley B, Honda K, Mignot E, Nishino S. 2001. Changes in CSF hypocretin-1 (orexin A) levels in rats across 24 hours and in response to food deprivation. Neuroreport 17:993–97 [Google Scholar]
  41. Georgescu D, Zachariou V, Barrot M, Mieda M, Willie JT. et al. 2003. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J. Neurosci. 23:3106–11 [Google Scholar]
  42. Goodall EB, Carey RJ. 1975. Effects of D- versus L-amphetamine, food deprivation, and current intensity on self-stimulation of the lateral hypothalamus, substantia nigra, and medial frontal cortex of the rat. J. Comp. Physiol. Psychol. 89:1029–45 [Google Scholar]
  43. Griffond B, Risold PY, Jacquemard C, Colard C, Fellman D. 1999. Insulin-induced hypoglycemia increases prehypocretin (orexin) mRNA in the rat lateral hypothalamic area. Neurosci. Lett. 262:77–80 [Google Scholar]
  44. Guan JL, Uehara K, Lu S, Wang QP, Funahashi H. et al. 2002. Reciprocal synaptic relationships between orexin- and melanin-concentrating hormone-containing neurons in the rat lateral hypothalamus: a novel circuit implicated in feeding regulation. Int. J. Obes. Relat. Metab. Disord. 26:121523–32 [Google Scholar]
  45. Guilleminault C, Carskadon M, Dement WC. 1974. On the treatment of rapid eye movement narcolepsy. Arch. Neurol. 30:90–93 [Google Scholar]
  46. Guyon A, Tardy MP, Rovère C, Nahon JL, Barhanin J, Lesage F. 2009. Glucose inhibition persists in hypothalamic neurons lacking tandem-pore K+ channels. J. Neurosci. 29:82528–33 [Google Scholar]
  47. Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA. et al. 1999. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl. Acad. Sci. USA 96:10911–16 [Google Scholar]
  48. Hamlin AS, Clemens KJ, McNally GP. 2008. Renewal of extinguished cocaine-seeking. Neuroscience 151:659–70 [Google Scholar]
  49. Han F. 2012. Sleepiness that cannot be overcome: narcolepsy and cataplexy. Respirology 17:81157–65 [Google Scholar]
  50. Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM. et al. 2001. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30:2345–54 [Google Scholar]
  51. Harris GC, Wimmer M, Aston-Jones G. 2005. A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437:7058556–59 [Google Scholar]
  52. Haynes AC, Jackson B, Chapman H, Tadayyon M, Johns A. et al. 2000. A selective orexin-1 receptor antagonist reduces food consumption in male and female rats. Regul. Pept. 96:45–51 [Google Scholar]
  53. Heinonen MV, Purhonen AK, Mäkelä KA, Herzig KH. 2008. Functions of orexins in peripheral tissues. Acta Physiol. 192:471–85 [Google Scholar]
  54. Hetherington AW, Ranson SW. 1940. Hypothalamic lesions and adiposity in the rat. Anat. Rec. 78:149–72 [Google Scholar]
  55. Himmi T, Boyer A, Orsini JC. 1988. Changes in lateral hypothalamic neuronal activity accompanying hyper- and hypoglycemias. Physiol. Behav. 44:347–54 [Google Scholar]
  56. Ho CY, Berridge KC. 2013. An orexin hotspot in ventral pallidum amplifies hedonic ‘liking’ for sweetness. Neuropsychopharmacology 38:91655–64 [Google Scholar]
  57. Hollander JA, Lu Q, Cameron MD, Kamenecka TM, Kenny PJ. 2008. Insular hypocretin transmission regulates nicotine reward. Proc. Natl. Acad. Sci. USA 105:19480–85 [Google Scholar]
  58. Hollander JA, Pham D, Fowler CD, Kenny PJ. 2012. Hypocretin-1 receptors regulate the reinforcing and reward-enhancing effects of cocaine: pharmacological and behavioral genetics evidence. Front. Behav. Neurosci. 6:47 [Google Scholar]
  59. Horvath TL, Diano S, van den Pol AN. 1999. Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations. J Neurosci 19:31072–87 [Google Scholar]
  60. Horvath TL, Gao XB. 2005. Input organization and plasticity of hypocretin neurons: possible clues to obesity's association with insomnia. Cell Metab. 1:279–86 [Google Scholar]
  61. Jöhren O, Gremmels JA, Qadri F, Dendorfer A, Dominiak P. 2006. Adrenal expression of orexin receptor subtypes is differentially regulated in experimental streptozotocin induced type-1 diabetes. Peptides 27:2764–69 [Google Scholar]
