1932

Abstract

Nearly 50 years ago, I set out to investigate the clinical problem of hypoglycemia in children with illnesses that limited their food intake. My goal was to gather accurate and precise measurable data. At the time, I wasn't interested in nutrition as a discipline defined in its more general or popular sense. To address the specific problem that interested me required development of entirely new methods based on stable, nonradioactive tracers that satisfied the conditions of accuracy and precision. At the time, I had no inclination of the various theoretical and practical problems that would have to be solved to achieve this goal. Some are briefly described here. Nor did I have the slightest idea that developing the field would result in a fundamental change in how human clinical investigation was conducted, with the eventual replacement of radiotracers with stable isotopically labeled ones, even for adult clinical investigation. Additionally, I had no inclination that the original questions would open avenues to much broader questions of practical nutritional relevance. Moreover, only much later as the editor of did I appreciate the policy implications of how nutritional data are presented in the scientific literature. At least in part, less accurate and precise measurements and less than full transparency in reporting nutritional data have resulted in widespread debate about the public policy recommendations and guidelines that are the intended result of collecting the data in the first place. This article provides a personal recollection (with all the known faults of self-reporting and retrospective memory) of the journey that starts with measurement certainty and ends with policy uncertainty.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-071715-050801
2017-08-21
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/nutr/37/1/annurev-nutr-071715-050801.html?itemId=/content/journals/10.1146/annurev-nutr-071715-050801&mimeType=html&fmt=ahah

Literature Cited

  1. Arends J, Armstrong VW, Bier DM, Schäfer G, Schauder P. 1.  et al. 1993. No evidence for feedback inhibition of hepatic apolipoprotein B (apo B) production after extracorporeal low density lipoprotein precipitation as determined by [1–13C]leucine infusion in normal volunteers. Eur. J. Clin. Investig. 23:602–14 [Google Scholar]
  2. Armstrong DE, Briesmeister AC, McInteer BB, Potter RM. 2.  1970. A carbon-13 production plant using carbon monoxide distillation Los Alamos Tech. Bull. LA-4931. Los Alamos Natl. Lab., N. M.
  3. Avogaro A, Bier DM, Bristow JD, Cobelli C, Toffolo G. 3.  1989. Stable-label intravenous glucose tolerance test minimal model. Diabetes 38:1048–55 [Google Scholar]
  4. Avogaro A, Bier DM, Brocco E, Carraro A, Doria A. 4.  et al. 1992. Forearm ketone body metabolism in normal and in insulin-dependent diabetic patients. Am. J. Physiol. 263:E261–67 [Google Scholar]
  5. Avogaro A, Bier DM, Cryer PE. 5.  1992. Epinephrine's ketogenic effect in humans is mediated principally by lipolysis. Am. J. Physiol. 263:E250–60 [Google Scholar]
  6. Avogaro A, Bier DM, Gnudi L, Maran A, Miola M. 6.  1993. J. Clin. Endocrinol. Metab. 76845–50
  7. Balasse EO, Bier DM, Havel RJ. 7.  1972. Early effects of anti-insulin serum on hepatic metabolism of plasma free fatty acids in dogs. Diabetes 21:280–88 [Google Scholar]
  8. Basso LV, Havel RJ. 8.  1970. Hepatic metabolism of free fatty acids in normal and diabetic dogs. J. Clin. Investig. 49:537–47 [Google Scholar]
  9. Biemann K. 9.  1962. Mass Spectrometry: Organic Chemical Applications New York: McGraw-Hill
  10. Bier DM. 10.  1982. Stable isotope methods for nutritional diagnosis and research. Nutr. Rev. 40:129–34 [Google Scholar]
  11. Bier DM, Arnold KJ, Gruenke LD, Haymond MW, Kipnis DM. 11.  et al. 1977. Measurement of “true” glucose production rates in infancy and childhood with 6,6-dideuteroglucose. Diabetes 26:1016–23 [Google Scholar]
  12. Bier DM, Arnold KJ, Holland WJ, Holmes WF, Kipnis DM, Sherman WR. 12.  1977. In vivo measurement of glucose and alanine metabolism with stable isotopic tracer. Diabetes 26:1005–15 [Google Scholar]
  13. Bier DM, Christopherson HL. 13.  1979. Rapid micromethod for determination of 15N enrichment in plasma lysine: application to measurement of whole body protein turnover. Anal. Biochem. 94:242–48 [Google Scholar]
