1932

Abstract

Calcium and bone metabolism remain key concerns for space travelers, and ground-based models of space flight have provided a vast literature to complement the smaller set of reports from flight studies. Increased bone resorption and largely unchanged bone formation result in the loss of calcium and bone mineral during space flight, which alters the endocrine regulation of calcium metabolism. Physical, pharmacologic, and nutritional means have been used to counteract these changes. In 2012, heavy resistance exercise plus good nutritional and vitamin D status were demonstrated to reduce loss of bone mineral density on long-duration International Space Station missions. Uncertainty continues to exist, however, as to whether the bone is as strong after flight as it was before flight and whether nutritional and exercise prescriptions can be optimized during space flight. Findings from these studies not only will help future space explorers but also will broaden our understanding of the regulation of bone and calcium homeostasis on Earth.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-071813-105440
2014-07-17
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/nutr/34/1/annurev-nutr-071813-105440.html?itemId=/content/journals/10.1146/annurev-nutr-071813-105440&mimeType=html&fmt=ahah

Literature Cited

  1. Albertazzi P, Coupland K. 1.  2002. Polyunsaturated fatty acids. Is there a role in postmenopausal osteoporosis prevention?. Maturitas 42:13–22 [Google Scholar]
  2. Alfrey CP, Rice L, Udden MM, Driscoll TB. 2.  1997. Neocytolysis: physiological down-regulator of red-cell mass. Lancet 349:1389–90 [Google Scholar]
  3. Alfrey CP, Udden MM, Leach-Huntoon C, Driscoll T, Pickett MH. 3.  1996. Control of red blood cell mass in spaceflight. J. Appl. Physiol. 81:98–104 [Google Scholar]
  4. Arnaud SB, Sherrard DJ, Maloney N, Whalen RT, Fung P. 4.  1992. Effects of 1-week head-down tilt bed rest on bone formation and the calcium endocrine system. Aviat. Space Environ. Med. 63:14–20 [Google Scholar]
  5. Arnaud SB, Wolinsky I, Fung P, Vernikos J. 5.  2000. Dietary salt and urinary calcium excretion in a human bed rest spaceflight model. Aviat. Space Environ. Med. 71:1115–19 [Google Scholar]
  6. Arnett TR. 6.  2007. Acid-base regulation of bone metabolism. Nutritional Aspects of Osteoporosis P Burckhardt, RP Heaney, B Dawson-Hughes 255–67 New York: Elsevier [Google Scholar]
  7. Baecker N, Frings-Meuthen P, Heer M, Mester J, Liphardt AM. 7.  2012. Effects of vibration training on bone metabolism: results from a short-term bed rest study. Eur. J. Appl. Physiol. 112:1741–50 [Google Scholar]
  8. Baecker N, Frings-Meuthen P, Smith SM, Heer M. 8.  2010. Short-term high dietary calcium intake during bedrest has no effect on markers of bone turnover in healthy men. Nutrition 26:522–27 [Google Scholar]
  9. Baecker N, Tomic A, Mika C, Gotzmann A, Platen P. 9.  et al. 2003. Bone resorption is induced on the second day of bed rest: results of a controlled crossover trial. J. Appl. Physiol. 95:977–82 [Google Scholar]
  10. Bedford JL, Barr SI. 10.  2011. Higher urinary sodium, a proxy for intake, is associated with increased calcium excretion and lower hip bone density in healthy young women with lower calcium intakes. Nutrients 3:951–61 [Google Scholar]
  11. Belavy DL, Beller G, Armbrecht G, Perschel FH, Fitzner R. 11.  et al. 2011. Evidence for an additional effect of whole-body vibration above resistive exercise alone in preventing bone loss during prolonged bed rest. Osteoporos. Int. 22:1581–91 [Google Scholar]
  12. Belavy DL, Hides JA, Wilson SJ, Stanton W, Dimeo FC. 12.  et al. 2008. Resistive simulated weightbearing exercise with whole body vibration reduces lumbar spine deconditioning in bed-rest. Spine 33:E121–31 [Google Scholar]
  13. Bhattacharyya N, Chong WH, Gafni RI, Collins MT. 13.  2012. Fibroblast growth factor 23: state of the field and future directions. Trends Endocrinol. Metab. 23:610–18 [Google Scholar]
  14. Breslau NA, Brinkley L, Hill KD, Pak CY. 14.  1988. Relationship of animal protein-rich diet to kidney stone formation and calcium metabolism. J. Clin. Endocrinol. Metab. 66:140–46 [Google Scholar]
  15. Buck AC, Davies RL, Harrison T. 15.  1991. The protective role of eicosapentaenoic acid (EPA) in the pathogenesis of nephrolithiasis. J. Urol. 146:188–94 [Google Scholar]
  16. Buehlmeier J, Frings-Meuthen P, Remer T, Maser-Gluth C, Stehle P. 16.  et al. 2012. Alkaline salts to counteract bone resorption and protein wasting induced by high salt intake: results of a randomized controlled trial. J. Clin. Endocrinol. Metab. 97:4789–97 [Google Scholar]