  62. Kantor S, Mochizuki T, Lops SN, Ko B, Clain E. et al. 2013. Orexin gene therapy restores the timing and maintenance of wakefulness in narcoleptic mice. Sleep 36:81129–38 [Google Scholar]
  63. Katafuchi T, Oomura Y, Yoshimatsu H. 1985. Single unit activity in the rat lateral hypothalamus during 2-deoxy-d-glucose induced and natural feeding behavior. Brain Res. 359:1–9 [Google Scholar]
  64. Kenny PJ. 2011. Common cellular and molecular mechanisms in obesity and drug addiction. Nat. Rev. Neurosci. 12:11638–51 [Google Scholar]
  65. Kiwaki K, Kotz CM, Wang C, Lanningham-Foster L, Levine JA. 2004. Orexin A (hypocretin 1) injected into hypothalamic paraventricular nucleus and spontaneous physical activity in rats. Am. J. Physiol. Endocrinol. Metab. 286:E551–59 [Google Scholar]
  66. Korotkova TM, Sergeeva OA, Eriksson KS, Haas HL, Brown RE. 2003. Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J. Neurosci. 23:7–11 [Google Scholar]
  67. Kotz C, Nixon J, Butterick T, Perez-Leighton C, Teske J, Billington C. 2012. Brain orexin promotes obesity resistance. Ann. N. Y. Acad. Sci. 1264:172–86 [Google Scholar]
  68. Kotz CM, Teske JA, Billington CJ. 2008. Neuroregulation of nonexercise activity thermogenesis and obesity resistance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294:R699–710 [Google Scholar]
  69. Kotz CM, Teske JA, Levine JA, Wang C. 2002. Feeding and activity induced by orexin A in the lateral hypothalamus in rats. Regul. Pept. 104:27–32 [Google Scholar]
  70. Kotz CM, Wang C, Teske JA, Thorpe AJ, Novak CM. et al. 2006. Orexin A mediation of time spent moving in rats: neural mechanisms. Neuroscience 142:29–36 [Google Scholar]
  71. Krowicki ZK, Burmeister MA, Berthoud HR, Scullion RT, Fuchs K, Hornby PJ. 2002. Orexins in rat dorsal motor nucleus of the vagus potently stimulate gastric motor function. Am. J. Physiol. Gastrointest. Liver Physiol. 283:G465–72 [Google Scholar]
  72. Kurose T, Ueta Y, Yamamoto Y, Serino R, Ozaki Y. et al. 2002. Effects of restricted feeding on the activity of hypothalamic Orexin (OX)-A containing neurons and OX2 receptor mRNA level in the paraventricular nucleus of rats. Regul. Pept. 104:145–51 [Google Scholar]
  73. Lee MG, Hassani OK, Jones BE. 2005. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J. Neurosci. 25:6716–20 [Google Scholar]
  74. LeSage MG, Perry JL, Kotz CM, Shelley D, Corrigall WA. 2010. Nicotine self-administration in the rat: effects of hypocretin antagonists and changes in hypocretin mRNA. Psychopharmacology 209:203–12 [Google Scholar]
  75. Lin JS, Sakai K, Vanni-Mercier G, Jouvet M. 1989. A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats. Brain Res. 479:225–40 [Google Scholar]
  76. Lin L, Faraco J, Li R, Kadotani H, Rogers W. et al. 1999. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:3365–76 [Google Scholar]
  77. Liu Z-W, Gan G, Suyama S, Gao X-B. 2011. Intracellular energy status regulates activity in hypocretin/orexin neurones: a link between energy and behavioural states. J. Physiol. 589:Pt. 174157–66 [Google Scholar]
  78. Liu Z-W, Gao X-B. 2007. Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect. J. Neurophysiol. 97:1837–48 [Google Scholar]
  79. López M, Seoane L, García MC, Lago F, Casanueva FF. et al. 2000. Leptin regulation of prepro-orexin and orexin receptor mRNA levels in the hypothalamus. Biochem. Biophys. Res. Commun. 269:141–45 [Google Scholar]
  80. Lubkin M, Stricker-Krongrad A. 1998. Independent feeding and metabolic actions of orexins in mice. Biochem. Biophys. Res. Commun. 253:2241–45 [Google Scholar]
  81. Mackiewicz M, Naidoo N, Zimmerman JE, Pack AI. 2008. Molecular mechanisms of sleep and wakefulness. Ann. N. Y. Acad. Sci. 1129:335–49 [Google Scholar]
  82. Mahler SV, Smith RJ, Moorman DE, Sartor GC, Aston-Jones G. 2012. Multiple roles for orexin/hypocretin in addiction. Prog. Brain Res. 198:79–121 [Google Scholar]
  83. Mahlios J, De la Herrán-Arita AK, Mignot E. 2013. The autoimmune basis of narcolepsy. Curr. Opin. Neurobiol. 23:767–73 [Google Scholar]
