1932

Abstract

Anatomically, the perirhinal cortex sits at the boundary between the medial temporal lobe and the ventral visual pathway. It has prominent interconnections not only with both these systems, but also with a wide range of unimodal and polymodal association areas. Consistent with these diverse projections, neurophysiological studies reveal a multidimensional set of mnemonic signals that include stimulus familiarity, within- and between-domain associations, associative recall, and delay-based persistence. This wide range of perirhinal memory signals not only includes signals that are largely unique to the perirhinal cortex (i.e., object familiarity), consistent with dual-process theories, but also includes a range of signals (i.e., associative flexibility and recall) that are strongly associated with the hippocampus, consistent with single-process theories. These neurophysiological findings have important implications for bridging the gap between single-process and dual-process models of medial temporal lobe function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-071013-014207
2014-07-08
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/neuro/37/1/annurev-neuro-071013-014207.html?itemId=/content/journals/10.1146/annurev-neuro-071013-014207&mimeType=html&fmt=ahah

Literature Cited

  1. Aggleton JP, Brown MW, Albasser MM. 2012. Contrasting brain activity patterns for item recognition memory and associative recognition memory: insights from immediate-early gene functional imaging. Neuropsychologia 50:133141–55 [Google Scholar]
  2. Aminoff E, Gronau N, Bar M. 2007. The parahippocampal cortex mediates spatial and nonspatial associations. Cereb. Cortex 17:71493–503 [Google Scholar]
  3. Bar M, Aminoff E, Ishai A. 2008. Famous faces activate contextual associations in the parahippocampal cortex. Cereb. Cortex 18:61233–38 [Google Scholar]
  4. Baxter MG. 2009. Involvement of medial temporal lobe structures in memory and perception. Neuron 61:5667–77 [Google Scholar]
  5. Brodmann K. 1909. Vergleichende Lokalisationslehre der Grosshirnrinde Leipzig: Johann Ambrosius Barth
  6. Brown MW, Aggleton JP. 2001. Recognition memory: What are the roles of the perirhinal cortex and hippocampus?. Nat. Rev. Neurosci. 2:151–61 [Google Scholar]
  7. Brown MW, Warburton EC, Aggleton JP. 2010. Recognition memory: material, processes, and substrates. Hippocampus 20:111228–44 [Google Scholar]
  8. Buckley MJ, Booth MCA, Rolls ET, Gaffan D. 2001. Selective perceptual impairments after perirhinal cortex ablation. J. Neurosci. 21:249824–36 [Google Scholar]
  9. Buckley MJ, Gaffan D. 1998. Perirhinal cortex ablation impairs visual object identification. J. Neurosci. 18:62268–75 [Google Scholar]
  10. Burwell RD, Amaral DG. 1998. Perirhinal and postrhinal cortices of the rat: interconnectivity and connections with the entorhinal cortex. J. Comp. Neurol. 391:3293–321 [Google Scholar]
  11. Bussey TJ, Saksida LM. 2007. Memory, perception, and the ventral visual-perirhinal-hippocampal stream: thinking outside of the boxes. Hippocampus 17:9898–908 [Google Scholar]
  12. Bussey TJ, Saksida LM, Murray EA. 2005. The perceptual-mnemonic/feature conjunction model of perirhinal cortex function. Q. J. Exp. Psychol. B 58:3–4269–82 [Google Scholar]
  13. Chaudhry AM, Parkinson JA, Hinton EC, Owen AM, Roberts AC. 2009. Preference judgements involve a network of structures within frontal, cingulate and insula cortices. Eur. J. Neurosci. 29:51047–55 [Google Scholar]
  14. Clark AM, Bouret S, Young AM, Murray EA, Richmond BJ. 2013. Interaction between orbital prefrontal and rhinal cortex is required for normal estimates of expected value. J. Neurosci. 33:51833–45 [Google Scholar]
  15. Davachi L. 2006. Item, context and relational episodic encoding in humans. Curr. Opin. Neurobiol. 16:6693–700 [Google Scholar]