  17. Bushinsky DA, Ori Y. 17.  1993. Effects of metabolic and respiratory acidosis on bone. Curr. Opin. Nephrol. Hypertens. 2:588–96 [Google Scholar]
  18. Bushinsky DA, Wolbach W, Sessler NE, Mogilevsky R, Levi-Setti R. 18.  1993. Physicochemical effects of acidosis on bone calcium flux and surface ion composition. J. Bone Miner. Res. 8:93–102 [Google Scholar]
  19. Caillot-Augusseau A, Lafage-Proust MH, Soler C, Pernod J, Dubois F, Alexandre C. 19.  1998. Bone formation and resorption biological markers in cosmonauts during and after a 180-day space flight (Euromir 95). Clin. Chem. 44:578–85 [Google Scholar]
  20. Caillot-Augusseau A, Vico L, Heer M, Voroviev D, Souberbielle J-C. 20.  et al. 2000. Space flight is associated with rapid decreases of undercarboxylated osteocalcin and increases of markers of bone resorption without changes in their circadian variation: observations in two cosmonauts. Clin. Chem. 46:1136–43 [Google Scholar]
  21. Cavanagh PR, Licata AA, Rice AJ. 21.  2005. Exercise and pharmacological countermeasures for bone loss during long-duration space flight. Gravit. Space Biol. Bull. 18:39–58 [Google Scholar]
  22. Ceglia L, Harris SS, Abrams SA, Rasmussen HM, Dallal GE, Dawson-Hughes B. 22.  2009. Potassium bicarbonate attenuates the urinary nitrogen excretion that accompanies an increase in dietary protein and may promote calcium absorption. J. Clin. Endocrinol. Metab. 94:645–53 [Google Scholar]
  23. Chappard D, Alexandre C, Palle S, Vico L, Morukov BV. 23.  et al. 1989. Effects of a bisphosphonate (1-hydroxy ethylidene-1,1 bisphosphonic acid) on osteoclast number during prolonged bed rest in healthy humans. Metabolism 38:822–25 [Google Scholar]
  24. Collet P, Uebelhart D, Vico L, Moro L, Hartmann D. 24.  et al. 1997. Effects of 1- and 6-month spaceflight on bone mass and biochemistry in two humans. Bone 20:547–51 [Google Scholar]
  25. Cunningham J, Fraher LJ, Clemens TL, Revell PA, Papapoulos SE. 25.  1982. Chronic acidosis with metabolic bone disease. Effect of alkali on bone morphology and vitamin D metabolism. Am. J. Med. 73:199–204 [Google Scholar]
  26. Deitrick JE, Whedon GD, Shorr E. 26.  1948. Effects of immobilization upon various metabolic and physiologic functions of normal men. Am. J. Med. 4:3–36 [Google Scholar]
  27. Devine A, Criddle RA, Dick IM, Kerr DA, Prince RL. 27.  1995. A longitudinal study of the effect of sodium and calcium intakes on regional bone density in postmenopausal women. Am. J. Clin. Nutr. 62:740–45 [Google Scholar]
  28. Domrongkitchaiporn S, Pongskul C, Sirikulchayanonta V, Stitchantrakul W, Leeprasert V. 28.  et al. 2002. Bone histology and bone mineral density after correction of acidosis in distal renal tubular acidosis. Kidney Int. 62:2160–66 [Google Scholar]
  29. Donaldson CL, Hulley SB, Vogel JM, Hattner RS, Bayers JH, McMillan DE. 29.  1970. Effect of prolonged bed rest on bone mineral. Metabolism 19:1071–84 [Google Scholar]
  30. Elias AN, Gwinup G. 30.  1992. Immobilization osteoporosis in paraplegia. J. Am. Paraplegia Soc. 15:163–70 [Google Scholar]
  31. Fernandes G, Bhattacharya A, Rahman M, Zaman K, Banu J. 31.  2008. Effects of n-3 fatty acids on autoimmunity and osteoporosis. Front. Biosci. 13:4015–20 [Google Scholar]
  32. Frassetto LA, Morris RC Jr, Sebastian A. 32.  2007. Dietary sodium chloride intake independently predicts the degree of hyperchloremic metabolic acidosis in healthy humans consuming a net acid-producing diet. Am. J. Physiol. Ren. Physiol. 293:F521–25 [Google Scholar]
  33. Frassetto LA, Morris RC Jr, Sellmeyer DE, Sebastian A. 33.  2008. Adverse effects of sodium chloride on bone in the aging human population resulting from habitual consumption of typical American diets. J. Nutr. 138:419–22S [Google Scholar]
  34. Frassetto LA, Todd KM, Morris RC Jr, Sebastian A. 34.  1998. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am. J. Clin. Nutr. 68:576–83 [Google Scholar]
  35. Frings-Meuthen P, Baecker N, Heer M. 35.  2008. Low-grade metabolic acidosis may be the cause of sodium chloride-induced exaggerated bone resorption. J. Bone Miner. Res. 23:517–24 [Google Scholar]
  36. Frings-Meuthen P, Buehlmeier J, Baecker N, Stehle P, Fimmers R. 36.  et al. 2011. High sodium chloride intake exacerbates immobilization-induced bone resorption and protein losses. J. Appl. Physiol. 111:537–42 [Google Scholar]
