1932

Abstract

The senses provide a means by which data on the physical and chemical properties of the environment may be collected and meaningfully interpreted. Sensation begins at the periphery, where a multitude of different sensory cell types are activated by environmental stimuli as different as photons and odorant molecules. Stimulus sensitivity is due to expression of different cell surface sensory receptors, and therefore the receptive field of each sense is defined by the aggregate of expressed receptors in each sensory tissue. Here, we review current understanding on patterns of expression and modes of regulation of sensory receptors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-071714-034145
2015-07-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/neuro/38/1/annurev-neuro-071714-034145.html?itemId=/content/journals/10.1146/annurev-neuro-071714-034145&mimeType=html&fmt=ahah

Literature Cited

  1. Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS. 2000. A novel family of mammalian taste receptors. Cell 100:693–702 [Google Scholar]
  2. Araneda RC, Kini AD, Firestein S. 2000. The molecular receptive range of an odorant receptor. Nat. Neurosci. 12:1248–55 [Google Scholar]
  3. Barnea G, O'Donnell S, Mancia F, Sun X, Nemes A. et al. 2004. Odorant receptors on axon termini in the brain. Science 304:1468 [Google Scholar]
  4. Behrens M, Bartelt J, Reichling C, Winnig M, Kuhn C, Meyerhof W. 2006. Members of RTP and REEP gene families influence functional bitter taste receptor expression. J. Biol. Chem. 281:20650–59 [Google Scholar]
  5. Behrens M, Foerster S, Staehler F, Raguse JD, Meyerhof W. 2007. Gustatory expression pattern of the human TAS2R bitter receptor gene family reveals a heterogeneous population of bitter responsive taste receptor cells. J. Neurosci. 27:12630–40 [Google Scholar]
  6. Berghard A, Buck LB. 1996. Sensory transduction in vomeronasal neurons: evidence for G alpha o, G alpha i2, and adenylyl cyclase II as major components of a pheromone signaling cascade. J. Neurosci. 16:909–18 [Google Scholar]
  7. Bozza T, Vassalli A, Fuss S, Zhang JJ, Weiland B. et al. 2009. Mapping of class I and class II odorant receptors to glomerular domains by two distinct types of olfactory sensory neurons in the mouse. Neuron 61:220–33 [Google Scholar]
  8. Buck L, Axel R. 1991. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–87 [Google Scholar]
  9. Caicedo A, Roper SD. 2001. Taste receptor cells that discriminate between bitter stimuli. Science 291:1557–60 [Google Scholar]
  10. Chandrashekar J, Kuhn C, Oka Y, Yarmolinksy DA, Hummler E. et al. 2010. The cells and peripheral representation of sodium taste in mice. Nature 464:297–301 [Google Scholar]
  11. Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L. et al. 2000. T2Rs function as bitter taste receptors. Cell 100:703–11 [Google Scholar]
  12. Chess A, Simon I, Cedar H, Axel R. 1994. Allelic inactivation regulates olfactory receptor gene expression. Cell 78:823–34 [Google Scholar]
  13. Clowney EJ, LeGros MA, Mosley CP, Clowney FG, Markenscoff-Papadimitriou EC. et al. 2012. Nuclear aggregation of olfactory receptor genes governs their monogenic expression. Cell 151:724–37 [Google Scholar]
  14. Clowney EJ, Magklara A, Colquitt BM, Pathak N, Lane RP, Lomvardas S. 2011. High-throughput mapping of the promoters of mouse olfactory receptor genes reveals a new type of mammalian promoter and provides insight into olfactory receptor gene regulation. Genome Res. 21:1249–59 [Google Scholar]
  15. Dalton RP, Lyons DB, Lomvardas S. 2013. Co-opting the unfolded protein response to elicit olfactory receptor feedback. Cell 155:321–32 [Google Scholar]
  16. Del Punta K, Leinders-Zufall T, Rodriguez I, Jukam D, Wysockl C. et al. 2002. Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 419:70–74 [Google Scholar]
  17. Dey S, Matsunami H. 2011. Calreticulin chaperones regulate functional expression of vomeronasal type 2 pheromone receptors. PNAS 108:16651–56 [Google Scholar]
  18. Dietschi Q, Assens A, Challet L, Carleton A, Rodriguez I. 2013. Convergence of FPR-rs3-expressing neurons in the mouse accessory olfactory bulb. Mol. Cell Neurosci. 56:140–47 [Google Scholar]