  14. Bier DM, Gruenke LD, Leake RD, Sperling MA. 14.  1976. Measurement of deuterium-labeled glucose flux in newborn infants by the continuous isotopic infusion technique. Proc. 2nd Int. Conf. Stable Isotopes, Oak Brook, Ill. Oct. 20–23 Conf. 751027 344–50 Washington, DC: Energy Res. Dev. Adm. [Google Scholar]
  15. Bier DM, Havel RJ. 15.  1970. Activation of lipoprotein lipase by lipoprotein fractions of human serum. J. Lipid. Res. 11:565–70 [Google Scholar]
  16. Bier DM, Havel RJ, Kaplan SL. 16.  1977. The Prader-Willi syndrome. Regulation of fat transport. Diabetes 26:874–81 [Google Scholar]
  17. Bier DM, Holland WH, Kipnis DM, Sherman WR. 17.  1973. The in vivo measurement of alanine and glucose turnover with deuterium labeled metabolites. Presented at Proc. First Int. Conf. Stable Isotopes in Chem. Biol. Med. Argonne Natl. Lab., May 9–11 US At. Energy Comm. Tech. Publ. Conf. 730525, pp. 397–403 Argonne, Ill. [Google Scholar]
  18. Bier DM, Willett WC. 18.  2016. Dietary reference intakes: resuscitate or let die?. Am. J. Clin. Nutr. 104:1195–96 [Google Scholar]
  19. Boccia S, Boffetta P, Flacco ME, Ioannidis JP, La Vecchia C. 19.  et al. 2016. Registration practices for observational studies on ClinicalTrials.gov indicated low adherence. J. Clin. Epidemiol. 70:176–82 [Google Scholar]
  20. Boef AGC, Dekkers OM, le Cessie S. 20.  2015. Mendelian randomization studies: a review of the approaches used and the quality of reporting. Int. J. Epidemiol. 44:496–511 [Google Scholar]
  21. Bonadonna RC, Bier DM, Bonora E, Cobelli C, DeFronzo RA. 21.  et al. 1996. Roles of glucose transport and glucose phosphorylation in muscle insulin resistance of NIDDM. Diabetes 45:915–25 [Google Scholar]
  22. Borchgrevink CF, Havel RJ. 22.  1963. Transport of glycerol in human blood. Proc. Soc. Exp. Biol. Med. 113:946–49 [Google Scholar]
  23. Bougnères PF, Bier DM, Hillman LS, Karl IE. 23.  1982. Lipid transport in the human newborn. Palmitate and glycerol turnover and the contribution of glycerol to neonatal hepatic glucose output. J. Clin. Investig. 70:262–70 [Google Scholar]
  24. Bougnères PF, Bier DM, Lemmel C. 24.  1986. Ketone body transport in the human neonate and infant. J. Clin. Investig. 77:42–48 [Google Scholar]
  25. Bragdon JH, Boyle E, Havel RJ. 25.  1956. Human serum lipoproteins. I. Chemical compositions of four fractions. J. Lab. Clin. Med. 48:36–42 [Google Scholar]
  26. Bragdon JH, Boyle E, Havel RJ. 26.  1956. Human serum lipoproteins. II. Some effects of their intravenous injection in rats. J. Lab. Clin. Med. 48:43–50 [Google Scholar]
  27. Brainard JR, Hutson JY, London RE, Matwiyoff NA. 27.  1983. Metabolism as it happens. Los Alamos Sci Summer:842–62 [Google Scholar]
  28. Brown AW, Allison DB, Bier DM, Cope MB, Ioannidis JPA. 28.  2014. Unscientific beliefs about scientific topics in nutrition. Adv. Nutr. 5:563–65 [Google Scholar]
  29. Bruns SB, Ioannidis JPA. 29.  2016. p-curve and p-hacking in observational research. PLOS ONE 11:e0149144 [Google Scholar]
  30. Cahill GF Jr. 30.  2006. Fuel metabolism in starvation. Annu. Rev. Nutr. 26:1–22 [Google Scholar]
  31. Cahill GF Jr., Herrera MG, Kipnis DM, Levy PL, Morgan AP. 31.  et al. 1966. Hormone-fuel interrelationships during fasting. J. Clin. Investig. 45:1751–69 [Google Scholar]
  32. Chacko SK, Ordonez J, Sauer PJ, Sunehag AL. 32.  2011. Gluconeogenesis is not regulated by either glucose or insulin in extremely low birth weight infants receiving total parenteral nutrition. J. Pediatr. 158:891–96 [Google Scholar]
  33. Chacko SK, Sunehag AL. 33.  2010. Gluconeogenesis continues in premature infants receiving total parenteral nutrition. Arch. Dis. Child Fetal Neonatal Ed. 95:F413–18 [Google Scholar]
  34. Chavalarias D, Ioannidis JP, Li AH, Wallach JD. 34.  2016. Evolution of reporting P values in the biomedical literature, 1990–2015. JAMA 315:1141–48 [Google Scholar]
  35. Cobelli C, Bier DM, Nosadini R, Toffolo G. 35.  1987. Models to interpret kinetic data in stable isotope tracer studies. Am. J. Physiol. 253:E551–64 [Google Scholar]
  36. Consoli A, Bier DM, Gerich JE, Nurjhan N, Reilly JJ Jr. 36.  1990. Contribution of liver and skeletal muscle to alanine and lactate metabolism in humans. Am. J. Physiol. 259:E677–84 [Google Scholar]
  37. Consoli A, Bier DM, Gerich JE, Nurjhan N, Reilly JJ Jr. 37.  1990. Mechanism of increased gluconeogenesis in noninsulin-dependent diabetes mellitus. Role of alterations in systemic, hepatic, and muscle lactate and alanine metabolism. J. Clin. Investig. 86:2038–45 [Google Scholar]