  37. Griel AE, Kris-Etherton PM, Hilpert KF, Zhao G, West SG, Corwin RL. 37.  2007. An increase in dietary n-3 fatty acids decreases a marker of bone resorption in humans. Nutr. J. 6:2–10 [Google Scholar]
  38. Hahn TJ, Halstead LR, DeVivo DC. 38.  1979. Disordered mineral metabolism produced by ketogenic diet therapy. Calcif. Tissue Int. 28:17–22 [Google Scholar]
  39. Hamilton SA, Pecaut MJ, Gridley DS, Travis ND, Bandstra ER. 39.  et al. 2006. A murine model for bone loss from therapeutic and space-relevant sources of radiation. J. Appl. Physiol. 101:789–93 [Google Scholar]
  40. Hantman DA, Vogel JM, Donaldson CL, Friedman R, Goldsmith RS, Hulley SB. 40.  1973. Attempts to prevent disuse osteoporosis by treatment with calcitonin, longitudinal compression and supplementary calcium and phosphate. J. Clin. Endocrinol. Metab. 36:845–58 [Google Scholar]
  41. Heaney RP. 41.  2006. Role of dietary sodium in osteoporosis. J. Am. Coll. Nutr. 25:271–76S [Google Scholar]
  42. Heaney RP, Carey R, Harkness L. 42.  2005. Roles of vitamin D, n-3 polyunsaturated fatty acid, and soy isoflavones in bone health. J. Am. Diet. Assoc. 105:1700–2 [Google Scholar]
  43. Heer M, Baecker N, Mika C, Boese A, Gerzer R. 43.  2005. Immobilization induces a very rapid increase in osteoclast activity. Acta Astronaut. 57:31–36 [Google Scholar]
  44. Heer M, Frings-Meuthen P, Titze J, Boschmann M, Frisch S. 44.  et al. 2009. Increasing sodium intake from a previous low or high intake affects water, electrolyte and acid-base balance differently. Br. J. Nutr. 101:1286–94 [Google Scholar]
  45. Hogstrom M, Nordstrom P, Nordstrom A. 45.  2007. n-3 Fatty acids are positively associated with peak bone mineral density and bone accrual in healthy men: the NO2 Study. Am. J. Clin. Nutr. 85:803–7 [Google Scholar]
  46. Holguin N, Muir J, Rubin C, Judex S. 46.  2009. Short applications of very low-magnitude vibrations attenuate expansion of the intervertebral disc during extended bed rest. Spine J. 9:470–77 [Google Scholar]
  47. Holguin N, Uzer G, Chiang FP, Rubin C, Judex S. 47.  2011. Brief daily exposure to low-intensity vibration mitigates the degradation of the intervertebral disc in a frequency-specific manner. J. Appl. Physiol. 111:1846–53 [Google Scholar]
  48. Hwang TIS, Hill K, Schneider V, Pak CYC. 48.  1988. Effect of prolonged bedrest on the propensity for renal stone formation. J. Clin. Endocrinol. Metab. 66:109–12 [Google Scholar]
  49. Ihle R, Loucks AB. 49.  2004. Dose-response relationships between energy availability and bone turnover in young exercising women. J. Bone Miner. Res. 19:1231–40 [Google Scholar]
  50. Inst. Med 2001. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: Natl. Acad. Press
  51. Inst. Med 2011. Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: Natl. Acad. Press
  52. Jimi E, Aoki K, Saito H, D'Acquisto F, May MJ. 52.  et al. 2004. Selective inhibition of NF-kappaB blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat. Med. 10:617–24 [Google Scholar]
  53. Jowsey J. 53.  1971. Bone at the cellular level: the effects of inactivity. Hypogravic and Hypodynamic Environments NASA Spec. Publ. SP-269, ed. RH Murray, M McCally 111–19 Washington, DC: Natl. Aeronaut. Space Adm. [Google Scholar]
  54. Kang JX, Weylandt KH. 54.  2008. Modulation of inflammatory cytokines by omega-3 fatty acids. Subcell. Biochem. 49:133–43 [Google Scholar]
  55. Kiel DP, Hannan MT, Barton BA, Bouxsein ML, Lang TF. 55.  et al. 2010. Insights from the conduct of a device trial in older persons: low magnitude mechanical stimulation for musculoskeletal health. Clin. Trials 7:354–67 [Google Scholar]
  56. Kim BJ, Ahn SH, Bae SJ, Kim EH, Lee SH. 56.  et al. 2012. Iron overload accelerates bone loss in healthy postmenopausal women and middle-aged men: a 3-year retrospective longitudinal study. J. Bone Miner. Res. 27:2279–90 [Google Scholar]
  57. Klein L, van der Noort S, DeJak JJ. 57.  1966. Sequential studies of urinary hydroxyproline and serum alkaline phosphatase in acute paraplegia. Med. Serv. J. Can. 22:524–33 [Google Scholar]
  58. Kovesdy CP, Quarles LD. 58.  2013. Fibroblast growth factor-23: what we know, what we don't know, and what we need to know. Nephrol. Dial. Transplant. 28:2228–36 [Google Scholar]
  59. Krieger NS, Frick KK, Bushinsky DA. 59.  2004. Mechanism of acid-induced bone resorption. Curr. Opin. Nephrol. Hypertens. 13:423–36 [Google Scholar]
  60. Kurtz I, Maher T, Hulter HN, Schambelan M, Sebastian A. 60.  1983. Effect of diet on plasma acid-base composition in normal humans. Kidney Int. 24:670–80 [Google Scholar]