  19. Dulac C, Axel R. 1995. A novel family of genes encoding putative pheromone receptors in mammals. Cell 83:195–206 [Google Scholar]
  20. Ebrahimi F, Chess A. 2000. Olfactory neurons are interdependent in maintaining axonal projections. Curr. Biol. 10:219–22 [Google Scholar]
  21. Enomoto T, Ohmoto M, Iwata T, Uno A, Saitou M. et al. 2011. Bcl11b/Ctip2 controls the differentiation of vomeronasal sensory neurons in mice. J. Neurosci. 31:10159–73 [Google Scholar]
  22. Feinstein P, Mombaerts P. 2004. A contextual model for axon sorting into glomeruli in the mouse olfactory system. Cell 117:817–31 [Google Scholar]
  23. Ferreira T, Wilson SR, Choi YG, Risso D, Dudoit S. et al. 2014. Silencing of odorant receptor genes by G protein βγ signaling ensures the expression of one odorant receptor per olfactory sensory neuron. Neuron 81:847–59 [Google Scholar]
  24. Ferrero DM, Lemon JK, Fluegge D, Pashkovski S, Korzan WJ. et al. 2011. Detection and avoidance of a carnivore odor by prey. PNAS 108:11235–40 [Google Scholar]
  25. Ferrero DM, Wacker D, Roque M, Baldwin MW, Stevens C, Liberles SD. 2012. Agonists for 13 trace amine-associated receptors provide insight into the molecular basis of odor selectivity. ACS Chem. Biol. 7:1184–89 [Google Scholar]
  26. Fuss SH, Omura M, Mombaerts P. 2007. Local and cis effects of the H element on expression of odorant receptor genes in mouse. Cell 130:373–84 [Google Scholar]
  27. George SR, O'Dowd BF, Lee SP. 2002. G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat. Rev. Drug Discov. 1:808–20 [Google Scholar]
  28. Halpern M. 1987. The organization and function of the vomeronasal system. Annu. Rev. Neurosci. 10:325–62 [Google Scholar]
  29. Hirota J, Mombaerts P. 2004. The LIM-homeodomain protein Lhx2 is required for complete development of mouse olfactory sensory neurons. PNAS 101:8751–55 [Google Scholar]
  30. Hirota J, Omura M, Mombaerts P. 2007. Differential impact of Lhx2 deficiency on expression of class I and class II odorant receptor genes in mouse. Mol. Cell Neurosci. 34:679–88 [Google Scholar]
  31. Horio N, Yoshida R, Yasumatsu K, Yanagawa Y, Ishimaru Y. et al. 2011. Sour taste responses in mice lacking PKD channels. PLOS ONE 6:5e20007 [Google Scholar]
  32. Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W. et al. 2006. The cells and logic for mammalian sour taste detection. Nature 442:934–38 [Google Scholar]
  33. Ibarra-Soria X, Levitin MO, Saraiva LR, Logan DW. 2014. The olfactory transcriptomes of mice. PLOS Genet. 10:e1004593 [Google Scholar]
  34. Imai T, Sakano H. 2008. Odorant receptor-mediated signaling in the mouse. Curr. Opin. Neurobiol. 18:251–60 [Google Scholar]
  35. Ishii T, Hirota J, Mombaerts P. 2003. Combinatorial coexpression of neural and immune multigene families in mouse vomeronasal sensory neurons. Curr. Biol. 13:394–400 [Google Scholar]
  36. Ishii T, Mombaerts P. 2008. Expression of nonclassical class 1 major histocompatability genes defines a tripartite organization of the mouse vomeronasal system. J. Neurosci. 28:2332–41 [Google Scholar]
  37. Ishii T, Mombaerts P. 2011. Coordinated coexpression of two vomeronasal receptor V2R genes per neuron in the mouse. Mol. Cell Neurosci. 46:397–408 [Google Scholar]
  38. Ishimaru Y, Katano Y, Yamamoto K, Akiba M, Misaka T. et al. 2010. Interaction between PKD1L3 and PKD2L1 through their transmembrane domains is required for localization of PKD2L1 at taste pores in taste cells of circumvallate and foliate papillae. FASEB J. 24:4058–67 [Google Scholar]
  39. Johnson MA, Tsai L, Roy DS, Valenzuela DH, Mosley C. et al. 2012. Neurons expressing trace amine-associated receptors project to discrete glomeruli and constitute an olfactory subsystem. PNAS 109:13410–15 [Google Scholar]
  40. Jones DT, Masters SB, Bourne HR, Reed RR. 1990. Biochemical characterization of three stimulatory GTP-binding proteins: the large and small forms of Gs and the olfactory-specific G-protein, Golf. J. Biol. Chem. 265:2671–76 [Google Scholar]
  41. Jones DT, Reed RR. 1989. Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science 244:790–95 [Google Scholar]
  42. Khan M, Vaes E, Mombaerts P. 2011. Regulation of the probability of mouse odorant receptor gene choice. Cell 147:907–21 [Google Scholar]
