1932

Abstract

γ-Ray spectroscopy continues to be an important tool for the study of nuclei. Excitation energies can be measured directly and in model-independent ways, and thus are among the key observables that can guide our understanding of atomic nuclei. With the availability of short-lived rare-isotope beams, the development of position sensitivity of γ-ray detection systems has been crucial in combating the Doppler broadening encountered for the energies of γ-rays emitted in flight, which are necessary to obtain good energy resolution while maintaining high efficiency. The advanced γ-ray tracking array GRETINA began its science mission at the National Superconducting Cyclotron Laboratory (NSCL), where rare-isotope beams are produced at velocities exceeding 30% of the speed of light. With selected examples from nuclear structure physics and nuclear astrophysics, we show the breadth and reach of the science program afforded by GRETINA and provide an outlook for what can be accomplished with the full 4π array GRETA at the Facility for Rare Isotope Beams (FRIB).

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102115-044834
2016-10-19
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/nucl/66/1/annurev-nucl-102115-044834.html?itemId=/content/journals/10.1146/annurev-nucl-102115-044834&mimeType=html&fmt=ahah

Literature Cited

  1. Morrissey DJ, Sherrill BM. 1.  Philos. Trans. R. Soc. A 356:1985 1998.
  2. Morrissey D. 2.  et al. Nucl. Instrum. Methods B 204:90 2003.
  3. Gade A, Glasmacher T. 3.  Prog. Part. Nucl. Phys. 60:161 2008.
  4. Hansen PG, Tostevin JA. 4.  Annu. Rev. Nucl. Part. Sci. 53:219 2003.
  5. Gade A. 5.  et al. Phys. Rev. C 77:044306 2008.
  6. Iwasaki H. 6.  et al. Nucl. Instrum. Methods A 806:123 2016.
  7. Bazin D. 7.  et al. Nucl. Instrum. Methods B 204:629 2003.
  8. Sorlin O, Porquet MG. 8.  Prog. Part. Nucl. Phys. 61:602 2008.
  9. Gade A. 9.  Eur. Phys. J. A 51:118 2015.
  10. Dewald A, Möller O, Petkov P. 10.  Prog. Part. Nucl. Phys. 67:786 2012.
  11. Mayer MG. 11.  Phys. Rev. 74:235 1948.
  12. Mayer MG. 12.  Phys. Rev. 75:1969 1949.
  13. Haxel O, Jensen JHD, Suess HE. 13.  Phys. Rev. 75:1766 1949.
  14. Holt JD, Otsuka T, Schwenk A, Suzuki T. 14.  J. Phys. G 39:085111 2012.
  15. Stroberg SR. 15.  et al. Phys. Rev. C 90:034301 2014.
  16. Otsuka T. 16.  et al. Phys. Rev. Lett. 87:082502 2001.
  17. Otsuka T. 17.  et al. Phys. Rev. Lett. 95:232502 2005.
  18. Stroberg SR. 18.  et al. Phys. Rev. C 91:041302 2015.
  19. Gade A. 19.  et al. Phys. Rev. Lett. 112:112503 2014.
  20. Sorlin O. 20.  et al. Eur. Phys. J. A 16:55 2003.
  21. Adrich P. 21.  et al. Phys. Rev. C 77:054306 2008.
  22. Gade A. 22.  et al. Phys. Rev. C 81:051304R 2010.
  23. Tarasov OB. 23.  et al. Phys. Rev. Lett. 102:142501 2009.
  24. Meng J. 24.  et al. Phys. Rev. C 65:041302 2002.
  25. Lenzi SM, Nowacki F, Poves A, Sieja K. 25.  Phys. Rev. C 82:054301 2010.
  26. Hagen G. 26.  et al. Phys. Rev. Lett. 109:032502 2012.
  27. Erler J. 27.  et al. Nature 486:509 2012.
  28. Bouchez E. 28.  et al. Phys. Rev. Lett. 90:082502 2003.
  29. Fischer SM, Lister CJ, Balamuth DP. 29.  Phys. Rev. C 67:064318 2003.
  30. Gade A. 30.  et al. Phys. Rev. Lett. 95:022502 2005.
  31. Starosta K. 31.  et al. Phys. Rev. Lett. 99:042503 2007.
  32. Obertelli A. 32.  et al. Phys. Rev. C 80:031304 2009.
  33. Lemasson A. 33.  et al. Phys. Rev. C 85:041303 2012.
  34. Nichols A. 34.  et al. Phys. Lett. B 733:52 2014.
  35. de Angelis G. 35.  et al. Phys. Lett. B 415:217 1997.
  36. Iwasaki H. 36.  et al. Phys. Rev. Lett. 112:142502 2014.
  37. Whitmore K. 37.  et al. Phys. Rev. C 91:041303 2015.