  38. Conway JM, Bier DM, Burke JF, Motil KJ, Young VR. 38.  1980. Whole-body lysine flux in young adult men: effects of reduced total protein and of lysine intake. Am. J. Physiol. 239:E192–200 [Google Scholar]
  39. Cornblath M, Schwartz R. 39.  1966. Disorders of Carbohydrate Metabolism in Infancy Philadelphia: WB Saunders
  40. Couet C, Bier DM, Fukagawa NK, Matthews DE, Young VR. 40.  1990. Plasma amino acid kinetics during acute states of glucagon deficiency and excess in healthy adults. Am. J. Physiol. 258:E78–85 [Google Scholar]
  41. Craig EC. 41.  2013. Obituary: John Cymerman Craig. Neuropsychopharmacology 38:2734 [Google Scholar]
  42. Dal-Ré R, Bracken MB, Buffler P, Chan A-W, Franco EL. 42.  et al. 2014. Making prospective registration of observational research a reality. Sci. Transl. Med. 6:224cm1 [Google Scholar]
  43. Darmaun D, Bier DM, Matthews DE. 43.  1986. Glutamine and glutamate kinetics in humans. Am. J. Physiol. 251:E117–26 [Google Scholar]
  44. Darmaun D, Bier DM, Matthews DE. 44.  1988. Physiological hypercortisolemia increases proteolysis, glutamine, and alanine production. Am. J. Physiol. 255:E366–73 [Google Scholar]
  45. Dudrick SJ. 45.  2005. A 45-year obsession and passionate pursuit of optimal nutrition support: puppies, pediatrics, surgery, geriatrics, home TPN, A.S.P.E.N., et cetera. J. Parenter. Enter. Nutr. 29:272–87 [Google Scholar]
  46. Eakin RT, Gregg CT, Matwiyoff NA, Morgan LO. 46.  1972. Carbon-13 nuclear magnetic resonance spectroscopy of living cells and their metabolism of a specifically labeled 13C substrate. FEBS Lett 28:259–64 [Google Scholar]
  47. Ebrahim S, Agarwal A, Bance S, Ioannidis JPA, Kamal el Din M. 47.  et al. 2016. Randomized trials are frequently fragmented in multiple secondary publications. J. Clin. Epidemiol. 79:130–39 [Google Scholar]
  48. Evans DM, Davey SG. 48.  2015. Mendelian randomization: new applications in the coming age of hypothesis-free causality. Annu. Rev. Genom. Hum. Genet. 16:327–50 [Google Scholar]
  49. Felig P, Cahill GF Jr, Marliss E, Owen OE. 49.  1969. Blood glucose and gluconeogenesis in fasting man. Arch. Intern. Med. 123:293–98 [Google Scholar]
  50. Felig P, Cahill GF Jr., Marliss E, Owen OE. 50.  1969. Role of substrate in the regulation of hepatic gluconeogenesis in fasting man. Adv. Enzyme Regul. 7:41–46 [Google Scholar]
  51. Felig P, Cahill GF Jr., Marliss E, Pozefsky T. 51.  1970. Alanine: key role in gluconeogenesis. Science 167:1003–4 [Google Scholar]
  52. Felig P, Cahill GF Jr., Marliss E, Pozefsky T. 52.  1970. Amino acid metabolism in the regulation of gluconeogenesis in man. Am. J. Clin. Nutr. 23:986–92 [Google Scholar]
  53. Felig P, Cahill GF Jr., Morgan AP, Owen OE. 53.  1968. Utilization of metabolic fuels in obese subjects. Am. J. Clin. Nutr. 21:1429–33 [Google Scholar]
  54. Felig P, Cahill GF Jr., Owen OE, Wahren J. 54.  1969. Amino acid metabolism during prolonged starvation. J. Clin. Investig. 48:584–94 [Google Scholar]
  55. Fjeld CR, Bier DM, Cole FS. 55.  1992. Energy expenditure, lipolysis, and glucose production in preterm infants treated with theophylline. Pediatr. Res. 32:693–98 [Google Scholar]
  56. Fomon SJ, Bier DM, Edwards BB, Matthews DE, Nelson SE. 56.  et al. 1987. Bioavailability of dietary urea nitrogen in the infant. J. Pediatr. 111:221–24 [Google Scholar]
  57. Fomon SJ, Bier DM, Edwards BB, Matthews DE, Nelson SE. 57.  et al. 1988. Bioavailability of dietary urea nitrogen in the breast-fed infant. J. Pediatr. 113:515–17 [Google Scholar]
  58. Frazer TE, Bier DM, Hillman LS, Karl IE. 58.  1981. Direct measurement of gluconeogenesis from [2,3]13C2]alanine in the human neonate. Am. J. Physiol. 240:E615–21 [Google Scholar]
  59. Fukagawa NK, Bier DM, Goodman MN, Matthews DE, Minaker KL. 59.  et al. 1985. Insulin-mediated reduction of whole body protein breakdown. J. Clin. Investig. 76:2306–11 [Google Scholar]
  60. Fukagawa NK, Bier DM, Matthews DE, Minaker KL, Rowe JW, Young VR. 60.  1988. Glucose and amino acid metabolism in aging man: differential effects of insulin. Metabolism 37:371–77 [Google Scholar]
  61. Fukagawa NK, Bier DM, Matthews DE, Minaker KL, Rowe JW, Young VR. 61.  1989. Leucine metabolism in aging humans: effect of insulin and substrate availability. Am. J. Physiol. 256:E288–94 [Google Scholar]
