1932

Abstract

Hydrogen sulfide (HS) has emerged as an important signaling molecule with beneficial effects on various cellular processes affecting, for example, cardiovascular and neurological functions. The physiological importance of HS is motivating efforts to develop strategies for modulating its levels. However, advancement in the field of HS-based therapeutics is hampered by fundamental gaps in our knowledge of how HS is regulated, its mechanism of action, and its molecular targets. This review provides an overview of sulfur metabolism; describes recent progress that has shed light on the mechanism of HS as a signaling molecule; and examines nutritional regulation of sulfur metabolism, which pertains to health and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-071813-105654
2014-07-17
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/nutr/34/1/annurev-nutr-071813-105654.html?itemId=/content/journals/10.1146/annurev-nutr-071813-105654&mimeType=html&fmt=ahah

Literature Cited

  1. Abdrashitova AT, Panova TN, Belolapenko IA. 1.  2011. [Changes in ageing pace and major immune parameters among individuals with long exposure to hydrogen sulfide.]. Med. Tr. Prom. Ekol. 7:10–16 [Google Scholar]
  2. Abe K, Kimura H. 2.  1996. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 16:1066–71 [Google Scholar]
  3. Abeles RH, Walsh C. 3.  1973. Acetylenic enzyme inactivators. Inactivation of γ-cystathionase. J. Am. Chem. Soc. 95:6124–25 [Google Scholar]
  4. Achouri Y, Robbi M, Van Schaftingen E. 4.  1999. Role of cysteine in the dietary control of the expression of 3-phosphoglycerate dehydrogenase in rat liver. Biochem. J. 344:Part 115–21 [Google Scholar]
  5. Adibi SA. 5.  1971. Interrelationships between level of amino acids in plasma and tissues during starvation. Am. J. Physiol. 221:829–38 [Google Scholar]
  6. Agrawal N, Banerjee R. 6.  2008. Human polycomb 2 protein is a SUMO E3 ligase and alleviates substrate-induced inhibition of cystathionine beta-synthase sumoylation. PLoS ONE 3:e4032 [Google Scholar]
  7. Akagi R. 7.  1982. Purification and characterization of cysteine aminotransferase from rat liver cytosol. Acta Med. Okayama 36:187–97 [Google Scholar]
  8. Al-Ajmi MO, Kutty SK. 8.  2005. A case report—ethyl malonic aciduria encephalopathy with respiratory failure and nephrotic syndrome rare presentation. Middle East J. Fam. Med. 3:29–32 [Google Scholar]
  9. Albrecht J, Schousboe A. 9.  2005. Taurine interaction with neurotransmitter receptors in the CNS: an update. Neurochem. Res. 30:1615–21 [Google Scholar]
  10. Ali MY, Ping CY, Mok YY, Ling L, Whiteman M. 10.  et al. 2006. Regulation of vascular nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulphide?. Br. J. Pharmacol. 149:625–34 [Google Scholar]
  11. Alsayed R, Al Quobaili F, Srour S, Geisel J, Obeid R. 11.  2013. Elevated dimethylglycine in blood of children with congenital heart defects and their mothers. Metabolism 62:1074–80 [Google Scholar]
  12. Alston TA, Porter DJ, Mela L, Bright HJ. 12.  1980. Inactivation of alanine aminotransferase by the neurotoxin beta-cyano-L-alanine. Biochem. Biophys. Res. Commun. 92:299–304 [Google Scholar]
  13. Arndt C, Gaill F, Felbeck H. 13.  2001. Anaerobic sulfur metabolism in thiotrophic symbioses. J. Exp. Biol. 204:741–50 [Google Scholar]
  14. Arnelle DR, Stamler JS. 14.  1995. NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch. Biochem. Biophys. 318:279–85 [Google Scholar]
  15. Asimakopoulou A, Panopoulos P, Chasapis CT, Coletta C, Zhou Z. 15.  et al. 2013. Selectivity of commonly used pharmacological inhibitors for cystathionine beta synthase (CBS) and cystathionine gamma lyase (CSE). Br. J. Pharmacol. 169:922–32 [Google Scholar]
  16. Babu E, Kanai Y, Chairoungdua A, Kim DK, Iribe Y. 16.  et al. 2003. Identification of a novel system L amino acid transporter structurally distinct from heterodimeric amino acid transporters. J. Biol. Chem. 278:43838–45 [Google Scholar]