  16. de Araujo IE, Rolls ET, Kringelbach ML, McGlone F, Phillips N. 2003. Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur. J. Neurosci. 18:72059–68 [Google Scholar]
  17. de Curtis M, Paré D. 2004. The rhinal cortices: a wall of inhibition between the neocortex and the hippocampus. Prog. Neurobiol. 74:2101–10 [Google Scholar]
  18. Diana RA, Yonelinas AP, Ranganath C. 2007. Imaging recollection and familiarity in the medial temporal lobe: a three-component model. Trends Cogn. Sci. 11:9379–86 [Google Scholar]
  19. Egorov AV, Hamam BN, Fransén E, Hasselmo ME, Alonso AA. 2002. Graded persistent activity in entorhinal cortex neurons. Nature 420:173–78 [Google Scholar]
  20. Eichenbaum H, Cohen NJ. 2001. From Conditioning to Conscious Recollection New York: Oxford Univ. Press
  21. Eichenbaum H, Yonelinas AR, Ranganath C. 2007. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 30:123–52 [Google Scholar]
  22. Erickson CA, Desimone R. 1999. Responses of macaque perirhinal neurons during and after visual stimulus association learning. J. Neurosci. 19:2310404–16 [Google Scholar]
  23. Fernandez G, Tendolkar I. 2006. The rhinal cortex: ‘gatekeeper’ of the declarative memory system. Trends Cogn. Sci. 10:8358–62 [Google Scholar]
  24. Foster DJ, Wilson MA. 2006. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440:7084680–83 [Google Scholar]
  25. Fransén E, Tahvildari B, Egorov AV, Hasselmo ME, Alonso AA. 2006. Mechanism of graded persistent cellular activity of entorhinal cortex layer V neurons. Neuron 49:5735–46 [Google Scholar]
  26. Fujimichi R, Naya Y, Koyano KW, Takeda M, Takeuchi D, Miyashita Y. 2010. Unitized representation of paired objects in area 35 of the macaque perirhinal cortex. Eur. J. Neurosci. 32:4659–67 [Google Scholar]
  27. Gaffan D. 1992. Amnesia for complex naturalistic scenes and for objects following fornix transection in the rhesus monkey. Eur. J. Neurosci. 4:381–88 [Google Scholar]
  28. Graham KS, Barense MD, Lee AC. 2010. Going beyond LTM in the MTL: a synthesis of neuropsychological and neuroimaging findings on the role of the medial temporal lobe in memory and perception. Neuropsychologia 48:4831–53 [Google Scholar]
  29. Hampton RR. 2005. Monkey perirhinal cortex is critical for visual memory, but not for visual perception: reexamination of the behavioural evidence from monkeys. Q. J. Exp. Psychol. B 58:3–4283–99 [Google Scholar]
  30. Hargreaves EL, Rao G, Lee I, Knierim JJ. 2005. Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science 308:1792–94 [Google Scholar]
  31. Higuchi S-I, Miyashita Y. 1996. Neural code of visual paired associate memory in primate inferotemporal cortex is impaired by perirhinal and entorhinal lesions. Proc. Natl. Acad. Sci. USA 93:739–43 [Google Scholar]
  32. Hirabayashi T, Takeuchi D, Tamura K, Miyashita Y. 2013a. Functional microcircuit recruited during retrieval of object association memory in monkey perirhinal cortex. Neuron 77:1192–203 [Google Scholar]
  33. Hirabayashi T, Takeuchi D, Tamura K, Miyashita Y. 2013b. Microcircuits for hierarchical elaboration of object coding across primate temporal areas. Science 341:191–95 [Google Scholar]
  34. Insausti R, Amaral DG, Cowan WM. 1987. The entorhinal cortex of the monkey: II. Cortical afferents. J. Comp. Neurol. 264:356–95 [Google Scholar]
  35. Insausti R, Muñoz M. 2001. Cortical projections of the non-entorhinal hippocampal formation in the cynomolgus monkey (Macaca fascicularis). Eur. J. Neurosci. 14:3435–51 [Google Scholar]
  36. Jones EG, Powell TPS. 1970. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–820 [Google Scholar]
  37. Kent BA, Brown TH. 2012. Dual functions of perirhinal cortex in fear conditioning. Hippocampus 22:102068–79 [Google Scholar]
  38. Kuhl BA, Rissman J, Chun MM, Wagner AD. 2011. Fidelity of neural reactivation reveals competition between memories. Proc. Natl. Acad. Sci. USA 108:145903–8 [Google Scholar]