  62. Galster AD, Bier DM, Clutter WE, Collins JA, Cryer PE. 62.  1981. Epinephrine plasma thresholds for lipolytic effects in man. J. Clin. Investig. 67:1729–38 [Google Scholar]
  63. Gerich JE, Bier DM, Forsham PH, Karam JH, Lorenzi M. 63.  et al. 1975. Prevention of human diabetic ketoacidosis by somatostatin. Evidence for an essential role of glucagon. N. Engl. J. Med. 292:985–89 [Google Scholar]
  64. Gerich JE, Bier DM, Forsham PH, Karam JH, Lorenzi M. 64.  et al. 1976. Effects of physiologic levels of glucagon and growth hormone on human carbohydrate and lipid metabolism. J. Clin. Investig. 57:875–84 [Google Scholar]
  65. Gersovitz M, Bier DM, Matthews D, Munro HN, Udall J, Young VR. 65.  1980. Dynamic aspects of whole body glycine metabolism: influence of protein intake in young adult and elderly males. Metabolism 29:1087–94 [Google Scholar]
  66. Gide A. 66.  1926. Si le Grain ne Muert Èdition du groupe Ebooks libres et gratuits. https://www.ebooksgratuits.com/pdf/gide_si_le_grain_ne_meurt.pdf
  67. Gregg CT, Furchner JE, Hutson JY, Prine JR, Ott DG. 67.  1973. Substantial replacement of mammalian body carbon with carbon-13. Life Sci 13:775–82 [Google Scholar]
  68. Gruenke LD, Bier DM, Craig JC. 68.  1974. Multiple ion detection by accelerating voltage alteration in conjunction with voltage sweeping. Biomed. Mass Spectrom 1418–22 [Google Scholar]
  69. Gruenke LD, Bier DM, Craig JC. 69.  1980. An improved selected ion recording system for precise isotope ratio determination. Biomed. Mass Spectrom 7381–84 [Google Scholar]
  70. Halliday D, McKeran RO. 70.  1975. Measurement of muscle protein synthetic rate from serial muscle biopsies and total body protein turnover in man by continuous intravenous infusion of L-(α-15N)lysine. Clin. Sci. Mol. Med. 49:581–90 [Google Scholar]
  71. Havel RJ. 71.  1957. Early effects of fasting and of carbohydrate ingestion on lipids and lipoproteins of serum in man. J. Clin. Investig. 36:855–59 [Google Scholar]
  72. Havel RJ. 72.  1957. Early effects of fat ingestion on lipids and lipoproteins of serum in man. J. Clin. Investig. 36:848–54 [Google Scholar]
  73. Havel RJ. 73.  1958. Transport and metabolism of chylomicra. Am. J. Clin. Nutr. 6:662–68 [Google Scholar]
  74. Havel RJ. 74.  1961. Conversion of plasma free fatty acids into triglycerides of plasma lipoprotein fractions in man. Metabolism 10:1031–34 [Google Scholar]
  75. Havel RJ. 75.  1965. Some influences of the sympathetic nervous system and insulin on mobilization of fat from adipose tissue: studies of the turnover rates of free fatty acids and glycerol. Ann. N. Y. Acad. Sci. 131:91–101 [Google Scholar]
  76. Havel RJ. 76.  1972. Caloric homeostasis and disorders of fuel transport. N. Engl. J. Med. 287:1186–92 [Google Scholar]
  77. Havel RJ. 77.  2010. Triglyceride-rich lipoproteins and plasma lipid transport. Arterioscler. Thromb. Vasc. Biol. 30:9–19 [Google Scholar]
  78. Havel RJ, Balasse EO, Kane JP, Segel N, Williams HE. 78.  1969. Splanchnic metabolism in von Gierke's disease (glycogenosis type I). Trans. Assoc. Am. Physicians 82:305–23 [Google Scholar]
  79. Havel RJ, Bier DM, Shore B, Shore VG. 79.  1970. Role of specific glycopeptides of human serum lipoproteins in the activation of lipoprotein lipase. Circ. Res. 27:595–600 [Google Scholar]
  80. Havel RJ, Borchgrevink CF, Naimark A. 80.  1963. Turnover rate and oxidation of free fatty acids of blood plasma in man during exercise: studies during continuous infusion of palmitate-1-C14. J. Clin. Investig. 42:1054–63 [Google Scholar]
  81. Havel RJ, Bragdon JH, Eder HA. 81.  1955. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Investig. 34:1345–53 [Google Scholar]
  82. Havel RJ, Carlson LA, Ekelund LG, Holmgren A. 82.  1964. Studies on the relation between mobilization of free fatty acids and energy metabolism in man: effects of norepinephrine and nicotinic acid. Metabolism 13:1402–12 [Google Scholar]
  83. Havel RJ, Carlson LA, Ekelund LG, Holmgren A. 83.  1964. Turnover rate and oxidation of different free fatty acids in man during exercise. J. Appl. Physiol. 19:613–18 [Google Scholar]
  84. Havel RJ, Jones NL, Pernow B. 84.  1967. Uptake and release of free fatty acids and other metabolites in the legs of exercising men. J. Appl. Physiol. 23:90–99 [Google Scholar]
  85. Havel RJ, Watkins E Jr. 85.  1950. The metabolism of lactate and pyruvate in children with congenital heart disease. Circulation 2:536–44 [Google Scholar]