  17. Bachhawat AK, Thakur A, Kaur J, Zulkifli M. 17.  2013. Glutathione transporters. Biochim. Biophys. Acta 1830:3154–64 [Google Scholar]
  18. Bagley PJ, Stipanuk MH. 18.  1995. Rats fed a low protein diet supplemented with sulfur amino acids have increased cysteine dioxygenase activity and increased taurine production in hepatocytes. J. Nutr. 125:933–40 [Google Scholar]
  19. Baker DH. 19.  2006. Comparative species utilization and toxicity of sulfur amino acids. J. Nutr. 136:1670–75S [Google Scholar]
  20. Ballatori N, Hammond CL, Cunningham JB, Krance SM, Marchan R. 20.  2005. Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins. Toxicol. Appl. Pharmacol. 204:238–55 [Google Scholar]
  21. Banerjee R. 21.  2006. B12 trafficking in mammals: a case for coenzyme escort service. ACS Chem. Biol. 1:149–59 [Google Scholar]
  22. Banerjee R, Gherasim C, Padovani D. 22.  2009. The tinker, tailor, soldier in intracellular B12 trafficking. Curr. Opin. Chem. Biol. 13:484–91 [Google Scholar]
  23. Bartholomew TC, Powell GM, Dodgson KS, Curtis CG. 23.  1980. Oxidation of sodium sulphide by rat liver, lungs and kidney. Biochem. Pharmacol. 29:2431–37 [Google Scholar]
  24. Barton LL, Fauque GD. 24.  2009. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv. Appl. Microbiol. 68:41–98 [Google Scholar]
  25. Barve A, Khan R, Marsano L, Ravindra KV, McClain C. 25.  2008. Treatment of alcoholic liver disease. Ann. Hepatol. 7:5–15 [Google Scholar]
  26. Beatty PW, Reed DJ. 26.  1980. Involvement of the cystathionine pathway in the biosynthesis of glutathione by isolated rat hepatocytes. Arch. Biochem. Biophys. 204:80–87 [Google Scholar]
  27. Beauchamp RO Jr, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA. 27.  1984. A critical review of the literature on hydrogen sulfide toxicity. Crit. Rev. Toxicol. 13:25–97 [Google Scholar]
  28. Beck JF, Bradbury CM, Connors AJ, Donini JC. 28.  1981. Nitrite as antidote for acute hydrogen sulfide intoxication?. Am. Ind. Hyg. Assoc. J. 42:805–9 [Google Scholar]
  29. Belardinelli MC, Chabli A, Chadefaux-Vekemans B, Kamoun P. 29.  2001. Urinary sulfur compounds in Down syndrome. Clin. Chem. 47:1500–1 [Google Scholar]
  30. Benevenga NJ, Steele RD. 30.  1984. Adverse effects of excessive consumption of amino acids. Annu. Rev. Nutr. 4:157–81 [Google Scholar]
  31. Bian JS, Yong QC, Pan TT, Feng ZN, Ali MY. 31.  et al. 2006. Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J. Pharmacol. Exp. Ther. 316:670–78 [Google Scholar]
  32. Blackstone E, Morrison M, Roth MB. 32.  2005. H2S induces a suspended animation-like state in mice. Science 308:518 [Google Scholar]
  33. Brancaleone V, Roviezzo F, Vellecco V, De Gruttola L, Bucci M, Cirino G. 33.  2008. Biosynthesis of H2S is impaired in non-obese diabetic (NOD) mice. Br. J. Pharmacol. 155:673–80 [Google Scholar]
  34. Branzoli U, Massey V. 34.  1974. Evidence for an active site persulfide residue in rabbit liver aldehyde oxidase. J. Biol. Chem. 249:4346–49 [Google Scholar]
  35. Brechbuhl HM, Gould N, Kachadourian R, Riekhof WR, Voelker DR, Day BJ. 35.  2010. Glutathione transport is a unique function of the ATP-binding cassette protein ABCG2. J. Biol. Chem. 285:16582–87 [Google Scholar]
  36. Bredt DS, Hwang PM, Snyder SH. 36.  1990. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–70 [Google Scholar]
  37. Brown CA, McKinney KQ, Kaufman JS, Gravel RA, Rozen R. 37.  2000. A common polymorphism in methionine synthase reductase increases risk of premature coronary artery disease. J. Cardiovasc. Risk 7:197–200 [Google Scholar]
  38. Burnett G, Marcotte P, Walsh C. 38.  1980. Mechanism-based inactivation of pig heart L-alanine transaminase by L-propargylglycine. Half-site reactivity. J. Biol. Chem. 255:3487–91 [Google Scholar]
  39. Cai WJ, Wang MJ, Moore PK, Jin HM, Yao T, Zhu YC. 39.  2007. The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc. Res. 76:29–40 [Google Scholar]
  40. Chauncey TR, Uhteg LC, Westley J. 40.  1987. Thiosulfate reductase. Methods Enzymol. 143:350–4 [Google Scholar]
