1932

Abstract

Accumulating data, including those from large genetic association studies, indicate that alterations in glutamatergic synapse structure and function represent a common underlying pathology in many symptomatically distinct cognitive disorders. In this review, we discuss evidence from human genetic studies and data from animal models supporting a role for aberrant glutamatergic synapse function in the etiology of intellectual disability (ID), autism spectrum disorder (ASD), and schizophrenia (SCZ), neurodevelopmental disorders that comprise a significant proportion of human cognitive disease and exact a substantial financial and social burden. The varied manifestations of impaired perceptual processing, executive function, social interaction, communication, and/or intellectual ability in ID, ASD, and SCZ appear to emerge from altered neural microstructure, function, and/or wiring rather than gross changes in neuron number or morphology. Here, we review evidence that these disorders may share a common underlying neuropathy: altered excitatory synapse function. We focus on the most promising candidate genes affecting glutamatergic synapse function, highlighting the likely disease-relevant functional consequences of each. We first present a brief overview of glutamatergic synapses and then explore the genetic and phenotypic evidence for altered glutamate signaling in ID, ASD, and SCZ.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-071714-033821
2015-07-08
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/neuro/38/1/annurev-neuro-071714-033821.html?itemId=/content/journals/10.1146/annurev-neuro-071714-033821&mimeType=html&fmt=ahah

Literature Cited

  1. Abekhoukh S, Bardoni B. 2014. CYFIP family proteins between autism and intellectual disability: links with Fragile X syndrome. Front. Cell. Neurosci. 8:81 [Google Scholar]
  2. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. 1999. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23:185–88 [Google Scholar]
  3. Aoto J, Martinelli DC, Malenka RC, Tabuchi K, Sudhof TC. 2013. Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking. Cell 154:75–88 [Google Scholar]
  4. Araki Y, Zeng M, Zhang M, Huganir RL. 2015. Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. Neuron 85:173–89 [Google Scholar]
  5. Auerbach BD, Bear MF. 2010. Loss of the fragile X mental retardation protein decouples metabotropic glutamate receptor dependent priming of long-term potentiation from protein synthesis. J. Neurophysiol. 104:1047–51 [Google Scholar]
  6. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF. et al. 2011. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95 [Google Scholar]
  7. Ba W, van der Raadt J, Nadif Kasri N. 2013. Rho GTPase signaling at the synapse: implications for intellectual disability. Exp. Cell Res. 319:2368–74 [Google Scholar]
  8. Balu DT, Li Y, Puhl MD, Benneyworth MA, Basu AC. et al. 2013. Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. PNAS 110:E2400–9 [Google Scholar]
  9. Behnecke A, Hinderhofer K, Bartsch O, Nümann A, Ipach ML. et al. 2011. Intragenic deletions of IL1RAPL1: report of two cases and review of the literature. Am. J. Med. Genet. A 155A:372–79 [Google Scholar]
  10. Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G. et al. 2010. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat. Neurosci. 13:76–83 [Google Scholar]
  11. Belichenko PV, Oldfors A, Hagberg B, Dahlstrom A. 1994. Rett syndrome: 3-D confocal microscopy of cortical pyramidal dendrites and afferents. NeuroReport 5:1509–13 [Google Scholar]
  12. Beneyto M, Meador-Woodruff JH. 2006. Lamina-specific abnormalities of AMPA receptor trafficking and signaling molecule transcripts in the prefrontal cortex in schizophrenia. Synapse 60:585–98 [Google Scholar]
  13. Betancur C. 2011. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res. 138042–77