  86. Haycock PC, Bowden J, Burgess S, Davey Smith G, Relton C, Wade KH. 86.  2016. Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. Am. J. Clin. Nutr. 103:965–78 [Google Scholar]
  87. Haymond MW, Karl IE, Pagliara AS. 87.  1974. Increased gluconeogenic substrates in the small-for-gestational-age infant. N. Engl. J. Med. 291:322–28 [Google Scholar]
  88. Haÿs SP, Burrin DG, Ordonez JM, Sunehag AL. 88.  2007. Dietary glutamate is almost entirely removed in its first pass through the splanchnic bed in premature infants. Pediatr. Res. 62:353–56 [Google Scholar]
  89. Hevesy G. 89.  1940. Application of radioactive indicators in biology. Annu. Rev. Biochem. 9:641–62 [Google Scholar]
  90. Hoerr RA, Bier DM, Matthews DE, Young VR. 90.  1991. Leucine kinetics from [2H3]- and [13C]leucine-infused simultaneously by gut and vein. Am. J. Physiol. 260:E111–17 [Google Scholar]
  91. Hoerr RA, Bier DM, Matthews DE, Young VR. 91.  1993. Effects of protein restriction and acute refeeding on leucine and lysine kinetics in young men. Am. J. Physiol. 264:E567–75 [Google Scholar]
  92. Holmes WF, Bier DM, Holland WH, Sherman WR, Shore BL. 92.  1973. Versatile computer generated variable accelerating voltage circuit for magnetically scanned mass spectrometers. Use for assays in the pictogram range and for assays of stable isotope tracers. Anal. Chem. 45:2063–71 [Google Scholar]
  93. Holmes WF, Hollard WH, Parker JA. 93.  1971. Display oriented mass spectrometer-computer system. Anal. Chem. 43:1806–11 [Google Scholar]
  94. Ioannidis JPA. 94.  2013. Implausible results in human nutrition research. BMJ 347:f6698 [Google Scholar]
  95. Ioannidis JPA. 95.  2016. We need more randomized trials in nutrition—preferably large, long-term, and with negative results. Am. J. Clin. Nutr. 103:1385–86 [Google Scholar]
  96. Kalhan SC, Adam PA, Bier DM, Savin SM. 96.  1980. Estimation of glucose turnover and 13C recycling in the human newborn by simultaneous [l–13C]glucose and [6,6–2H2]glucose tracers. J. Clin. Endocrinol. Metab. 50:456–60 [Google Scholar]
  97. Kalhan SC, Adam PA, Savin SM. 97.  1976. Measurement of glucose turnover in the human newborn with glucose-1–13C. J. Clin. Endocrinol. Metab. 43:704–7 [Google Scholar]
  98. Kalhan SC, Bier DM. 98.  2008. Protein and amino acid metabolism in the human newborn. Annu. Rev. Nutr. 28:389–410 [Google Scholar]
  99. Kamen MD. 99.  1947. Use of isotopes in biochemical research: fundamental aspects. Annu. Rev. Biochem. 16:631–54 [Google Scholar]
  100. Kilani RA, Bier DM, Cole FS. 100.  1995. Phenylalanine hydroxylase activity in preterm infants: Is tyrosine a conditionally essential amino acid?. Am. J. Clin. Nutr. 61:1218–23 [Google Scholar]
  101. Klein PD, Roth LJ. 101.  1972. Proc. Semin. Use Stable Isot. Clin. Pharmacol., Univ. Chic., Nov. 10–11, 1971 Oak Ridge, TN: US At. Energy Comm. https://www.osti.gov/scitech/servlets/purl/4664172-32RPJu/
  102. Kollman VH, Gregg CT, Hanners JL, Hutson JY, Ott DG. 102.  et al. 1973. Large-scale photosynthetic production of carbon-13 labeled sugars: the tobacco leaf system. Biochem. Biophys. Res. Commun. 50:826–31 [Google Scholar]
  103. London RE, Matwiyoff NA, Unkefer CJ, Walker TE. 103.  1983. Synthesizing labeled compounds. Los Alamos Sci Summer:866–67 [Google Scholar]
  104. Matthews DE, Ben-Galim E, Bier DM. 104.  1979. Determination of stable isotopic enrichment in individual plasma amino acids by chemical ionization mass spectrometry. Anal. Chem. 51:80–84 [Google Scholar]
  105. Matthews DE, Bier DM. 105.  1983. Stable isotope methods for nutritional investigation. Annu. Rev. Nutr. 3:309–39 [Google Scholar]
  106. Matthews DE, Bier DM, Burke JF, Motil KJ, Rohrbaugh DK, Young VR. 106.  1980. Measurement of leucine metabolism in man from a primed, continuous infusion of L-[1–13C]leucine. Am. J. Physiol. 238:E473–79 [Google Scholar]
  107. Matthews DE, Bier DM, Clugston GA, Edwards RHT, Halliday D. 107.  et al. 1981. Regulation of leucine metabolism in man: a stable isotope study. Science 214:1129–31 [Google Scholar]
  108. Matthews DE, Bier DM, Conway JM, Young VR. 108.  1981. Glycine nitrogen metabolism in man. Metabolism 30:886–93 [Google Scholar]
  109. Matthews DE, Bier DM, Motil KJ, Schwarz HP, Yang RD, Young VR. 109.  1982. Relationship of plasma leucine and α-ketoisocaproate during a L-[1–13C]leucine infusion in man: a method for measuring human intracellular leucine tracer enrichment. Metabolism 31:1105–12 [Google Scholar]