  38. Hansen PG, Jonson B. 38.  Europhys. Lett. 4:409 1987.
  39. Aumann T, Nakamura T. 39.  Phys. Scr. 2013:014012 2013.
  40. Geithner W. 40.  et al. Phys. Rev. Lett. 83:3792 1999.
  41. Takamine A. 41.  et al. Phys. Rev. Lett. 112:162502 2014.
  42. Bertulani CA, Gade A. 42.  Phys. Rep. 485:195 2010.
  43. Wallace RK, Woosley SE. 43.  Astrophys. J. 45:389 1981.
  44. Schatz H. 44.  et al. Phys. Rep. 294:167 1998.
  45. Heger A, Cumming A, Galloway DK, Woosley SE. 45.  Astrophys. J. Lett. 671:L141 2007.
  46. Özel F. 46.  Nature 441:1115 2006.
  47. Özel F, Gould A, Güver T. 47.  Astrophys. J. 748:5 2012.
  48. Langer C. 48.  et al. Phys. Rev. Lett. 113:032502 2014.
  49. Gupta S. 49.  et al. Astrophys. J. 662:1188 2007.
  50. Noji S. 50.  et al. Phys. Rev. Lett. 112:252501 2014.
  51. Langanke K, Martínez-Pinedo G. 51.  Rev. Mod. Phys. 75:819 2003.
  52. Schatz H. 52.  et al. Nature 505:62 2014.
  53. Perdikakis G. 53.  et al. Phys. Rev. C 83:054614 2011.
  54. Noji S. 54.  et al. Phys. Rev. C 92:024312 2015.
  55. Savard G. 55.  et al. Phys. Soc. Jpn. Conf. Proc. 6:010008 2015.
  56. Savard G. 56.  et al. Nucl. Instrum. Methods B 266:4086 2015.
  57. Nazarewicz W. 57.  et al. Nucl. Phys. A 429:269 1984.
  58. Butler PA, Nazarewicz W. 58.  Rev. Mod. Phys. 68:349 1996.
  59. Simon MW, Cline D, Wu CY, Gray RW. 59.  Nucl. Instrum. Methods A 452:205 2000.
  60. Bucher B. 60.  et al. Phys. Rev. Lett. 116:112503 2016.
  61. 61. GRETINA Users Exec. Comm., GRETINA Advis. Comm., Phys. Work. Group The Gamma-Ray Energy Tracking Array: GRETA LBNL report 1004136. Presented at Nucl. Astrophys. Low Energy Nucl. Phys. Town Meet., Austin, TX. http://greta.lbl.gov/documents/GRETA-WhitePaper.pdf 2014.
  62. 62. Nucl. Sci. Advis. Comm Reaching for the horizon: the 2015 long range plan for nuclear science. Report, US Dep. Energy/Nat. Sci. Found., Washington, DC. http://science.energy.gov/∼/media/np/nsac/pdf/2015LRP/2015_LRPNS_091815.pdf 2015.
  63. Forssen C. 63.  et al. Phys. Scr. T152:014022 2013.
  64. 64. NSCL (National Superconducting Cyclotron Laboratory) HRS: a high rigidity spectrometer for FRIB Report, NSCL, East Lansing, MI. https://people.nscl.msu.edu/∼zegers/HRS_draft.pdf 2014.
  65. Bohr A, Mottelson B. 65.  Nuclear Structure New York: Benjamin 1975.
  66. Engel J, Ramsey-Musolf M, van Kolck U. 66.  Prog. Part. Nucl. Phys. 71:21 2013.
  67. Pospelov M, Ritz A. 67.  Ann. Phys. 318:119 2005.
  68. Dobaczewski J, Engel J. 68.  Phys. Rev. Lett. 94:232502 2005.
  69. Spevak V, Auerbach N, Flambaum VV. 69.  Phys. Rev. C 56:1357 1997.
  70. Griffith WC. 70.  et al. Phys. Rev. Lett. 102:101601 2009.
  71. Flambaum VV. 71.  Phys. Rev. A 77:024501 2008.
  72. Eberth J, Simpson J. 72.  Prog. Part. Nucl. Phys. 60:283 2008.
  73. Lee IY. 73.  Nucl. Phys. A 520:641 1990.
  74. Simpson J. 74.  Z. Phys. Hadrons Nucl. 358:138 1997.
  75. Lee IY. 75.  Nucl. Instrum. Methods A 422:195 1999.
  76. Akkoyun S. 76.  et al. Nucl. Instrum. Methods A 668:26 2012.
  77. Schmid G. 77.  et al. Nucl. Instrum. Methods A 430:69 1999.
  78. Deleplanque MA. 78.  et al. Nucl. Instrum. Methods A 430:292 1999.
  79. Paschalis S. 79.  et al. Nucl. Instrum. Methods Phys. A 709:44 2013.
  80. Knoll GF. 80.  Radiation Detection and Measurement New York: Wiley, 4th. 2010.
  81. Vetter K. 81.  et al. Nucl. Instrum. Methods A 452:223 2000.
  82. Cromaz M. 82.  et al. Nucl. Instrum. Methods A 597:233 2008.
  83. Anderson J. 83.  et al. Nucl. Sci. IEEE Trans. 56:258 2009.
/content/journals/10.1146/annurev-nucl-102115-044834
Loading
/content/journals/10.1146/annurev-nucl-102115-044834
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error