  61. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. 61.  2004. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J. Bone Miner. Res. 19:1006–12 [Google Scholar]
  62. Leach C, Rambaut P, Di Ferrante N. 62.  1979. Amino aciduria in weightlessness. Acta Astronaut. 6:1323–33 [Google Scholar]
  63. Leach CS. 63.  1971. Review of endocrine results: Project Mercury, Gemini Program, and Apollo Program. Proc. 1970 Manned Spacecr. Cent. Endocr. Program Conf., Oct. 5–7 NASA TM X-58068 3–13-16 Houston, TX: Natl. Aeronaut. Space Adm. [Google Scholar]
  64. Leach CS. 64.  1992. Biochemical and hematologic changes after short-term space flight. Microgravity Q. 2:69–75 [Google Scholar]
  65. Leach CS, Rambaut PC. 65.  1977. Biochemical responses of the Skylab crewmen: an overview. Biomedical results from Skylab, NASA Spec. Publ. SP-377 RS Johnston, LF Dietlein 204–16 Washington, DC: Natl. Aeronaut. Space Adm. [Google Scholar]
  66. LeBlanc A, Matsumoto T, Jones J, Shapiro J, Lang T. 66.  et al. 2013. Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos. Int. 24:2105–14 [Google Scholar]
  67. LeBlanc A, Schneider V, Krebs J, Evans H, Jhingran S, Johnson P. 67.  1987. Spinal bone mineral after 5 weeks of bed rest. Calcif. Tissue Int. 41:259–61 [Google Scholar]
  68. LeBlanc A, Schneider V, Shackelford L, West S, Oganov V. 68.  et al. 1996. Bone mineral and lean tissue loss after long duration space flight. J. Bone Miner. Res. 11:Suppl. 1S323 [Google Scholar]
  69. LeBlanc A, Schneider V, Shackelford L, West S, Oganov V. 69.  et al. 2000. Bone mineral and lean tissue loss after long duration space flight. J. Musculoskelet. Neuronal Interact. 1:157–60 [Google Scholar]
  70. LeBlanc A, Schneider V, Spector E, Evans H, Rowe R. 70.  et al. 1995. Calcium absorption, endogenous excretion, and endocrine changes during and after long-term bed rest. Bone 16:4 Suppl.301–4S [Google Scholar]
  71. LeBlanc AD, Driscol TB, Shackelford LC, Evans HJ, Rianon NJ. 71.  et al. 2002. Alendronate as an effective countermeasure to disuse induced bone loss. J. Musculoskelet. Neuronal Interact. 2:335–43 [Google Scholar]
  72. LeBlanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM. 72.  1990. Bone mineral loss and recovery after 17 weeks of bed rest. J. Bone Miner. Res. 5:843–50 [Google Scholar]
  73. LeBlanc AD, Spector ER, Evans HJ, Sibonga JD. 73.  2007. Skeletal responses to space flight and the bed rest analog: a review. J. Musculoskelet. Neuronal Interact. 7:33–47 [Google Scholar]
  74. Lemann J Jr, Relman AS. 74.  1959. The relation of sulfur metabolism to acid-base balance and electrolyte excretion: the effects of DL-methionine in normal man. J. Clin. Invest. 38:2215–23 [Google Scholar]
  75. Lenin M, Thiagarajan A, Nagaraj M, Varalakshmi P. 75.  2001. Attenuation of oxalate-induced nephrotoxicity by eicosapentaenoate-lipoate (EPA-LA) derivative in experimental rat model. Prostaglandins Leukot. Essent. Fatty Acids 65:265–70 [Google Scholar]
  76. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K. 76.  et al. 2012. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2224–60 [Google Scholar]
  77. Lin RW, Chen CH, Wang YH, Ho ML, Hung SH. 77.  et al. 2009. (-)-Epigallocatechin gallate inhibition of osteoclastic differentiation via NF-kappaB. Biochem. Biophys. Res. Commun. 379:1033–37 [Google Scholar]
  78. Lloyd SA, Bandstra ER, Willey JS, Riffle SE, Tirado-Lee L. 78.  et al. 2012. Effect of proton irradiation followed by hindlimb unloading on bone in mature mice: a model of long-duration spaceflight. Bone 51:756–64 [Google Scholar]
  79. Lockwood DR, Vogel JM, Schneider VS, Hulley SB. 79.  1975. Effect of the diphosphonate EHDP on bone mineral metabolism during prolonged bed rest. J. Clin. Endocrinol. Metab. 41:533–41 [Google Scholar]
  80. Lueken SA, Arnaud SB, Taylor AK, Baylink DJ. 80.  1993. Changes in markers of bone formation and resorption in a bed rest model of weightlessness. J. Bone Miner. Res. 8:1433–38 [Google Scholar]
  81. Lutwak L, Whedon GD, Lachance PA, Reid JM, Lipscomb HS. 81.  1969. Mineral, electrolyte and nitrogen balance studies of the Gemini-VII fourteen-day orbital space flight. J. Clin. Endocrinol. Metab. 29:1140–56 [Google Scholar]
  82. Mack PB, LaChance PA, Vose GP, Vogt FB. 82.  1967. Bone demineralization of foot and hand of Gemini-Titan IV, V and VII astronauts during orbital flight. Am. J. Roentgenol. Radium Ther. Nucl. Med. 100:503–11 [Google Scholar]