  14. Bhakar AL, Dölen G, Bear MF. 2012. The pathophysiology of fragile X (and what it teaches us about synapses). Annu. Rev. Neurosci. 35:417–43 [Google Scholar]
  15. Bianchi V, Farisello P, Baldelli P, Meskenaite V, Milanese M. et al. 2009. Cognitive impairment in Gdi1-deficient mice is associated with altered synaptic vesicle pools and short-term synaptic plasticity, and can be corrected by appropriate learning training. Hum. Mol. Genet. 18:105–17 [Google Scholar]
  16. Billuart P, Bienvenu T, Ronce N, des Portes V, Vinet MC. et al. 1998. Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature 392:923–26 [Google Scholar]
  17. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N. et al. 2011. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473:221–25 [Google Scholar]
  18. Brody SA, Conquet F, Geyer MA. 2003. Disruption of prepulse inhibition in mice lacking mGluR1. Eur. J. Neurosci. 18:3361–66 [Google Scholar]
  19. Camacho-Garcia RJ, Hervás A, Toma C, Balmaña N, Cormand B. et al. 2013. Rare variants analysis of neurexin-1β in autism reveals a novel start codon mutation affecting protein levels at synapses. Psychiatr. Genet. 23:262–66 [Google Scholar]
  20. Carlisle HJ, Manzerra P, Marcora E, Kennedy MB. 2008. SynGAP regulates steady-state and activity-dependent phosphorylation of cofilin. J. Neurosci. 28:13673–83 [Google Scholar]
  21. Caroni P, Donato F, Muller D. 2012. Structural plasticity upon learning: regulation and functions. Nat. Rev. Neurosci. 13:478–90 [Google Scholar]
  22. Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA. 2000. Endocytic pathway abnormalities precede amyloid β deposition in sporadic Alzheimer's disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am. J. Pathol. 157:277–86 [Google Scholar]
  23. CDC (Cent. Dis. Control Prev.) 2014. Prevalence of autism spectrum disorder among children aged 8 years – Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2010. Morb. Mortal. Wkly. Rep. 63:1–21 [Google Scholar]
  24. Chang KT, Ro H, Wang W, Min KT. 2013. Meeting at the crossroads: common mechanisms in Fragile X and Down syndrome. Trends Neurosci. 36:685–94 [Google Scholar]
  25. Chow EW, Watson M, Young DA, Bassett AS. 2006. Neurocognitive profile in 22q11 deletion syndrome and schizophrenia. Schizophr. Res. 87:270–78 [Google Scholar]
  26. Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S. et al. 2007. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54:387–402 [Google Scholar]
  27. Clement JP, Aceti M, Creson TK, Ozkan ED, Shi Y. et al. 2012. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell 151:709–23 [Google Scholar]
  28. Clement JP, Ozkan ED, Aceti M, Miller CA, Rumbaugh G. 2013. SYNGAP1 links the maturation rate of excitatory synapses to the duration of critical-period synaptic plasticity. J. Neurosci. 33:10447–52 [Google Scholar]
  29. Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA. et al. 1997. Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. PNAS 94:5401–4 [Google Scholar]
  30. Conquet F, Bashir ZI, Davies CH, Daniel H, Ferraguti F. et al. 1994. Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature 372:237–43 [Google Scholar]
  31. Contractor A, Mulle C, Swanson GT. 2011. Kainate receptors coming of age: milestones of two decades of research. Trends Neurosci. 34:154–63 [Google Scholar]
  32. Copits BA, Robbins JS, Frausto S, Swanson GT. 2011. Synaptic targeting and functional modulation of GluK1 kainate receptors by the auxiliary neuropilin and tolloid-like (NETO) proteins. J. Neurosci. 31:7334–40 [Google Scholar]
  33. D'Adamo P, Welzl H, Papadimitriou S, Raffaele di Barletta M, Tiveron C. et al. 2002. Deletion of the mental retardation gene Gdi1 impairs associative memory and alters social behavior in mice. Hum. Mol. Genet. 11:2567–80 [Google Scholar]