  84. Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB. et al. 2001. Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol. 435:16–25 [Google Scholar]
  85. McPherson CS, Featherby T, Krstew E, Lawrence AJ. 2007. Quantification of phosphorylated cAMP-response element-binding protein expression throughout the brain of amphetamine-sensitized rats: activation of hypothalamic orexin A-containing neurons. J. Pharmacol. Exp. Ther. 323:805–12 [Google Scholar]
  86. Mileykovskiy BY, Kiyashchenko LI, Siegel JM. 2005. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–98 [Google Scholar]
  87. Mondal MS, Nakazato M, Date Y, Murakami N, Yanagisawa M, Matsukura S. 1999. Widespread distribution of orexin in rat brain and its regulation upon fasting. Biochem. Biophys. Res. Commun. 256:3495–99 [Google Scholar]
  88. Moriguchi T, Sakurai T, Nambu T, Yanagisawa M, Goto K. 1999. Neurons containing orexin in the lateral hypothalamic area of the adult rat brain are activated by insulin-induced acute hypoglycemia. Neurosci. Lett. 264:101–4 [Google Scholar]
  89. Nauta WJH. 1946. Hypothalamic regulation of sleep in rats: an experimental study. J. Neurophysiol. 9:285–316 [Google Scholar]
  90. Nevsimalova S, Vankova J, Stepanova I, Seemanova E, Mignot E, Nishino S. 2005. Hypocretin deficiency in Prader-Willi syndrome. Eur. J. Neurol. 12:170–72 [Google Scholar]
  91. Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E. 2000. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355:39–40 [Google Scholar]
  92. Olds J. 1958. Self-stimulation of the brain; its use to study local effects of hunger, sex, and drugs. Science 127:315–24 [Google Scholar]
  93. Olds J, Milner P. 1954. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 47:419–27 [Google Scholar]
  94. Olds ME, Williams KN. 1980. Self-administration of D-Ala2-Met-enkephalinamide at hypothalamic self-stimulation sites. Brain Res. 194:155–70 [Google Scholar]
  95. Paranjape S, Vavaiya K, Kale A, Briski K. 2007. Role of dorsal vagal motor nucleus orexin-receptor-1 in glycemic responses to acute versus repeated insulin administration. Neuropeptides 41:111–16 [Google Scholar]
  96. Parsons MP, Hirasawa M. 2010. ATP-sensitive potassium channel-mediated lactate effect on orexin neurons: implications for brain energetics during arousal. J. Neurosci. 30:248061–70 [Google Scholar]
  97. Pasumarthi RK, Reznikov LR, Fadel J. 2006. Activation of orexin neurons by acute nicotine. Eur. J. Pharmacol. 535:172–76 [Google Scholar]
  98. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC. et al. 1998. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18:9996–10015 [Google Scholar]
  99. Plaza-Zabala A, Flores Á, Maldonado R, Berrendero F. 2011. Hypocretin/orexin signaling in the hypothalamic paraventricular nucleus is essential for the expression of nicotine withdrawal. Biol. Psychiatry 71:214–23 [Google Scholar]
  100. Porkka-Heiskanen T, Kalinchuk AV. 2011. Adenosine, energy metabolism and sleep homeostasis. Sleep Med. Rev. 15:2123–35 [Google Scholar]
  101. Ranson SW. 1939. Somnolence caused by hypothalamic lesions in the monkey. Arch. Neurol. Psychiatry 41:1–23 [Google Scholar]
  102. Rao Y, Lu M, Ge F, Marsh DJ, Qian S. et al. 2008. Regulation of synaptic efficacy in hypocretin/orexin-containing neurons by melanin concentrating hormone in the lateral hypothalamus. J. Neurosci. 28:379101–10 [Google Scholar]
  103. Rao Y, Mineur YS, Gan G, Wang AH, Liu ZW. et al. 2013. Repeated in vivo exposure of cocaine induces long-lasting synaptic plasticity in hypocretin/orexin-producing neurons in the lateral hypothalamus in mice. J. Physiol. 591:1951–66 [Google Scholar]
  104. Ripley B, Overeem S, Fujiki N, Nevsimalova S, Uchino M. et al. 2001. CSF hypocretin/orexin levels in narcolepsy and other neurological conditions. Neurology 57:2253–58 [Google Scholar]
  105. Rodgers RJ, Ishii Y, Halford JC, Blundell JE. 2002. Orexins and appetite regulation. Neuropeptides 36:303–25 [Google Scholar]