  83. Mack PB, Vogt FB. 83.  1971. Roentgenographic bone density changes in astronauts during representative Apollo space flight. Am. J. Roentgenol. Radium Ther. Nucl. Med. 113:621–33 [Google Scholar]
  84. Marangella M, Di Stefano M, Casalis S, Berutti S, D'Amelio P, Isaia GC. 84.  2004. Effects of potassium citrate supplementation on bone metabolism. Calcif. Tissue Int. 74:330–35 [Google Scholar]
  85. Mendes JFR, Arruda SF, de Almeida Siquira EM, Ito MK, da Silva EF. 85.  2009. Iron status and oxidative stress biomarkers in adults: a preliminary study. Nutrition 25:379–84 [Google Scholar]
  86. Meythaler JM, Tuel SM, Cross LL. 86.  1993. Successful treatment of immobilization hypercalcemia using calcitonin and etidronate. Arch. Phys. Med. Rehabil. 74:316–19 [Google Scholar]
  87. Michaud DS, Troiano RP, Subar AF, Runswick S, Bingham S. 87.  et al. 2003. Comparison of estimated renal net acid excretion from dietary intake and body size with urine pH. J. Am. Diet. Assoc. 103:1001–7 [Google Scholar]
  88. Minaire P, Meunier P, Edouard C, Bernard J, Courpron P, Bourret J. 88.  1974. Quantitative histological data on disuse osteoporosis: comparison with biological data. Calcif. Tissue Int. 17:57–73 [Google Scholar]
  89. Monga M, Macias B, Groppo E, Kostelec M, Hargens A. 89.  2006. Renal stone risk in a simulated microgravity environment: impact of treadmill exercise with lower body negative pressure. J. Urol. 176:127–31 [Google Scholar]
  90. Morey-Holton ER, Schnoes HK, DeLuca HF, Phelps ME, Klein RF. 90.  et al. 1988. Vitamin D metabolites and bioactive parathyroid hormone levels during Spacelab 2. Aviat. Space Environ. Med. 59:1038–41 [Google Scholar]
  91. Morgan JL, Skulan JL, Gordon GW, Romaniello SJ, Smith SM, Anbar AD. 91.  2012. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes. Proc. Natl. Acad. Sci. USA 109:9989–94 [Google Scholar]
  92. Morgan JL, Zwart SR, Heer M, Ploutz-Snyder R, Ericson K, Smith SM. 92.  2012. Bone metabolism and nutritional status during 30-day head-down-tilt bed rest. J. Appl. Physiol. 113:1519–29 [Google Scholar]
  93. Naftchi NE, Viau AT, Sell GH, Lowman EW. 93.  1980. Mineral metabolism in spinal cord injury. Arch. Phys. Med. Rehabil. 61:139–42 [Google Scholar]
  94. Natl. Aeronaut. Space Adm 2005. Nutrition requirements, standards, and operating bands for exploration missions. JSC Doc. #63555. Houston, TX: Lyndon B. Johnson Space Cent.
  95. Oganov VS, Bogomolov VV. 95.  2009. Human bone system in microgravity: review of research data, hypotheses and predictability of musculoskeletal system state in extended (exploration) missions. [Transl. from Russian.]. Aviakosm. Ekolog. Med. 43:3–12 [Google Scholar]
  96. Orwoll ES, Adler RA, Amin S, Binkley N, Lewiecki EM. 96.  et al. 2013. Skeletal health in long-duration astronauts: nature, assessment and management recommendations from the NASA bone summit. J. Bone Miner. Res. 28:1243–55 [Google Scholar]
  97. Pavy-Le Traon A, Heer M, Narici MV, Rittweger J, Vernikos J. 97.  2007. From space to Earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur. J. Appl. Physiol. 101:143–94 [Google Scholar]
  98. Raisz LG, Fall PM. 98.  1990. Biphasic effects of prostaglandin E2 on bone formation in cultured fetal rat calvariae: interaction with cortisol. Endocrinology 126:1654–59 [Google Scholar]
  99. Relman AS, Lennon EJ, Lemann J Jr. 99.  1961. Endogenous production of fixed acid and the measurement of the net balance of acid in normal subjects. J. Clin. Invest. 40:1621–30 [Google Scholar]
  100. Remer T, Manz F. 100.  1994. Estimation of the renal net acid excretion by adults consuming diets containing variable amounts of protein. Am. J. Clin. Nutr. 59:1356–61 [Google Scholar]
  101. Remer T, Manz F. 101.  1995. Potential renal acid load of foods and its influence on urine pH. J. Am. Diet. Assoc. 95:791–97 [Google Scholar]
  102. Rittweger J, Beller G, Armbrecht G, Mulder E, Buehring B. 102.  et al. 2010. Prevention of bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise. Bone 46:137–47 [Google Scholar]
  103. Sakhaee K, Maalouf NM, Abrams SA, Pak CY. 103.  2005. Effects of potassium alkali and calcium supplementation on bone turnover in postmenopausal women. J. Clin. Endocrinol. Metab. 90:3528–33 [Google Scholar]
  104. Schneider VS, McDonald J. 104.  1984. Skeletal calcium homeostasis and countermeasures to prevent disuse osteoporosis. Calcif. Tissue Int. 36:Suppl. 1S151–44 [Google Scholar]