  34. Dani VS, Chang Q, Maffei A, Turrigiano GG, Jaenisch R, Nelson SB. 2005. Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. PNAS 102:12560–65 [Google Scholar]
  35. Darnell JC, Klann E. 2013. The translation of translational control by FMRP: therapeutic targets for FXS. Nat. Neurosci. 16:1530–36 [Google Scholar]
  36. DeLisi LE. 1992. The significance of age of onset for schizophrenia. Schizophr. Bull. 18:209–15 [Google Scholar]
  37. Dev KK, Henley JM. 2006. The schizophrenic faces of PICK1. Trends Pharmacol. Sci. 27:574–79 [Google Scholar]
  38. Ehninger D, Han S, Shilyansky C, Zhou Y, Li W. et al. 2008a. Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat. Med. 14:843–48 [Google Scholar]
  39. Ehninger D, Li W, Fox K, Stryker MP, Silva AJ. 2008b. Reversing neurodevelopmental disorders in adults. Neuron 60:950–60 [Google Scholar]
  40. El-Husseini AE, Schnell E, Chetkovich DM, Nicoll RA, Bredt DS. 2000. PSD-95 involvement in maturation of excitatory synapses. Science 290:1364–68 [Google Scholar]
  41. Etherton MR, Földy C, Sharma M, Tabuchi K, Liu X. et al. 2011a. Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. PNAS 108:13764–69 [Google Scholar]
  42. Etherton MR, Tabuchi K, Sharma M, Ko J, Sudhof TC. 2011b. An autism-associated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus. EMBO J. 30:2908–19 [Google Scholar]
  43. Fernández E, Collins MO, Uren RT, Kopanitsa MV, Komiyama NH. et al. 2009. Targeted tandem affinity purification of PSD-95 recovers core postsynaptic complexes and schizophrenia susceptibility proteins. Mol. Syst. Biol. 5:269 [Google Scholar]
  44. Feyder M, Karlsson RM, Mathur P, Lyman M, Bock R. et al. 2010. Association of mouse Dlg4 (PSD-95) gene deletion and human DLG4 gene variation with phenotypes relevant to autism spectrum disorders and Williams' syndrome. Am. J. Psychiatry 167:1508–17 [Google Scholar]
  45. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S. et al. 2014. De novo mutations in schizophrenia implicate synaptic networks. Nature 506:179–84 [Google Scholar]
  46. Fujioka R, Nii T, Iwaki A, Shibata A, Ito I. et al. 2014. Comprehensive behavioral study of mGluR3 knockout mice: implication in schizophrenia related endophenotypes. Mol. Brain 7:31 [Google Scholar]
  47. Gauthier J, Champagne N, Lafrenière RG, Xiong L, Spiegelman D. et al. 2010. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. PNAS 107:7863–68 [Google Scholar]
  48. Gécz J, Barnett S, Liu J, Hollway G, Donnelly A. et al. 1999. Characterization of the human glutamate receptor subunit 3 gene (GRIA3), a candidate for bipolar disorder and nonspecific X-linked mental retardation. Genomics 62:356–68 [Google Scholar]
  49. Glessner JT, Reilly MP, Kim CE, Takahashi N, Albano A. et al. 2010. Strong synaptic transmission impact by copy number variations in schizophrenia. PNAS 107:10584–89 [Google Scholar]
  50. Glynn MW, Elmer BM, Garay PA, Liu XB, Needleman LA. et al. 2011. MHCI negatively regulates synapse density during the establishment of cortical connections. Nat. Neurosci. 14:442–51 [Google Scholar]
  51. Goddard CA, Butts DA, Shatz CJ. 2007. Regulation of CNS synapses by neuronal MHC class I. PNAS 104:6828–33 [Google Scholar]
  52. Goorden SMI, van Woerden GM, van der Weerd L, Cheadle JP, Elgersma Y. 2007. Cognitive deficits in Tsc1+/− mice in the absence of cerebral lesions and seizures. Ann. Neurol. 62:648–55 [Google Scholar]
  53. Gottesman II, Shields J. 1967. A polygenic theory of schizophrenia. PNAS 58:199–205 [Google Scholar]
  54. Grabrucker AM, Knight MJ, Proepper C, Bockmann J, Joubert M. et al. 2011a. Concerted action of zinc and ProSAP/Shank in synaptogenesis and synapse maturation. EMBO J. 30:569–81 [Google Scholar]
  55. Grabrucker AM, Schmeisser MJ, Schoen M, Boeckers TM. 2011b. Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol. 21:594–603 [Google Scholar]