  43. Lane RP, Cutforth T, Axel R, Hood L, Trask BJ. 2002. Sequence analysis of mouse vomeronasal receptor gene clusters reveals common promoter motifs and a history of recent expansion. PNAS 99:291–96 [Google Scholar]
  44. Leinders-Zufall T, Ishii T, Chamero P, Hendrix P, Oboti L. et al. 2014. A family of nonclassical class I MHC genes contributes to ultrasensitive chemodetection by mouse vomeronasal sensory neurons. J. Neurosci. 34:5121–33 [Google Scholar]
  45. Levi G, Puche A, Mantero S, Barbien O, Trombino S. et al. 2003. The Dlx5 homeodomain gene is essential for olfactory development and connectivity in the mouse. Mol. Cell Neurosci. 22:530–43 [Google Scholar]
  46. Levy NS, Bakalyar HA, Reed RR. 1991. Signal transduction in olfactory neurons. J. Steroid Biochem. Mol. Biol. 39:633–37 [Google Scholar]
  47. Lewcock JW, Reed RR. 2004. A feedback mechanism regulates monoallelic olfactory receptor expression. PNAS 101:1069–74 [Google Scholar]
  48. Liberles SD, Buck LB. 2006. A second class of chemosensory receptors in the olfactory epithelium. PNAS 442:645–50 [Google Scholar]
  49. Liberles SD, Horowitz LF, Kuang D, Contos JJ, Wilson KL. et al. 2009. Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. PNAS 106:9842–47 [Google Scholar]
  50. Loconto J, Papes F, Chang E, Stowers L, Jones EP. et al. 2003. Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class 1b molecules. Cell 112:607–18 [Google Scholar]
  51. Lomvardas S, Barnea G, Pisapia DJ, Mendelsohn M, Kirkland J, Axel R. 2006. Interchromosomal interactions and olfactory receptor choice. Cell 126:403–13 [Google Scholar]
  52. Lyons DB, Allen WE, Goh T, Tsai L, Barnea G, Lomvardas S. 2013. An epigenetic trap stabilizes singular olfactory receptor expression. Cell 154:325–36 [Google Scholar]
  53. Lyons DB, Magklara A, Goh T, Sampath SC, Schaefer A. et al. 2014. Heterochromatin-mediated gene silencing facilitates the diversification of olfactory neurons. Cell Rep 9:884–92 [Google Scholar]
  54. Magklara A, Yen A, Colquitt BM, Clowney EJ, Allen W. et al. 2011. An epigenetic signature for monoallelic olfactory receptor expression. Cell 145:555–70 [Google Scholar]
  55. Markenscoff-Papadimitriou E, Allen WE, Colquitt BM, Goh T, Murphy KK. et al. 2014. Enhancer interaction networks as a means for singular olfactory receptor expression. Cell 159:547–57 [Google Scholar]
  56. Martini S, Silvotti L, Shirazi A, Ryba NJ, Tirindelli R. 2001. Co-expression of putative pheromone receptors in the sensory neurons of the vomeronasal organ. J. Neurosci. 21:843–48 [Google Scholar]
  57. Matsumoto I, Ohmoto M, Abe K. 2013. Functional diversification of taste cells in vertebrates. Sem. Cell Dev. Biol. 24:210–14 [Google Scholar]
  58. Matsumoto I, Ohmoto M, Narukawa M, Yoshihara Y, Abe K. 2011. Skn-1a (Pou2f3) specifies taste receptor cell lineage. Nat. Neurosci. 14:685–87 [Google Scholar]
  59. Matsunami H, Montmayeur JP, Buck LB. 2000. A family of candidate taste receptors in human and mouse. Nature 404:601–4 [Google Scholar]
  60. McIntyre JC, Bose SC, Stromberg AJ, McClintock TS. 2008. Emx2 stimulates odorant receptor gene expression. Chem. Senses 33:825–37 [Google Scholar]
  61. Michaloski JS, Galante PA, Malnic B. 2006. Identification of potential regulatory motifs in odorant receptor genes by analysis of promoter sequences. Genome Res. 16:1091–98 [Google Scholar]
  62. Michaloski JS, Galante PA, Nagai MH, Armelin-Correa L, Chien MS. et al. 2011. Common promoter elements in odorant and vomeronasal receptor genes. PLOS ONE 6:12e29065 [Google Scholar]
  63. Miyamichi K, Serizawa S, Kimura HM, Sakano H. 2005. Continuous and overlapping expression domains of odorant receptor genes in the olfactory epithelium determine the dorsal/ventral positioning of glomeruli in the olfactory bulb. J. Neurosci. 25:3586–92 [Google Scholar]
  64. Mombaerts P, Wang F, Dulac C, Chao S, Nemes M. et al. 1996. Visualizing an olfactory sensory map. Cell 87:675–86 [Google Scholar]
  65. Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G. et al. 2002. An amino-acid taste receptor. Nature 416:199–202 [Google Scholar]
  66. Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS. 2001. Mammalian sweet taste receptors. Cell 106:381–90 [Google Scholar]