  39. Lavenex P, Suzuki WA, Amaral DG. 2002. Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex. J. Comp. Neurol. 447:4394–420 [Google Scholar]
  40. Lavenex P, Suzuki WA, Amaral DG. 2004. Perirhinal and parahippocampal cortices of the macaque monkey: intrinsic projections and interconnections. J. Comp. Neurol. 472:3371–94 [Google Scholar]
  41. Law JR, Flanery MA, Wirth S, Yanike M, Smith AC. et al. 2005. Functional magnetic resonance imaging activity during the gradual acquisition and expression of paired-associate memory. J. Neurosci. 25:245720–29 [Google Scholar]
  42. Liu Z, Murray EA, Richmond BJ. 2000. Learning motivational significance of visual cues for reward schedules requires rhinal cortex. Nat. Neurosci. 3:121307–15 [Google Scholar]
  43. Liu Z, Richmond BJ. 2000. Response differences in monkey TE and perirhinal cortex: stimulus association related to reward schedules. J. Neurophysiol. 83:31677–92 [Google Scholar]
  44. MacDonald CJ, Legage KQ, Eden UT, Eichenbaum H. 2011. Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron 71:4737–49 [Google Scholar]
  45. Mayes A, Montaldi D, Migo E. 2007. Associative memory and the medial temporal lobes. Trends Cogn. Sci. 11:3126–35 [Google Scholar]
  46. Messinger A, Squire LR, Zola SM, Albright TD. 2001. Neuronal representations of stimulus associations develop in the temporal lobe during learning. Proc. Natl. Acad. Sci. 98:2112239–44 [Google Scholar]
  47. Miyashita Y. 1988. Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335:817–20 [Google Scholar]
  48. Mogami T, Tanaka K. 2006. Reward association affects neuronal responses to visual stimuli in macaque TE and perirhinal cortices. J. Neurosci. 26:256761–70 [Google Scholar]
  49. Mohedano-Moriano A, Martinez-Marcos A, Pro-Sistiaga P, Blaizot X, Arroyo-Jimenez MM. et al. 2008. Convergence of unimodal and polymodal sensory input to the entorhinal cortex in the fascicularis monkey. Neuroscience 151:1255–71 [Google Scholar]
  50. Muñoz M, Insausti R. 2005. Cortical efferents of the entorhinal cortex and the adjacent parahippocampal region in the monkey (Macaca fascicularis). Eur. J. Neurosci. 22:61368–88 [Google Scholar]
  51. Murray EA, Bachevalier J, Mishkin M. 1989. Effects of rhinal cortical lesions on visual recognition memory in rhesus monkeys. Soc. Neurosci. Abstr. 15:342 (Abstr.) [Google Scholar]
  52. Murray EA, Baxter MG, Gaffan D. 1998. Monkeys with rhinal cortex damage or neurotoxic hippocampal lesions are impaired on spatial scene learning and object reversals. Behav. Neurosci. 112:1291–303 [Google Scholar]
  53. Murray EA, Gaffan D, Mishkin M. 1993. Neural substrates of visual stimulus-stimulus association in rhesus monkeys. J. Neurosci. 13:4549–61 [Google Scholar]
  54. Murray EA, Richmond BJ. 2001. Role of perirhinal cortex in object perception, memory, and associations. Curr. Opin. Neurobiol. 11:2188–93 [Google Scholar]
  55. Murray EA, Wise SP. 1996. Role of the hippocampus plus subjacent cortex but not amygdala in visuomotor conditional learning in rhesus monkeys. Behav. Neurosci. 110:61261–70 [Google Scholar]
  56. Murray EA, Wise SP. 2012. Why is there a special issue on perirhinal cortex in a journal called Hippocampus? The perirhinal cortex in historical perspective. Hippocampus 22:101941–51 [Google Scholar]
  57. Navaroli VL, Zhao Y, Boguszewski P, Brown TH. 2012. Muscarinic receptor activation enables persistent firing in pyramidal neurons from superficial layers of dorsal perirhinal cortex. Hippocampus 22:61392–404 [Google Scholar]
  58. Naya Y, Sakai K, Miyashita Y. 1996. Activity of primate inferotemporal neurons related to a sought target in pair-association task. Proc. Natl. Acad. Sci. USA 93:72664–69 [Google Scholar]