  56. Greer PL, Hanayama R, Bloodgood BL, Mardinly AR, Lipton DM. et al. 2010. The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating Arc. Cell 140:704–16 [Google Scholar]
  57. Guilmatre A, Dubourg C, Mosca AL, Legallic S, Goldenberg A. et al. 2009. Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation. Arch. Gen. Psychiatry 66:947–56 [Google Scholar]
  58. Haghighi M, Jahangard L, Mohammad-Beigi H, Bajoghli H, Hafezian H. et al. 2013. In a double-blind, randomized and placebo-controlled trial, adjuvant memantine improved symptoms in inpatients suffering from refractory obsessive-compulsive disorders (OCD). Psychopharmacology 228:633–40 [Google Scholar]
  59. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B. et al. 2011. Genetic heritability and shared environmental factors among twin pairs with autism. Arch. Gen. Psychiatry 68:1095–102 [Google Scholar]
  60. Hamdan FF, Gauthier J, Spiegelman D, Noreau A, Yang Y. et al. 2009a. Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation. N. Engl. J. Med. 360:599–605 [Google Scholar]
  61. Hamdan FF, Piton A, Gauthier J, Lortie A, Dubeau F. et al. 2009b. De novo STXBP1 mutations in mental retardation and nonsyndromic epilepsy. Ann. Neurol. 65:748–53 [Google Scholar]
  62. Hayashi-Takagi A, Takaki M, Graziane N, Seshadri S, Murdoch H. et al. 2010. Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nat. Neurosci. 13:327–32 [Google Scholar]
  63. Herrero I, Miras-Portugal MT, Sánchez-Prieto J. 1992. Positive feedback of glutamate exocytosis by metabotropic presynaptic receptor stimulation. Nature 360:163–66 [Google Scholar]
  64. Huganir RL, Nicoll RA. 2013. AMPARs and synaptic plasticity: the last 25 years. Neuron 80:704–17 [Google Scholar]
  65. Huguet G, Ey E, Bourgeron T. 2013. The genetic landscapes of autism spectrum disorders. Annu. Rev. Genomics Hum. Genet. 14:191–213 [Google Scholar]
  66. Huh GS, Boulanger LM, Du H, Riquelme PA, Brotz TM, Shatz CJ. 2000. Functional requirement for class I MHC in CNS development and plasticity. Science 290:2155–59 [Google Scholar]
  67. Hussain NK, Diering GH, Sole J, Anggono V, Huganir RL. 2014. Sorting Nexin 27 regulates basal and activity-dependent trafficking of AMPARs. PNAS 111:11840–45 [Google Scholar]
  68. Hutsler JJ, Zhang H. 2010. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 1309:83–94 [Google Scholar]
  69. Irwin SA, Patel B, Idupulapati M, Harris JB, Crisostomo RA. et al. 2001. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am. J. Med. Genet. 98:161–67 [Google Scholar]
  70. Jamain S, Radyushkin K, Hammerschmidt K, Granon S, Boretius S. et al. 2008. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. PNAS 105:1710–15 [Google Scholar]
  71. Jaramillo TC, Liu S, Pettersen A, Birnbaum SG, Powell CM. 2014. Autism-related neuroligin-3 mutation alters social behavior and spatial learning. Autism Res. 7:264–72 [Google Scholar]
  72. Jiang Y, Ehlers MD. 2013. Modeling autism by SHANK gene mutations in mice. Neuron 78:8–27 [Google Scholar]
  73. Kellendonk C, Simpson EH, Kandel ER. 2009. Modeling cognitive endophenotypes of schizophrenia in mice. Trends Neurosci. 32:347–58 [Google Scholar]
  74. Kessels HW, Malinow R. 2009. Synaptic AMPA receptor plasticity and behavior. Neuron 61:340–50 [Google Scholar]
  75. Khelfaoui M, Denis C, van Galen E, de Bock F, Schmitt A. et al. 2007. Loss of X-linked mental retardation gene oligophrenin1 in mice impairs spatial memory and leads to ventricular enlargement and dendritic spine immaturity. J. Neurosci. 27:9439–50 [Google Scholar]
  76. Kim JH, Lee HK, Takamiya K, Huganir RL. 2003. The role of synaptic GTPase-activating protein in neuronal development and synaptic plasticity. J. Neurosci. 23:1119–24 [Google Scholar]
  77. Kim JH, Liao D, Lau LF, Huganir RL. 1998. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20:683–91 [Google Scholar]
  78. Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M. et al. 2012. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol. Psychiatry 17:142–53 [Google Scholar]