  67. Plessy C, Pascarella G, Bertin N, Akalin A, Carrieri C. et al. 2012. Promoter architecture of mouse olfactory receptor genes. Genome Res. 22:486–97 [Google Scholar]
  68. Ressler HJ, Sullivan SL, Buck LB. 1994. Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79:1245–55 [Google Scholar]
  69. Riviere S, Challet L, Fluegge D, Spehr M, Rodriguez I. 2009. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemoreceptors. Nature 459:574–77 [Google Scholar]
  70. Rodriguez I, Feinstein P, Mombaerts P. 1999. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97:199–208 [Google Scholar]
  71. Rodriguez-Gil D, Treolar HB, Zhang H, Miller AM, Two A. et al. 2010. Chromosomal location-dependent nonstochastic onset of odorant receptor expression. J. Neurosci. 30:10067–75 [Google Scholar]
  72. Ron D, Walter P. 2007. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8:519–29 [Google Scholar]
  73. Roppolo D, Vollery S, Kan CD, Lüscher C, Broillet MC, Rodriguez I. 2007. Gene cluster lock after pheromone receptor gene choice. EMBO J. 26:3423–30 [Google Scholar]
  74. Ryba NJ, Tirindelli R. 1997. A new multigene family of putative pheromone receptors. Neuron 19:371–79 [Google Scholar]
  75. Saito H, Kubota M, Roberts RW, Chi Q, Matsunami H. 2004. RTP family members induce functional expression of mammalian odorant receptors. Cell 119:679–91 [Google Scholar]
  76. Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M. et al. 2003. Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science 302:2088–94 [Google Scholar]
  77. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR. et al. 2004. Histone demethylation by the nuclear amine oxidase homolog LSD1. Cell 119:941–53 [Google Scholar]
  78. Shykind BM, Rohani SC, O'Donnell S, Nemes S, Mendelsohn M. et al. 2004. Gene switching and the stability of odorant receptor gene choice. Cell 117:801–15 [Google Scholar]
  79. Sorkin A, Von Zastrow M. 2009. Endocytosis and signaling: intertwining molecular networks. Nat. Rev. Mol. Cell Biol. 10:609–22 [Google Scholar]
  80. Stryer L. 1991. Visual excitation and recovery. J. Biol. Chem. 266:10711–14 [Google Scholar]
  81. Sullivan SL, Adamson MC, Ressler KJ, Kozak CA, Buck LB. 1996. The chromosomal distribution of mouse odorant receptor genes. PNAS 93:884–88 [Google Scholar]
  82. Tan L, Zong C, Xie S. 2013. Rare event of histone demethylation can initiate singular gene expression of olfactory receptors. PNAS 110:21148–52 [Google Scholar]
  83. Thanos D, Maniatis T. 1995. Virus induction of human IFNβ gene expression requires the assembly of an enhanceosome. Cell 83:1091–100 [Google Scholar]
  84. Vassalli A, Rothman A, Feinstein P, Zapotocky M, Mombaerts P. 2002. Minigenes impart odorant receptor-specific axon guidance in the olfactory bulb. Neuron 35:681–96 [Google Scholar]
  85. Vassar R, Chao SK, Sitcheran R, Nuñez JM, Vosshall LB, Axel R. 1994. Topographic organization of sensory projections to the olfactory bulb. Cell 79:981–91 [Google Scholar]
  86. Vassar R, Ngai J, Axel R. 1993. Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 74:309–18 [Google Scholar]
  87. Wang F, Nemes A, Mendelsohn M, Axel R. 1998. Odorant receptors govern the formation of a precise topographic map. Cell 93:47–60 [Google Scholar]
  88. Wang SZ, Ou J, Zhu LJ, Green MR. 2012. Transcription factor ATF5 is required for terminal differentiation and survival of olfactory sensory neurons. PNAS 109:18589–94 [Google Scholar]
  89. Watatani Y, Ichikawa K, Nakanishi N, Fujimoto M, Takeda H. et al. 2008. Stress-induced translation of ATF5 mRNA is regulated by the 5′-untranslated region. J. Biol. Chem. 283:2543–53 [Google Scholar]
  90. Zhang J, Huang G, Dewan A, Feinstein P, Bozza T. 2012. Uncoupling stimulus specificity and glomerular position in the mouse olfactory system. Mol. Cell Neurosci. 51:79–88 [Google Scholar]
  91. Zhang X, Firestein S. 2002. The olfactory receptor gene superfamily of the mouse. Nat. Neurosci. 5:124–33 [Google Scholar]
  92. Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I. et al. 2003. The receptors for mammalian sweet and umami taste. Cell 115:255–66 [Google Scholar]
/content/journals/10.1146/annurev-neuro-071714-034145
Loading
/content/journals/10.1146/annurev-neuro-071714-034145
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error