  105. Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris RC Jr. 105.  1994. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N. Engl. J. Med. 330:1776–81 [Google Scholar]
  106. Sellmeyer DE, Schloetter M, Sebastian A. 106.  2002. Potassium citrate prevents increased urine calcium excretion and bone resorption induced by a high sodium chloride diet. J. Clin. Endocrinol. Metab. 87:2008–12 [Google Scholar]
  107. Shackelford LC, LeBlanc AD, Driscoll TB, Evans HJ, Rianon NJ. 107.  et al. 2004. Resistance exercise as a countermeasure to disuse-induced bone loss. J. Appl. Physiol. 97:119–29 [Google Scholar]
  108. Shapiro J, Smith B, Beck T, Ballard P, Dapthary M. 108.  et al. 2007. Treatment with zoledronic acid ameliorates negative geometric changes in the proximal femur following acute spinal cord injury. Calcif. Tissue Int. 80:316–22 [Google Scholar]
  109. Sibonga JD, Cavanagh PR, Lang TF, LeBlanc AD, Schneider VS. 109.  et al. 2008. Adaptation of the skeletal system during long-duration spaceflight. Clin. Rev. Bone Miner. Metabol. 5:249–61 [Google Scholar]
  110. Sibonga JD, Evans HJ, Sung HG, Spector ER, Lang TF. 110.  et al. 2007. Recovery of spaceflight-induced bone loss: bone mineral density after long-duration missions as fitted with an exponential function. Bone 41:973–78 [Google Scholar]
  111. Skulan J, Bullen T, Anbar AD, Puzas JE, Shackelford L. 111.  et al. 2007. Natural calcium isotopic composition of urine as a marker of bone mineral balance. Clin. Chem. 53:1155–58 [Google Scholar]
  112. Smith MC Jr, Rambaut PC, Vogel JM, Whittle MW. 112.  1977. Bone mineral measurement—experiment M078. Biomedical results from Skylab NASA Spec. Publ. SP-377, ed. RS Johnston, LF Dietlein 183–90 Washington, DC: Natl. Aeronaut. Space Adm. [Google Scholar]
  113. Smith SM. 113.  2002. Red blood cell and iron metabolism during space flight. Nutrition 18:864–66 [Google Scholar]
  114. Smith SM, Davis-Street JE, Fesperman JV, Calkins DS, Bawa M. 114.  et al. 2003. Evaluation of treadmill exercise in a lower body negative pressure chamber as a countermeasure for weightlessness-induced bone loss: a bed rest study with identical twins. J. Bone Miner. Res. 18:2223–30 [Google Scholar]
  115. Smith SM, Heer M. 115.  2002. Calcium and bone metabolism during space flight. Nutrition 18:849–52 [Google Scholar]
  116. Smith SM, Heer M, Wang Z, Huntoon CL, Zwart SR. 116.  2012. Long-duration space flight and bed rest effects on testosterone and other steroids. J. Clin. Endocrinol. Metab. 97:270–78 [Google Scholar]
  117. Smith SM, Heer MA, Shackelford L, Sibonga JD, Ploutz-Snyder L, Zwart SR. 117.  2012. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: evidence from biochemistry and densitometry. J. Bone Miner. Res. 27:1896–906 [Google Scholar]
  118. Smith SM, McCoy T, Gazda D, Morgan JL, Heer M, Zwart SR. 118.  2012. Space flight calcium: implications for astronaut health, spacecraft operations, and Earth. Nutrients 4:2047–68 [Google Scholar]
  119. Smith SM, Nillen JL, LeBlanc A, Lipton A, Demers LM. 119.  et al. 1998. Collagen cross-link excretion during space flight and bed rest. J. Clin. Endocrinol. Metab. 83:3584–91 [Google Scholar]
  120. Smith SM, Wastney ME, Morukov BV, Larina IM, Nyquist LE. 120.  et al. 1999. Calcium metabolism before, during, and after a 3-mo spaceflight: kinetic and biochemical changes. Am. J. Physiol. 277:R1–10 [Google Scholar]
  121. Smith SM, Wastney ME, O'Brien KO, Morukov BV, Larina IM. 121.  et al. 2005. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the Mir space station. J. Bone Miner. Res. 20:208–18 [Google Scholar]
  122. Smith SM, Zwart SR. 122.  2008. Nutritional biochemistry of spaceflight. Advances in Clinical Chemistry G Makowsky 4687–130 Burlington, VT: Academic [Google Scholar]
  123. Smith SM, Zwart SR, Block G, Rice BL, Davis-Street JE. 123.  2005. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. J. Nutr. 135:437–43 [Google Scholar]
  124. Smith SM, Zwart SR, Heer M, Lee SMC, Baecker N. 124.  et al. 2008. WISE-2005: supine treadmill exercise within lower body negative pressure and flywheel resistive exercise as a countermeasure to bed rest-induced bone loss in women during 60-day simulated microgravity. Bone 42:572–81 [Google Scholar]
  125. Smith SM, Zwart SR, Heer MA, Baecker N, Evans HJ. 125.  et al. 2009. Effects of artificial gravity during bed rest on bone metabolism in humans. J. Appl. Physiol. 107:47–53 [Google Scholar]
  126. Smith SM, Zwart SR, Kloeris V, Heer M. 126.  2009. Nutritional Biochemistry of Space Flight New York: Nova Sci. Publ.