  79. Kishino T, Lalande M, Wagstaff J. 1997. UBE3A/E6-AP mutations cause Angelman syndrome. Nat. Genet. 15:70–73 [Google Scholar]
  80. Komiyama NH, Watabe AM, Carlisle HJ, Porter K, Charlesworth P. et al. 2002. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J. Neurosci. 22:9721–32 [Google Scholar]
  81. Krumm N, O'Roak BJ, Shendure J, Eichler EE. 2014. A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci. 37:95–105 [Google Scholar]
  82. Labrie V, Wong AH, Roder JC. 2012. Contributions of the d-serine pathway to schizophrenia. Neuropharmacology 62:1484–503 [Google Scholar]
  83. Lejeune J, Gautier M, Turpin R. 1959. Étude des chromosomes somatiques de neuf enfants mongoliens. C. R. Acad. Sci. 248:1721–22 [Google Scholar]
  84. Logan WJ, Snyder SH. 1971. Unique high affinity uptake systems for glycine, glutamic and aspartic acids in central nervous tissue of the rat. Nature 234:297–99 [Google Scholar]
  85. Lonart G. 2002. RIM1: an edge for presynaptic plasticity. Trends Neurosci. 25:329–32 [Google Scholar]
  86. Luo P, Li X, Fei Z, Poon W. 2012. Scaffold protein Homer 1: implications for neurological diseases. Neurochem. Int. 61:731–38 [Google Scholar]
  87. Luscher C, Huber KM. 2010. Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. Neuron 65:445–59 [Google Scholar]
  88. Mabb AM, Judson MC, Zylka MJ, Philpot BD. 2011. Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci. 34:293–303 [Google Scholar]
  89. Margolis SS, Salogiannis J, Lipton DM, Mandel-Brehm C, Wills ZP. et al. 2010. EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell 143:442–55 [Google Scholar]
  90. McCarroll SA, Feng G, Hyman SE. 2014. Genome-scale neurogenetics: methodology and meaning. Nat. Neurosci. 17:756–63 [Google Scholar]
  91. McMahon SA, Díaz E. 2011. Mechanisms of excitatory synapse maturation by trans-synaptic organizing complexes. Curr. Opin. Neurobiol. 21:221–27 [Google Scholar]
  92. Mejias R, Adamczyk A, Anggono V, Niranjan T, Thomas GM. et al. 2011. Gain-of-function glutamate receptor interacting protein 1 variants alter GluA2 recycling and surface distribution in patients with autism. PNAS 108:4920–25 [Google Scholar]
  93. Miles JH. 2011. Autism spectrum disorders—a genetics review. Genet. Med. 13:278–94 [Google Scholar]
  94. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS. et al. 2000. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum. Mol. Genet. 9:1415–23 [Google Scholar]
  95. Mohn AR, Gainetdinov RR, Caron MG, Koller BH. 1999. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98:427–36 [Google Scholar]
  96. Morales M, Varlinskaya EI, Spear LP. 2013. Low doses of the NMDA receptor antagonists, MK-801, PEAQX, and ifenprodil, induces social facilitation in adolescent male rats. Behav. Brain Res. 250:18–22 [Google Scholar]
  97. Mukai J, Dhilla A, Drew LJ, Stark KL, Cao L. et al. 2008. Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat. Neurosci. 11:1302–10 [Google Scholar]
  98. Mukai J, Liu H, Burt RA, Swor DE, Lai WS. et al. 2004. Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat. Genet. 36:725–31 [Google Scholar]
  99. Nadif Kasri N, Nakano-Kobayashi A, Malinow R, Li B, Van Aelst L. 2009. The Rho-linked mental retardation protein oligophrenin-1 controls synapse maturation and plasticity by stabilizing AMPA receptors. Genes Dev. 23:1289–302 [Google Scholar]
  100. Naisbitt S, Kim E, Tu JC, Xiao B, Sala C. et al. 1999. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23:569–82 [Google Scholar]
  101. Nakano-Kobayashi A, Nadif Kasri N, Newey SE, Van Aelst L. 2009. The Rho-linked mental retardation protein OPHN1 controls synaptic vesicle endocytosis via endophilin A1. Curr. Biol. 19:1133–39 [Google Scholar]