  59. Naya Y, Suzuki WA. 2010. Associative memory in the medial temporal lobe. Primate Neuroethology M Platt, A Ghazanfar 337–58 Oxford, UK: Oxford Univ. Press [Google Scholar]
  60. Naya Y, Suzuki WA. 2011. Integrating what and when across the primate medial temporal lobe. Science 333:773–76 [Google Scholar]
  61. Naya Y, Yoshida M, Miyashita Y. 2001. Backward spreading of memory-retrieval signal in the primate temporal cortex. Science 291:661–64 [Google Scholar]
  62. Naya Y, Yoshida M, Miyashita Y. 2003a. Forward processing of long-term associative memory in monkey inferotemporal cortex. J. Neurosci. 23:72861–71 [Google Scholar]
  63. Naya Y, Yoshida M, Takeda M, Fujimichi R, Miyashita Y. 2003b. Delay-period activities in two subdivisions of monkey inferotemporal cortex during pair association memory task. Eur. J. Neurosci. 18:102915–18 [Google Scholar]
  64. Ohyama K, Sugase-Miyamoto Y, Matsumoto N, Shidara M, Sato C. 2012. Stimulus-related activity during conditional associations in monkey perirhinal cortex neurons depends on upcoming reward outcome. J. Neurosci. 32:4817407–19 [Google Scholar]
  65. Padoa-Schioppa C, Assad JA. 2006. Neurons in the orbitofrontal cortex encode economic value. Nature 441:223–26 [Google Scholar]
  66. Pastalkova E, Itskov V, Amarasingham A, Buzsáki G. 2008. Internally generated cell assembly sequences in the rat hippocampus. Science 321:1322–27 [Google Scholar]
  67. Paz R, Pare D. 2013. Physiological basis for emotional modulation of memory circuits by the amygdala. Curr. Opin. Neurobiol. 23:3381–86 [Google Scholar]
  68. Paz R, Pelletier JG, Bauer EP, Paré D. 2006. Emotional enhancement of memory via amygdala-driven facilitation of rhinal interactions. Nat. Neurosci. 9:101321–29 [Google Scholar]
  69. Polyn SM, Natu VS, Cohen JD, Norman KA. 2005. Category-specific cortical activity precedes retrieval during memory search. Science 310:1963–66 [Google Scholar]
  70. Ranganath C, Ritchey M. 2012. Two cortical systems for memory-guided behaviour. Nat. Rev. Neurosci. 13:10713–26 [Google Scholar]
  71. Sakai K, Miyashita Y. 1991. Neural organization for the long-term memory of paired associates. Nature 354:152–55 [Google Scholar]
  72. Schapiro AC, Kustner LV, Turk-Browne NB. 2012. Shaping of object representations in the human medial temporal lobe based on temporal regularities. Curr. Biol. 22:171622–27 [Google Scholar]
  73. Schon K, Atri A, Hasselmo ME, Tricarico MD, Lopresti ML, Stern CE. 2005. Scopolamine reduces persistent activity related to long-term encoding in the parahippocampal gyrus during delayed matching in humans. J. Neurosci. 25:409112–23 [Google Scholar]
  74. Schon K, Hasselmo ME, Lopresti ML, Tricarico MD, Stern CE. 2004. Persistence of parahippocampal representation in the absence of stimulus input enhances long-term encoding: a functional magnetic resonance imaging study of subsequent memory after a delayed match-to-sample task. J. Neurosci. 24:4911088–97 [Google Scholar]
  75. Shrager Y, Gold JJ, Hopkins RO, Squire LR. 2006. Intact visual perception in memory-impaired patients with medial temporal lobe lesions. J. Neurosci. 26:82235–40 [Google Scholar]
  76. Smith EL III, Harwerth RS, Levi DM, Watson JT. 1981. Normal cortical responses in ocularly hypopigmented cats. Brain Res. 206:183–86 [Google Scholar]
  77. Squire LR, Wixted JT, Clark RE. 2007. Recognition memory and the medial temporal lobe: a new perspective. Nat. Rev. Neurosci. 8:872–83 [Google Scholar]
  78. Staresina BP, Davachi L. 2008. Selective and shared contributions of the hippocampus and perirhinal cortex to episodic item and associative encoding. J. Cogn. Neurosci. 20:81478–89 [Google Scholar]
  79. Staresina BP, Davachi L. 2009. Mind the gap: binding experiences across space and time in the human hippocampus. Neuron 63:2267–76 [Google Scholar]