  127. Spatz JM, Ellman R, Cloutier AM, Louis L, van Vliet M. 127.  et al. 2013. Sclerostin antibody inhibits skeletal deterioration due to reduced mechanical loading. J. Bone Miner. Res. 28:865–74 [Google Scholar]
  128. Spector ER, Smith SM, Sibonga JD. 128.  2009. Skeletal effects of long-duration head-down bed rest. Aviat. Space Environ. Med. 80:A23–28 [Google Scholar]
  129. Stenger MB, Evans JM, Knapp CF, Lee SM, Phillips TR. 129.  et al. 2012. Artificial gravity training reduces bed rest-induced cardiovascular deconditioning. Eur. J. Appl. Physiol. 112:605–16 [Google Scholar]
  130. Stewart AF, Akler M, Byers CM, Segre GV, Broadus AE. 130.  1982. Calcium homeostasis in immobilization: an example of resorptive hypercalciuria. N. Engl. J. Med. 306:1136–40 [Google Scholar]
  131. Strollo F, Riondino G, Harris B, Strollo G, Casarosa E. 131.  et al. 1998. The effect of microgravity on testicular androgen secretion. Aviat. Space Environ. Med. 69:133–36 [Google Scholar]
  132. Sun D, Krishnan A, Zaman K, Lawrence R, Bhattacharya A, Fernandes G. 132.  2003. Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice. J. Bone Miner. Res. 18:1206–16 [Google Scholar]
  133. Symons TB, Sheffield-Moore M, Chinkes DL, Ferrando AA, Paddon-Jones D. 133.  2009. Artificial gravity maintains skeletal muscle protein synthesis during 21 days of simulated microgravity. J. Appl. Physiol. 107:34–38 [Google Scholar]
  134. Syrovatka P, Kraml P, Potockova J, Fialova L, Vejrazka M. 134.  et al. 2009. Relationship between increased body iron stores, oxidative stress and insulin resistance in healthy men. Ann. Nutr. Metab. 54:268–74 [Google Scholar]
  135. Takeda E, Yamamoto H, Yamanaka-Okumura H, Taketani Y. 135.  2012. Dietary phosphorus in bone health and quality of life. Nutr. Rev. 70:311–21 [Google Scholar]
  136. Terano T. 136.  2001. Effect of omega 3 polyunsaturated fatty acid ingestion on bone metabolism and osteoporosis. World Rev. Nutr. Diet. 88:141–47 [Google Scholar]
  137. Tilton FE, Degioanni JJC, Schneider VS. 137.  1980. Long-term follow-up of Skylab bone demineralization. Aviat. Space Environ. Med. 51:1209–13 [Google Scholar]
  138. Tsay J, Yang Z, Ross FP, Cunningham-Rundles S, Lin H. 138.  et al. 2010. Bone loss caused by iron overload in a murine model: importance of oxidative stress. Blood 116:2582–89 [Google Scholar]
  139. Tulloch I, Smellie WS, Buck AC. 139.  1994. Evening primrose oil reduces urinary calcium excretion in both normal and hypercalciuric rats. Urol. Res. 22:227–30 [Google Scholar]
  140. Tuomainen TP, Loft S, Nyyssonen K, Punnonen K, Salonen JT, Poulsen HE. 140.  2007. Body iron is a contributor to oxidative damage of DNA. Free Radic. Res. 41:324–28 [Google Scholar]
  141. Vanek C, Connor WE. 141.  2007. Do n-3 fatty acids prevent osteoporosis?. Am. J. Clin. Nutr. 85:647–48 [Google Scholar]
  142. Vernikos J, Ludwig DA, Ertl AC, Wade CE, Keil L, O'Hara D. 142.  1996. Effect of standing or walking on physiological changes induced by head down bed rest: implications for spaceflight. Aviat. Space Environ. Med. 67:1069–79 [Google Scholar]
  143. Vico L, Chappard D, Alexandre C, Palle S, Minaire P. 143.  et al. 1987. Effects of a 120 day period of bed-rest on bone mass and bone cell activities in man: attempts at countermeasure. Bone Miner. 2:383–94 [Google Scholar]
  144. Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T. 144.  et al. 2000. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355:1607–11 [Google Scholar]
  145. Vogel JM. 145.  1975. Bone mineral measurement: Skylab experiment M-078. Acta Astronaut. 2:129–39 [Google Scholar]
  146. Vogel JM, Whittle MW. 146.  1976. Proceedings: bone mineral content changes in the Skylab astronauts. Am. J. Roentgenol. Radium Ther. Nucl. Med. 126:1296–97 [Google Scholar]
  147. Wade CE, Stanford KI, Stein TP, Greenleaf JE. 147.  2005. Intensive exercise training suppresses testosterone during bed rest. J. Appl. Physiol. 99:59–63 [Google Scholar]
  148. Wang H, Wan Y, Tam KF, Ling S, Bai Y. 148.  et al. 2012. Resistive vibration exercise retards bone loss in weight-bearing skeletons during 60 days bed rest. Osteoporos. Int. 23:2169–78 [Google Scholar]
  149. Watanabe Y, Ohshima H, Mizuno K, Sekiguchi C, Fukunaga M. 149.  et al. 2004. Intravenous pamidronate prevents femoral bone loss and renal stone formation during 90-day bed rest. J. Bone Miner. Res. 19:1771–78 [Google Scholar]
  150. Watkins BA, Lippman HE, Le Bouteiller L, Li Y, Seifert MF. 150.  2001. Bioactive fatty acids: role in bone biology and bone cell function. Prog. Lipid Res. 40:125–48 [Google Scholar]
  151. Whedon G, Lutwak L, Rambaut P, Whittle M, Leach C. 151.  et al. 1976. Effect of weightlessness on mineral metabolism; metabolic studies on Skylab orbital flights. Calcif. Tissue Res. 21:Suppl.423–30 [Google Scholar]