  110. Matwiyoff NA, McInteer BB, Mills TR. 110.  1983. Stable isotope production: a distillation process. Los Alamos Sci Summer:865 [Google Scholar]
  111. McInteer BB, FitzPatrick JR, Oakley GE. 111.  1988. The ICONS Facility: separating nitrogen and oxygen isotopes at Los Alamos Los Alamos Tech. Bull. LALP-87-83
  112. Meguid MM, Bier DM, Matthews DE, Meredith CN, Soeldner JS, Young VR. 112.  1986. Leucine kinetics at graded leucine intakes in young men. Am. J. Clin. Nutr. 43:770–80 [Google Scholar]
  113. Meguid MM, Bier DM, Matthews DE, Meredith CN, Young VR. 113.  1986. Valine kinetics at graded valine intakes in young men. Am. J. Clin. Nutr. 43:781–86 [Google Scholar]
  114. Meredith CN, Bier DM, Matthews DE, Wen Z-M, Young VR. 114.  1986. Lysine kinetics at graded lysine intakes in young men. Am. J. Clin. Nutr. 43:787–94 [Google Scholar]
  115. Motil KJ, Bier DM, Burke JF, Matthews DE, Munro HN, Young VR. 115.  1981. Whole-body leucine and lysine metabolism: response to dietary protein intake in young men. Am. J. Physiol. 240:E712–21 [Google Scholar]
  116. Motil KJ, Bier DM, Burke JF, Matthews DE, Young VR. 116.  1981. Whole body leucine and lysine metabolism studied with [1–13C]leucine and [α-15N]lysine: response in healthy young men given excess energy intake. Metabolism 30:783–91 [Google Scholar]
  117. Motulsky HJ. 117.  2015. Viewpoint. Common misconceptions about data analysis and statistics. Br. J. Pharmacol. 172:2126–32 [Google Scholar]
  118. Nichols BL. 118.  2009. Establishment of the USDA/ARS Children's Nutrition Research Center at Baylor College of Medicine and Texas Children's Hospital in 1978. J. Nutr. 139:188–91 [Google Scholar]
  119. Nurjhan N, Bier DM, Bucci A, Dailey G, Gerich JE. 119.  et al. 1995. Glutamine: a major gluconeogenic precursor and vehicle for interorgan carbon transport in man. J. Clin. Investig. 95:272–77 [Google Scholar]
  120. Owen OE, Cahill GF Jr., Herrera MG, Kemp HG, Morgan AP. 120.  1967. Brain metabolism during fasting. J. Clin. Investig. 46:1589–95 [Google Scholar]
  121. Pagliara AS, Feigin RD, Karl IE, Kipnis DM, De Vivo DC. 121.  1972. Hypoalaninemia: a concomitant of ketotic hypoglycemia. J. Clin. Investig. 51:1440–49 [Google Scholar]
  122. Parhofer KG, Barrett HR, Bier DM, Schonfeld G. 122.  1991. Determination of kinetic parameters of apolipoprotein B metabolism using amino acids labeled with stable isotopes. J. Lipid Res. 32:1311–23 [Google Scholar]
  123. Parhofer KG, Barrett HR, Bier DM, Schonfeld G. 123.  1992. Lipoproteins containing the truncated apolipoprotein, Apo B-89, are cleared from the human plasma more rapidly than Apo B-100-containing lipoproteins in vivo. J. Clin. Investig. 89:1931–37 [Google Scholar]
  124. Parker ML, Cornblath M, Kipnis DM, Kuen-Lan C, Pildes RS. 124.  1968. Juvenile diabetes mellitus, a deficiency in insulin. Diabetes 17:27–32 [Google Scholar]
  125. Patel CJ, Ioannidis JPA. 125.  2014. Placing epidemiological results in the context of multiplicity and typical correlations of exposures. J. Epidemiol. Community Health 68:1096–100 [Google Scholar]
  126. Patel CJ, Ioannidis JPA. 126.  2014. Studying the elusive environment in large scale. JAMA 311:2173–74 [Google Scholar]
  127. Patel CJ, Manrai AK. 127.  2015. Development of exposome correlation globes to map out environment-wide associations. Pac. Symp. Biocomput. 20:231–42 [Google Scholar]
  128. Pernow BB, Havel RJ, Jennings DB. 128.  1967. The second wind phenomenon in McArdle's syndrome. Acta. Med. Scand. Suppl 472294–307 [Google Scholar]
  129. Perriello G, Bier DM, Bucci A, Dailey G, Gerich JE. 129.  et al. 1997. Regulation of gluconeogenesis by glutamine in normal postabsorptive humans. Am. J. Physiol. 272:E437–45 [Google Scholar]
  130. Perriello G, Bier DM, Dailey G, Gerich JE, Jenssen T. 130.  et al. 1995. Estimation of glucose-alanine-lactate-glutamine cycles in postabsorptive humans: role of skeletal muscle. Am. J. Physiol. 269:E443–50 [Google Scholar]
  131. Pozefsky T, Felig P, Soeldner JS, Cahill GF Jr.. 131.  1968. Insulin blockade of amino acid release by human forearm tissues. Trans. Assoc. Am. Physicians 81:258–65 [Google Scholar]
  132. Reeds PJ, Burrin DG, Jahoor F, Stoll B. 132.  2000. Intestinal glutamate metabolism. J. Nutr. 130:4S Suppl.978S–82S [Google Scholar]