  80. Staresina BP, Duncan KD, Davachi L. 2011. Perirhinal and parahippocampal cortices differentially contribute to later recollection of object- and scene-related event details. J. Neurosci. 31:248739–47 [Google Scholar]
  81. Stefanacci L, Suzuki WA, Amaral DG. 1996. Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys. J. Comp. Neurol. 375:552–82 [Google Scholar]
  82. Suzuki WA. 2009a. Comparative analysis of the cortical afferents, intrinsic projections and interconnections of the parahippocampal regions in monkeys and rats. The Cognitive Neurosciences M Gazzaniga 659–74 Boston, MA: MIT Press [Google Scholar]
  83. Suzuki WA. 2009b. Perception and the medial temporal lobe: evaluating the current evidence. Neuron 61:5657–66 [Google Scholar]
  84. Suzuki WA, Amaral DG. 1990. Cortical inputs to the CA1 field of the monkey hippocampus originate from the perirhinal and parahippocampal cortex but not from area TE. Neurosci. Lett. 115:43–48 [Google Scholar]
  85. Suzuki WA, Amaral DG. 1994a. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J. Comp. Neurol. 350:497–533 [Google Scholar]
  86. Suzuki WA, Amaral DG. 1994b. Topographic organization of the reciprocal connections between monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J. Neurosci. 14:1856–77 [Google Scholar]
  87. Suzuki WA, Amaral DG. 2003. The perirhinal and parahippocampal cortices of the macaque monkey: cytoarchitectonic and chemoarchitectonic organization. J. Comp. Neurol. 463:67–91 [Google Scholar]
  88. Suzuki WA, Baxter MG. 2009. Memory, perception, and the medial temporal lobe: a synthesis of opinions. Neuron 61:5678–79 [Google Scholar]
  89. Suzuki WA, Zola-Morgan S, Squire LR, Amaral DG. 1993. Lesions of the perirhinal and parahippocampal cortices in the monkey produce long-lasting memory impairment in the visual and tactual modalities. J. Neurosci. 13:2430–51 [Google Scholar]
  90. Van Hoesen GW, Pandya DN. 1975. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res. 95:1–24 [Google Scholar]
  91. Watson HC, Wilding EL, Graham KS. 2012. A role for perirhinal cortex in memory for novel object-context associations. J. Neurosci. 32:134473–81 [Google Scholar]
  92. Wirth S, Yanike M, Frank LM, Smith AC, Brown EN, Suzuki WA. 2003. Single neurons in the monkey hippocampus and learning of new associations. Science 300:1578–81 [Google Scholar]
  93. Wixted JT, Squire LR. 2010. The role of the human hippocampus in familiarity-based and recollection-based recognition memory. Behav. Brain Res. 215:2197–208 [Google Scholar]
  94. Xiang JZ, Brown MW. 1998. Differential neuronal encoding of novelty, familiarity and recency in regions of the anterior temporal lobe. Neuropharmacology 37:657–76 [Google Scholar]
  95. Yakovlev V, Fusi S, Berman E, Zohary E. 1998. Inter-trial neuronal activity in inferior temporal cortex: a putative vehicle to generate long-term visual associations. Nat. Neurosci. 1:4310–17 [Google Scholar]
  96. Yanike M, Wirth S, Smith AC, Brown EN, Suzuki WA. 2009. Comparison of associative learning-related signals in the macaque perirhinal cortex and hippocampus. Cereb. Cortex 19:51064–78 [Google Scholar]
  97. Yoshida M, Naya Y, Miyashita Y. 2003. Anatomical organization of forward fiber projections from area TE to perirhinal neurons representing visual long-term memory in monkeys. Proc. Natl. Acad. Sci. USA 100:74257–62 [Google Scholar]
  98. Yukie M. 2000. Connections between the medial temporal cortex and the CA1 subfield of the hippocampal formation in the Japanese monkey (Macaca fuscata). J. Comp. Neurol. 423:282–98 [Google Scholar]
  99. Zola-Morgan S, Squire LR, Amaral DG, Suzuki WA. 1989. Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J. Neurosci. 9:4355–70 [Google Scholar]
/content/journals/10.1146/annurev-neuro-071013-014207
Loading
/content/journals/10.1146/annurev-neuro-071013-014207
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error