  152. Whedon GD. 152.  1984. Disuse osteoporosis: physiological aspects. Calcif. Tissue Int. 36:S146–50 [Google Scholar]
  153. Whedon GD, Deitrick JE, Shorr E. 153.  1949. Modification of the effects of immobilization upon metabolic and physiologic functions of normal men by the use of an oscillating bed. Am. J. Med. 6:684–711 [Google Scholar]
  154. Whedon GD, Lutwak L, Rambaut PC, Whittle MW, Smith MC. 154.  et al. 1977. Mineral and nitrogen metabolic studies, experiment M071. Biomedical results from Skylab NASA Spec. Publ. SP-377, ed. RS Johnston, LF Dietlein 164–74 Washington, DC: Natl. Aeronaut. Space Adm. [Google Scholar]
  155. Whedon GD, Rambaut PC. 155.  2006. Effects of long-duration spaceflight on calcium metabolism: review of human studies from Skylab to the present. Acta Astronaut. 58:59–81 [Google Scholar]
  156. Whitson P, Pietrzyk R, Pak C, Cintron N. 156.  1993. Alterations in renal stone risk factors after space flight. J. Urol. 150:803–7 [Google Scholar]
  157. Whitson P, Pietrzyk R, Sams C. 157.  1999. Space flight and the risk of renal stones. J. Gravit. Physiol. 6:P87–88 [Google Scholar]
  158. Whitson PA, Pietrzyk RA, Morukov BV, Sams CF. 158.  2001. The risk of renal stone formation during and after long duration space flight. Nephron 89:264–70 [Google Scholar]
  159. Whitson PA, Pietrzyk RA, Pak CY. 159.  1997. Renal stone risk assessment during Space Shuttle flights. J. Urol. 158:2305–10 [Google Scholar]
  160. Whitson PA, Pietrzyk RA, Sams CF. 160.  2001. Urine volume and its effects on renal stone risk in astronauts. Aviat. Space Environ. Med. 72:368–72 [Google Scholar]
  161. Wimalawansa SM, Wimalawansa SJ. 161.  1999. Simulated weightlessness-induced attenuation of testosterone production may be responsible for bone loss. Endocrine 10:253–60 [Google Scholar]
  162. Xie L, Rubin C, Judex S. 162.  2008. Enhancement of the adolescent murine musculoskeletal system using low-level mechanical vibrations. J. Appl. Physiol. 104:1056–62 [Google Scholar]
  163. Yang Y, Kaplan A, Pierre M, Adams G, Cavanagh P. 163.  et al. 2007. Space cycle: a human-powered centrifuge that can be used for hypergravity resistance training. Aviat. Space Environ. Med. 78:2–9 [Google Scholar]
  164. Yasui T, Suzuki S, Itoh Y, Tozawa K, Tokudome S, Kohri K. 164.  2008. Eicosapentaenoic acid has a preventive effect on the recurrence of nephrolithiasis. Urol. Int. 81:135–38 [Google Scholar]
  165. Yuen E, Morgan JLL, Zwart SR, Gonzales E, Camp K. 165.  et al. 2012. High iron diet and radiation exposure induce oxidative stress and reduce bone density. J. Bone Miner. Res. 27:Suppl. 1Abstr. 286 [Google Scholar]
  166. Zarkadas M, Gougeon-Reyburn R, Marliss EB, Block E, Alton-Mackey M. 166.  1989. Sodium chloride supplementation and urinary calcium excretion in postmenopausal women. Am. J. Clin. Nutr. 50:1088–94 [Google Scholar]
  167. Zerwekh JE. 167.  2002. Nutrition and renal stone disease in space. Nutrition 18:857–63 [Google Scholar]
  168. Zerwekh JE, Odvina CV, Wuermser LA, Pak CY. 168.  2007. Reduction of renal stone risk by potassium-magnesium citrate during 5 weeks of bed rest. J. Urol. 177:2179–84 [Google Scholar]
  169. Zerwekh JE, Ruml LA, Gottschalk F, Pak CY. 169.  1998. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J. Bone Miner. Res. 13:1594–601 [Google Scholar]
  170. Zittermann A, Heer M, Caillot-Augusso A, Rettberg P, Scheld K. 170.  et al. 2000. Microgravity inhibits intestinal calcium absorption as shown by a stable strontium test. Eur. J. Clin. Invest. 30:1036–43 [Google Scholar]
  171. Zwart SR, Davis-Street JE, Paddon-Jones D, Ferrando AA, Wolfe RR, Smith SM. 171.  2005. Amino acid supplementation alters bone metabolism during simulated weightlessness. J. Appl. Physiol. 99:134–40 [Google Scholar]
  172. Zwart SR, Hargens AR, Lee SM, Macias BR, Watenpaugh DE. 172.  et al. 2007. Lower body negative pressure treadmill exercise as a countermeasure for bed rest-induced bone loss in female identical twins. Bone 40:529–37 [Google Scholar]
  173. Zwart SR, Morgan JL, Smith SM. 173.  2013. Iron status and its relations with oxidative damage and bone loss during long-duration space flight on the International Space Station. Am. J. Clin. Nutr. 98:217–23 [Google Scholar]
  174. Zwart SR, Pierson D, Mehta S, Gonda S, Smith SM. 174.  2010. Capacity of omega-3 fatty acids or eicosapentaenoic acid to counteract weightlessness-induced bone loss by inhibiting NF-kappaB activation: from cells to bed rest to astronauts. J. Bone Miner. Res. 25:1049–57 [Google Scholar]
/content/journals/10.1146/annurev-nutr-071813-105440
Loading
/content/journals/10.1146/annurev-nutr-071813-105440
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error