  133. Ritterberg D, Price TD. 133.  1952. Stable isotopes in biochemical research. Annu. Rev. Nucl. Sci. 1:569–96 [Google Scholar]
  134. Rivera A Jr., Bell EF, Bier DM. 134.  1993. Effect of intravenous amino acids on protein metabolism of preterm infants during the first three days of life. Pediatr. Res. 33:106–11 [Google Scholar]
  135. Robert JJ, Beaufrere B, Bier DM, Desjeux JF, Koziet J, Lestradet H. 135.  et al. 1985. Whole body de novo amino acid synthesis in type I (insulin-dependent) diabetes studied with stable isotope-labeled leucine, alanine, and glycine. Diabetes 34:67–73 [Google Scholar]
  136. Robert JJ, Bier DM, Matthews DE, Young VR, Zhao XH. 136.  1982. Glucose and insulin effects on de novo amino acid synthesis in young men: studies with stable isotope labeled alanine, glycine, leucine, and lysine. Metabolism 31:1210–18 [Google Scholar]
  137. Saccomani MP, Bier DM, Bonadonna RC, Cobelli C, DeFronzo RA. 137.  1996. A model to measure insulin effects on glucose transport and phosphorylation in muscle: a three-tracer study. Am. J. Physiol. 270:E170–85 [Google Scholar]
  138. Schoenfeld JD, Ioannidis JP. 138.  2013. Is everything we eat associated with cancer? A systematic cookbook review. Am. J. Clin. Nutr. 97:127–34 [Google Scholar]
  139. Schoenheimer R. 139.  1942. The Dynamic State of Body Constituents. Harvard University Monographs in Medicine and Public Health Number 3 Cambridge, MA: Harvard Univ. Press
  140. Segel IH. 140.  1968. Biochemical Calculations New York: Wiley, 1st ed..
  141. Sekula P, Del Greco MF, Köttgen A, Pattaro C. 141.  2016. Mendelian randomization as an approach to assess causality using observational data. J. Am. Soc. Nephrol. 27:3253–65 [Google Scholar]
  142. Sherman WR, Bier DM. 142.  1989. A resource for biomedical mass spectrometry Presented at 37th ASMS Conference on Mass Spectrometry and Allied Topics, May 21–26 Miami Beach, Fla.:
  143. Smith GD, Hemani G. 143.  2014. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23:R89–98 [Google Scholar]
  144. Staten MA, Bier DM, Matthews DE. 144.  1984. Regulation of valine metabolism in man: a stable isotope study. Am. J. Clin. Nutr. 40:1224–34 [Google Scholar]
  145. Staten MA, Bier DM, Matthews DE. 145.  1986. Leucine metabolism in type II diabetes mellitus. Diabetes 35:1249–53 [Google Scholar]
  146. Streiner DL. 146.  2015. Best (but oft-forgotten) practices: the multiple problems of multiplicity—whether and how to correct for many statistical tests. Am. J. Clin. Nutr. 102:721–28 [Google Scholar]
  147. Stumvoll M, Bier DM, Bucci A, Dailey G, Gerich J. 147.  et al. 1996. Glutamine and alanine metabolism in NIDDM. Diabetes 45:863–68 [Google Scholar]
  148. Sunehag AL. 148.  2003. Parenteral glycerol enhances gluconeogenesis in very premature infants. Pediatr. Res. 53:635–41 [Google Scholar]
  149. Sunehag AL. 149.  2003. The role of parenteral lipids in supporting gluconeogenesis in very premature infants. Pediatr. Res. 54:480–86 [Google Scholar]
  150. Sunehag AL, Bier DM, Butte NF, Cobelli C, Haymond MW. 150.  et al. 2002. Effects of dietary macronutrient content on glucose metabolism in children. J. Clin. Endocrinol. Metab. 87:5168–78 [Google Scholar]
  151. Sunehag AL, Bier DM, Campioni M, Haymond MW, Toffolo G. 151.  2005. Effects of dietary macronutrient intake on insulin sensitivity and secretion and glucose and lipid metabolism in healthy, obese adolescents. J. Clin. Endocrinol. Metab. 90:4496–502 [Google Scholar]
  152. Sunehag AL, Bier DM, Campioni M, Haymond MW, Toffolo G. 152.  2008. Short-term high dietary fructose intake had no effects on insulin sensitivity and secretion or glucose and lipid metabolism in healthy, obese adolescents. J. Pediatr. Endocrinol. Metab. 21:225–35 [Google Scholar]
  153. Sunehag AL, Bier DM, Haymond MW, Reeds PJ, Schanler RJ. 153.  1999. Gluconeogenesis in very low birth weight infants receiving total parenteral nutrition. Diabetes 48:791–800 [Google Scholar]
  154. Swiatek KR, Chao KL, Cornblath M, Kipnis DM, Mason G. 154.  1968. Starvation hypoglycemia in newborn pigs. Am. J. Physiol. 214:400–5 [Google Scholar]
  155. Treuth MS, Bier DM, Butte NF, Haymond MW, Sunehag AL, Trautwein LM. 155.  2003. Metabolic adaptation to high-fat and high-carbohydrate diets in children and adolescents. Am. J. Clin. Nutr. 77:479–89 [Google Scholar]
  156. Twain M. 156.  1940. Mark Twain in Eruption: Hitherto Unpublished Pages About Men and Events New York: Harper. , 3rd ed..