  106. Sakurai T. 2005. Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep Med. Rev. 9:231–41 [Google Scholar]
  107. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM. et al. 1998. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–85 [Google Scholar]
  108. Samson WK, Taylor MM, Ferguson AV. 2005. Non-sleep effects of hypocretin/orexin. Sleep Med. Rev. 9:243–52 [Google Scholar]
  109. Saper CB. 2006. Staying awake for dinner: hypothalamic integration of sleep, feeding, and circadian rhythms. Prog. Brain Res. 153:243–52 [Google Scholar]
  110. Saper CB. 2013. The neurobiology of sleep. Continuum 19:1 Sleep Disord.19–31 [Google Scholar]
  111. Sawchenko PE. 1998. Toward a new neurobiology of energy balance, appetite, and obesity: the anatomists weigh in. J. Comp. Neurol. 402:435–41 [Google Scholar]
  112. Scharf MT, Naidoo N, Zimmerman JE, Pack AI. 2008. The energy hypothesis of sleep revisited. Prog. Neurobiol. 86:264–80 [Google Scholar]
  113. Schuld A, Hebebrand J, Geller F, Pollmächer T. 2000. Increased body-mass index in patients with narcolepsy. Lancet 355:1274–75 [Google Scholar]
  114. Selbach O, Haas HL. 2006. Hypocretins: the timing of sleep and waking. Chronobiol. Int. 23:1–263–70 [Google Scholar]
  115. Sellayah D, Bharaj P, Sikder D. 2011. Orexin is required for brown adipose tissue development, differentiation, and function. Cell Metab. 14:478–90 [Google Scholar]
  116. Sellayah D, Sikder D. 2012. Orexin receptor-1 mediates brown fat developmental differentiation. Adipocyte 1:58–63 [Google Scholar]
  117. Semjonous NM, Smith KL, Parkinson JR, Gunner DJ, Liu YL. et al. 2009. Coordinated changes in energy intake and expenditure following hypothalamic administration of neuropeptides involved in energy balance. Int. J. Obes. 33:775–85 [Google Scholar]
  118. Shiuchi T, Haque MS, Okamoto S, Inoue T, Kageyama H. et al. 2009. Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system. Cell Metab. 10:466–80 [Google Scholar]
  119. Shulman RG, Hyder F, Rothman DL. 2003. Cerebral metabolism and consciousness. C. R. Biol. 326:253–73 [Google Scholar]
  120. Shulman RG, Hyder F, Rothman DL. 2009. Baseline brain energy supports the state of consciousness. Proc. Natl. Acad. Sci. USA 106:11096–101 [Google Scholar]
  121. Shulman RG, Rothman DL, Hyder F. 1999. Stimulated changes in localized cerebral energy consumption under anesthesia. Proc. Natl. Acad. Sci. USA 96:3245–50 [Google Scholar]
  122. Stellar E. 1954. The physiology of motivation. Psychol. Rev. 61:5–22 [Google Scholar]
  123. Stricker EM, Swerdloff AF, Zigmond MJ. 1978. Intrahypothalamic injections of kainic acid produce feeding and drinking deficits in rats. Brain Res. 158:470–73 [Google Scholar]
  124. Stricker-Krongrad A, Richy S, Beck B. 2002. Orexins/hypocretins in the ob/ob mouse: hypothalamic gene expression, peptide content and metabolic effects. Regul. Pept. 104:11–20 [Google Scholar]
  125. Sutcliffe JG, de Lecea L. 2002. The hypocretins: setting the arousal threshold. Nat. Rev. Neurosci. 3:339–49 [Google Scholar]
  126. Swett C, Hobson J. 1968. The effects of posterior hypothalamic lesions on behavioral and electrographic manifestations of sleep and waking in cats. Arch. Ital. Biol. 106:283–93 [Google Scholar]
  127. Székely M. 2006. Orexins, energy balance, temperature, sleep-wake cycle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291:R530–32 [Google Scholar]
  128. Takahashi N, Okumura T, Yamada H, Kohgo Y. 1999. Stimulation of gastric acid secretion by centrally administered orexin-A in conscious rats. Biochem. Biophys. Res. Commun. 254:623–27 [Google Scholar]
  129. Teske JA, Billington CJ, Kotz CM. 2010. Hypocretin/orexin and energy expenditure. Acta Physiol. 198:303–12 [Google Scholar]
  130. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S. et al. 2000. Reduced number of hypocretin neurons in human narcolepsy. Neuron 27:469–74 [Google Scholar]
  131. Thorpe AJ, Mullett MA, Wang C, Kotz CM. 2003. Peptides that regulate food intake: regional, metabolic, and circadian specificity of lateral hypothalamic orexin A feeding stimulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284:R1409–17 [Google Scholar]