  102. Nelson PA, Sage JR, Wood SC, Davenport CM, Anagnostaras SG, Boulanger LM. 2013. MHC class I immune proteins are critical for hippocampus-dependent memory and gate NMDAR-dependent hippocampal long-term depression. Learn. Mem. 20:505–17 [Google Scholar]
  103. Nemeroff CB, Weinberger D, Rutter M, MacMillan HL, Bryant RA. et al. 2013. DSM-5: a collection of psychiatrist views on the changes, controversies, and future directions. BMC Med. 11:202 [Google Scholar]
  104. Newpher TM, Ehlers MD. 2008. Glutamate receptor dynamics in dendritic microdomains. Neuron 58:472–97 [Google Scholar]
  105. Nicoll RA, Tomita S, Bredt DS. 2006. Auxiliary subunits assist AMPA-type glutamate receptors. Science 311:1253–56 [Google Scholar]
  106. Niswender CM, Conn PJ. 2010. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol. 50:295–322 [Google Scholar]
  107. O'Brien RJ, Kamboj S, Ehlers MD, Rosen KR, Fischbach GD, Huganir RL. 1998. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21:1067–78 [Google Scholar]
  108. Ohi K, Hashimoto R, Ikeda M, Yamamori H, Yasuda Y. et al. 2014. Glutamate networks implicate cognitive impairments in schizophrenia: genome-wide association studies of 52 cognitive phenotypes. Schizophr. Bull. In press. doi: 10.1093/schbul/
  109. Ohno T, Maeda H, Murabe N, Kamiyama T, Yoshioka N. et al. 2010. Specific involvement of postsynaptic GluN2B-containing NMDA receptors in the developmental elimination of corticospinal synapses. PNAS 107:15252–57 [Google Scholar]
  110. O'Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB. et al. 2012. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338:1619–22 [Google Scholar]
  111. Pavlowsky A, Gianfelice A, Pallotto M, Zanchi A, Vara H. et al. 2010. A postsynaptic signaling pathway that may account for the cognitive defect due to IL1RAPL1 mutation. Curr. Biol.: CB 20:103–15 [Google Scholar]
  112. Pfeiffer BE, Huber KM. 2007. Fragile X mental retardation protein induces synapse loss through acute postsynaptic translational regulation. J. Neurosci. 27:3120–30 [Google Scholar]
  113. Pieretti M, Zhang FP, Fu YH, Warren ST, Oostra BA. et al. 1991. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66:817–22 [Google Scholar]
  114. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N. et al. 2014. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506:185–90 [Google Scholar]
  115. Rabaneda LG, Robles-Lanuza E, Nieto-González JL, Scholl FG. 2014. Neurexin dysfunction in adult neurons results in autistic-like behavior in mice. Cell Rep. 8:338–46 [Google Scholar]
  116. Radyushkin K, Hammerschmidt K, Boretius S, Varoqueaux F, El-Kordi A. et al. 2009. Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes Brain Behav. 8:416–25 [Google Scholar]
  117. Ramanathan S, Woodroffe A, Flodman PL, Mays LZ, Hanouni M. et al. 2004. A case of autism with an interstitial deletion on 4q leading to hemizygosity for genes encoding for glutamine and glycine neurotransmitter receptor sub-units (AMPA 2, GLRA3, GLRB) and neuropeptide receptors NPY1R, NPY5R. BMC Med. Genet. 5:10 [Google Scholar]
  118. Reeves RH, Irving NG, Moran TH, Wohn A, Kitt C. et al. 1995. A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat. Genet. 11:177–84 [Google Scholar]
  119. Ricceri L, De Filippis B, Laviola G. 2008. Mouse models of Rett syndrome: from behavioural phenotyping to preclinical evaluation of new therapeutic approaches. Behav. Pharmacol. 19:501–17 [Google Scholar]
  120. Rinaldi T, Kulangara K, Antoniello K, Markram H. 2007. Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. PNAS 104:13501–506 [Google Scholar]
  121. Rojas D. 2014. The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment. J. Neural Transm. 121:891–905 [Google Scholar]
  122. Saitsu H, Kato M, Mizuguchi T, Hamada K, Osaka H. et al. 2008. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat. Genet. 40:782–88 [Google Scholar]
  123. Sakimura K, Kutsuwada T, Ito I, Manabe T, Takayama C. et al. 1995. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor ε1 subunit. Nature 373:151–55 [Google Scholar]