  157. Van Duyne CM, Havel RJ. 157.  1959. Plasma unesterified fatty acid concentration in fetal and neonatal life. Proc. Soc. Exp. Biol. Med. 102:599–602 [Google Scholar]
  158. Vicini P, Bier DM, Caumo A, Cobelli C, Yarasheski KE, Zachwieja JJ. 158.  1999. Glucose production during an IVGTT by deconvolution: validation with the tracer-to-tracee clamp technique. Am. J. Physiol. 276:E285–94 [Google Scholar]
  159. Villee C. 159.  1952. Radioisotopes in biochemical and medical research. Annu. Rev. Nucl. Sci. 1:525–68 [Google Scholar]
  160. Vinnars E, Wilmore D. 160.  2003. History of parenteral nutrition. J. Parenter. Enter. Nutr. 27:225–31 [Google Scholar]
  161. Wahren J, Felig P, Havel RJ, Jorfeldt L, Pernow B. 161.  et al. 1973. Amino acid metabolism in McArdle's syndrome. N. Engl. J. Med. 288:774–77 [Google Scholar]
  162. Wang D, Fu B, Larsen L, Li Y, Lin Y. 162.  2015. Overview of multiple testing methodology and recent development in clinical trials. Contemp. Clin. Trials 45:13–20 [Google Scholar]
  163. Waterlow JC. 163.  1967. Lysine turnover in man measured by intravenous infusion of L-[U-14C]lysine. Clin. Sci. 33:507–15 [Google Scholar]
  164. Yang RD, Bier DM, Matthews DE, Wen ZM, Young VR. 164.  1986. Response of alanine metabolism in humans to manipulation of dietary protein and energy intakes. Am. J. Physiol. 250:E39–46 [Google Scholar]
  165. Yarasheski KE, Angelopoulos TJ, Bier DM, Zachwieja JJ. 165.  1993. Short-term growth hormone treatment does not increase muscle protein synthesis in experienced weight lifters. J. Appl. Physiol. 74:3073–76 [Google Scholar]
  166. Yarasheski KE, Bier DM, Campbell JA, Holloszy JO, Rennie MJ, Smith K. 166.  1992. Effect of growth hormone and resistance exercise on muscle growth in young men. Am. J. Physiol. 262:E261–67 [Google Scholar]
  167. Yarasheski KE, Bier DM, Campbell JA, Zachwieja JJ. 167.  1995. Effect of growth hormone and resistance exercise on muscle growth and strength in older men. Am. J. Physiol. 268:E268–76 [Google Scholar]
  168. Yarasheski KE, Bier DM, Zachwieja JJ. 168.  1993. Acute effects of resistance exercise on muscle protein synthesis rate in young and elderly men and women. Am. J. Physiol. 265:E210–14 [Google Scholar]
  169. Young SS, Karr A. 169.  2011. Deming, data and observational studies: a process out of control and needing fixing. Significance 8:116–20 [Google Scholar]
  170. Young VR, Bier DM. 170.  1987. A kinetic approach to the determination of human amino acid requirements. Nutr. Rev. 45:289–98 [Google Scholar]
  171. Young VR, Bier DM, Gucalp C, Matthews DE, Rand WM. 171.  1986. Leucine kinetics during three weeks at submaintenance-to-maintenance intakes of leucine in men: adaptation and accommodation. Hum. Nutr. Clin. Nutr. 41C:1–18 [Google Scholar]
  172. Young VR, Bier DM, Pellett PL. 172.  1989. A theoretical basis for increasing current estimates of the amino acid requirements in adult man, with experimental support. Am. J. Clin. Nutr. 50:80–92 [Google Scholar]
  173. Yu YM, Bier DM, Burke JF, Matthews DE, Wen ZM, Yang RD. 173.  1985. Quantitative aspects of glycine and alanine nitrogen metabolism in postabsorptive young men: effects of level of nitrogen and dispensable amino acid intake. J. Nutr. 115:399–410 [Google Scholar]
  174. Zachwieja JJ, Bier DM, Yarasheski KE. 174.  1994. Growth hormone administration in older adults: effects on albumin synthesis. Am. J. Physiol. 266:E840–44 [Google Scholar]
  175. Zhao XH, Wen ZM, Meredith CN, Matthews DE, Bier DM, Young VR. 175.  1986. Threonine kinetics at graded threonine intakes in young men. Am. J. Clin. Nutr. 43:795–802 [Google Scholar]
/content/journals/10.1146/annurev-nutr-071715-050801
Loading
/content/journals/10.1146/annurev-nutr-071715-050801
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error