  132. Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LH, Guan XM. 1998. Distribution of orexin receptor mRNA in the rat brain. FEBS Lett. 438:1–271–75 [Google Scholar]
  133. Tsuneki H, Wada T, Sasaoka T. 2010. Role of orexin in the regulation of glucose homeostasis. Acta Physiol. 198:335–48 [Google Scholar]
  134. Tupone D, Madden CJ, Cano G, Morrison SF. 2011. An orexinergic projection from perifornical hypothalamus to raphe pallidus increases rat brown adipose tissue thermogenesis. J. Neurosci. 31:15944–55 [Google Scholar]
  135. Ungerstedt U. 1971. Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol. Scand. 367:95–122 [Google Scholar]
  136. van den Pol AN. 1999. Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J. Neurosci. 19:3171–82 [Google Scholar]
  137. van den Pol AN, Acuna-Goycolea C, Clark KR, Ghosh PK. 2004. Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron 42:4635–52 [Google Scholar]
  138. van den Pol AN, Gao X-B, Obrietan K, Kilduff T, Belousov AB. 1998. Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J. Neurosci. 18:7962–71 [Google Scholar]
  139. van den Pol AN, Ghosh PK, Liu RJ, Li Y, Aghajanian GK, Gao XB. 2002. Hypocretin (orexin) enhances neuron activity and cell synchrony in developing mouse GFP-expressing locus coeruleus. J. Physiol. 541:169–85 [Google Scholar]
  140. von Economo C. 1930. Sleep as a problem of localization. J. Nerv. Ment. Dis. 71:249–59 [Google Scholar]
  141. Vyazovskiy VV, Cirelli C, Tononi G, Tobler I. 2008. Cortical metabolic rates as measured by 2-deoxyglucose-uptake are increased after waking and decreased after sleep in mice. Brain Res. Bull. 75:591–97 [Google Scholar]
  142. Wang J, Osaka T, Inoue S. 2003. Orexin-A-sensitive site for energy expenditure localized in the arcuate nucleus of the hypothalamus. Brain Res. 971:128–34 [Google Scholar]
  143. Willie JT, Chemelli RM, Sinton CM, Tokita S, Williams SC. et al. 2003. Distinct narcolepsy syndromes in orexin receptor-2 and orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron 38:5715–30 [Google Scholar]
  144. Winrow CJ, Renger JJ. 2013. Discovery and development of orexin receptor antagonists as therapeutics for insomnia. Br. J. Pharmacol. 171:283–93 [Google Scholar]
  145. Winrow CJ, Tanis KQ, Reiss DR, Rigby AM, Uslaner JM. et al. 2010. Orexin receptor antagonism prevents transcriptional and behavioral plasticity resulting from stimulant exposure. Neuropharmacology 58:185–94 [Google Scholar]
  146. Yamamoto Y, Ueta Y, Serino R, Nomura M, Shibuya I, Yamashita H. 2000. Effects of food restriction on the hypothalamic prepro-orexin gene expression in genetically obese mice. Brain Res. Bull. 51:515–21 [Google Scholar]
  147. Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N. et al. 2003. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38:5701–13 [Google Scholar]
  148. Yerkes RM, Dodson JD. 1908. The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol. 18:459–82 [Google Scholar]
  149. Yi CX, Serlie MJ, Ackermans MT, Foppen E, Buijs RM. et al. 2009. A major role for perifornical orexin neurons in the control of glucose metabolism in rats. Diabetes 58:1998–2005 [Google Scholar]
  150. Yoshida K, McCormack S, España RA, Crocker A, Scammell TE. 2006. Afferents to the orexin neurons of the rat brain. J. Comp. Neurol. 494:845–61 [Google Scholar]
  151. Yoshida Y, Fujiki N, Nakajima T, Ripley B, Matsumura H. et al. 2001. Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep-wake activities. Eur. J. Neurosci. 14:1075–81 [Google Scholar]
  152. Zeitzer JM, Buckmaster CL, Parker KJ, Hauck CM, Lyons DM, Mignot E. 2003. Circadian and homeostatic regulation of hypocretin in a primate model: implications for the consolidation of wakefulness. J. Neurosci. 23:3555–60 [Google Scholar]
/content/journals/10.1146/annurev-neuro-071013-013855
Loading
/content/journals/10.1146/annurev-neuro-071013-013855
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error