  124. Sala C, Piëch V, Wilson NR, Passafaro M, Liu G, Sheng M. 2001. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31:115–30 [Google Scholar]
  125. Sanz-Clemente A, Nicoll RA, Roche KW. 2013. Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist 19:62–75 [Google Scholar]
  126. Scheiffele P, Fan J, Choih J, Fetter R, Serafini T. 2000. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101:657–69 [Google Scholar]
  127. Schizophr. Work. Group Psychiatr. Genomics Consort 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–27 [Google Scholar]
  128. Schmeisser MJ, Ey E, Wegener S, Bockmann J, Stempel AV. et al. 2012. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486:256–60 [Google Scholar]
  129. Schneider T, Przewlocki R. 2005. Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30:80–89 [Google Scholar]
  130. Schwenk J, Harmel N, Zolles G, Bildl W, Kulik A. et al. 2009. Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science 323:1313–19 [Google Scholar]
  131. Seeman P, Lee T. 1975. Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188:1217–19 [Google Scholar]
  132. Shatz CJ. 2009. MHC class I: an unexpected role in neuronal plasticity. Neuron 64:40–45 [Google Scholar]
  133. Shcheglovitov A, Shcheglovitova O, Yazawa M, Portmann T, Shu R. et al. 2013. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature 503:267–71 [Google Scholar]
  134. Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY. 1994. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368:144–47 [Google Scholar]
  135. Shepherd JD, Huganir RL. 2007. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu. Rev. Cell Dev. Biol. 23:613–43 [Google Scholar]
  136. Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N. et al. 2006. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52:475–84 [Google Scholar]
  137. Sidorov MS, Auerbach BD, Bear MF. 2013. Fragile X mental retardation protein and synaptic plasticity. Mol. Brain 6:15 [Google Scholar]
  138. Smith SEP, Zhou YD, Zhang G, Jin Z, Stoppel DC, Anderson MP. 2011. Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci. Transl. Med. 3:103ra97 [Google Scholar]
  139. Soorya L, Kolevzon A, Zweifach J, Lim T, Dobry Y. et al. 2013. Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Mol. Autism 4:18 [Google Scholar]
  140. Soto D, Altafaj X, Sindreu C, Bayes A. 2014. Glutamate receptor mutations in psychiatric and neurodevelopmental disorders. Commun. Integr. Biol. 7:e27887 [Google Scholar]
  141. Spencer CM, Alekseyenko O, Hamilton SM, Thomas AM, Serysheva E. et al. 2011. Modifying behavioral phenotypes in Fmr1KO mice: genetic background differences reveal autistic-like responses. Autism Res. 4:40–56 [Google Scholar]
  142. Srivastava AK, Schwartz CE. 2014. Intellectual disability and autism spectrum disorders: causal genes and molecular mechanisms. Neurosci. Biobehav. Rev. 46:161–74 [Google Scholar]
  143. Sturgeon X, Gardiner KJ. 2011. Transcript catalogs of human chromosome 21 and orthologous chimpanzee and mouse regions. Mamm. Genome 22:261–71 [Google Scholar]
  144. Sudhof TC. 2008. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455:903–11 [Google Scholar]
  145. Sudhof TC. 2013. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80:675–90 [Google Scholar]
  146. Sullivan PF. 2013. Questions about DISC1 as a genetic risk factor for schizophrenia. Mol. Psychiatry 18:1050–52 [Google Scholar]
  147. Swerdlow NR, Geyer MA. 1998. Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr. Bull. 24:285–301 [Google Scholar]
  148. Tang G, Gudsnuk K, Kuo S-H, Cotrina Marisa L, Rosoklija G. et al. 2014. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83:1131–43 [Google Scholar]
  149. Tarabeux J, Kebir O, Gauthier J, Hamdan FF, Xiong L. et al. 2011. Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia. Transl. Psychiatry 1:e55 [Google Scholar]
  150. Terashima A, Pelkey KA, Rah JC, Suh YH, Roche KW. et al. 2008. An essential role for PICK1 in NMDA receptor-dependent bidirectional synaptic plasticity. Neuron 57:872–82 [Google Scholar]
  151. Thornberg SA, Saklad SR. 1996. A review of NMDA receptors and the phencyclidine model of schizophrenia. Pharmacotherapy 16:82–93 [Google Scholar]
  152. Toonen RFG, Wierda K, Sons MS, de Wit H, Cornelisse LN. et al. 2006. Munc18-1 expression levels control synapse recovery by regulating readily releasable pool size. PNAS 103:18332–37 [Google Scholar]
  153. Toro C, Deakin JF. 2005. NMDA receptor subunit NRI and postsynaptic protein PSD-95 in hippocampus and orbitofrontal cortex in schizophrenia and mood disorder. Schizophr. Res. 80:323–30 [Google Scholar]
  154. Troca-Marín JA, Alves-Sampaio A, Montesinos ML. 2012. Deregulated mTOR-mediated translation in intellectual disability. Prog. Neurobiol. 96:268–82 [Google Scholar]
  155. Tsai G, Coyle JT. 2002. Glutamatergic mechanisms in schizophrenia. Annu. Rev. Pharmacol. Toxicol. 42:165–79 [Google Scholar]
  156. Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR. et al. 2012. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488:647–51 [Google Scholar]
  157. Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS. et al. 1999. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23:583–92 [Google Scholar]
  158. Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. 1998. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:892–96 [Google Scholar]
  159. Tzingounis AV, Nicoll RA. 2006. Arc/Arg3.1: linking gene expression to synaptic plasticity and memory. Neuron 52:403–7 [Google Scholar]
  160. Vaags AK, Lionel AC, Sato D, Goodenberger M, Stein QP. et al. 2012. Rare deletions at the neurexin 3 locus in autism spectrum disorder. Am. J. Hum. Genet. 90:133–41 [Google Scholar]
  161. van Bokhoven H. 2011. Genetic and epigenetic networks in intellectual disabilities. Annu. Rev. Genet. 45:81–104 [Google Scholar]
  162. Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH. et al. 2000. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287:864–69 [Google Scholar]
  163. Volk L, Kim CH, Takamiya K, Yu Y, Huganir RL. 2010. Developmental regulation of protein interacting with C kinase 1 (PICK1) function in hippocampal synaptic plasticity and learning. PNAS 107:21784–89 [Google Scholar]
  164. von Engelhardt J, Doganci B, Jensen V, Hvalby O, Göngrich C. et al. 2008. Contribution of hippocampal and extra-hippocampal NR2B-containing NMDA receptors to performance on spatial learning tasks. Neuron 60:846–60 [Google Scholar]
  165. Waltes R, Gfesser J, Haslinger D, Schneider-Momm K, Biscaldi M. et al. 2014. Common EIF4E variants modulate risk for autism spectrum disorders in the high-functioning range. J. Neural Transm. 121:1107–16 [Google Scholar]
  166. Wang CC, Held RG, Chang SC, Yang L, Delpire E. et al. 2011. A critical role for GluN2B-containing NMDA receptors in cortical development and function. Neuron 72:789–805 [Google Scholar]
  167. Wang X, Zhao Y, Zhang X, Badie H, Zhou Y. et al. 2013. Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down's syndrome. Nat. Med. 19:473–80 [Google Scholar]
  168. Wiedholz LM, Owens WA, Horton RE, Feyder M, Karlsson RM. et al. 2008. Mice lacking the AMPA GluR1 receptor exhibit striatal hyperdopaminergia and ‘schizophrenia-related’ behaviors. Mol. Psychiatry 13:631–40 [Google Scholar]
  169. Yasumura M, Yoshida T, Yamazaki M, Abe M, Natsume R. et al. 2014. IL1RAPL1 knockout mice show spine density decrease, learning deficiency, hyperactivity and reduced anxiety-like behaviours. Sci. Rep. 4:6613 [Google Scholar]
/content/journals/10.1146/annurev-neuro-071714-033821
Loading
/content/journals/10.1146/annurev-neuro-071714-033821
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error