  41. Chen Z, Banerjee R. 41.  1996. Characterization of the Human and Porcine Methionine Synthases and Their Redox Partners New York: Kluwer
  42. Cherney MM, Zhang Y, Solomonson M, Weiner JH, James MN. 42.  2010. Crystal structure of sulfide:quinone oxidoreductase from Acidithiobacillus ferrooxidans: insights into sulfidotrophic respiration and detoxification. J. Mol. Biol. 398:292–305 [Google Scholar]
  43. Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R. 43.  2009. H2S biogenesis by human cystathionine gamma-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J. Biol. Chem. 284:11601–12 [Google Scholar]
  44. Cho ES, Hovanec-Brown J, Tomanek RJ, Stegink LD. 44.  1991. Propargylglycine infusion effects on tissue glutathione levels, plasma amino acid concentrations and tissue morphology in parenterally-fed growing rats. J. Nutr. 121:785–94 [Google Scholar]
  45. Cho WH, Choi CH, Park JY, Kang SK, Kim YK. 45.  2006. 15-deoxy-(Δ12,14)-prostaglandin J2 (15d-PGJ2) induces cell death through caspase-independent mechanism in A172 human glioma cells. Neurochem. Res. 31:1247–54 [Google Scholar]
  46. Christie GR, Hyde R, Hundal HS. 46.  2001. Regulation of amino acid transporters by amino acid availability. Curr. Opin. Clin. Nutr. Metab. Care 4:425–31 [Google Scholar]
  47. Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. 47.  1998. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch. Neurol. 55:1449–55 [Google Scholar]
  48. Clauson KA, Shields KM, McQueen CE, Persad N. 48.  2008. Safety issues associated with commercially available energy drinks. J. Am. Pharm. Assoc. 48:e55–63; quiz e64–67 [Google Scholar]
  49. Cohen HJ, Betcher-Lange S, Kessler DL, Rajagopalan KV. 49.  1972. Hepatic sulfite oxidase. Congruency in mitochondria of prosthetic groups and activity. J. Biol. Chem. 247:7759–66 [Google Scholar]
  50. Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Modis K. 50.  et al. 2012. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc. Natl. Acad. Sci. USA 109:9161–66 [Google Scholar]
  51. Cornell NW, Zuurendonk PF, Kerich MJ, Straight CB. 51.  1984. Selective inhibition of alanine aminotransferase and aspartate aminotransferase in rat hepatocytes. Biochem. J. 220:707–16 [Google Scholar]
  52. Costantino M, Filippelli A, Quenau P, Nicolas JP, Coiro V. 52.  2012. [Sulphur mineral water and SPA therapy in osteoarthritis.]. Therapie 67:43–48 [Google Scholar]
  53. Crawhall JC, Parker R, Sneddon W, Young EP. 53.  1969. Beta-mercaptolactate-cysteine disulfide in the urine of a mentally retarded patient. Am. J. Dis. Child 117:71–82 [Google Scholar]
  54. Crawhall JC, Parker R, Sneddon W, Young EP, Ampola MG. 54.  et al. 1968. Beta-mercaptolactate-cysteine disulfide: analog of cystine in the urine of a mentally retarded patient. Science 160:419–20 [Google Scholar]
  55. Curtis CG, Bartholomew TC, Rose FA, Dodgson KS. 55.  1972. Detoxication of sodium 35 S-sulphide in the rat. Biochem. Pharmacol. 21:2313–21 [Google Scholar]
  56. d'Emmanuele di Villa Bianca R, Sorrentino R, Maffia P, Mirone V, Imbimbo C. 56.  et al. 2009. Hydrogen sulfide as a mediator of human corpus cavernosum smooth-muscle relaxation. Proc. Natl. Acad. Sci. USA 106:4513–18 [Google Scholar]
  57. Dayal S, Bottiglieri T, Arning E, Maeda N, Malinow MR. 57.  et al. 2001. Endothelial dysfunction and elevation of S-adenosylhomocysteine in cystathionine beta-synthase-deficient mice. Circ. Res. 88:1203–9 [Google Scholar]
  58. Dickhout JG, Carlisle RE, Jerome DE, Mohammed-Ali Z, Jiang H. 58.  et al. 2012. Integrated stress response modulates cellular redox state via induction of cystathionine gamma-lyase: cross-talk between integrated stress response and thiol metabolism. J. Biol. Chem. 287:7603–14 [Google Scholar]
  59. Diwakar L, Ravindranath V. 59.  2007. Inhibition of cystathionine-gamma-lyase leads to loss of glutathione and aggravation of mitochondrial dysfunction mediated by excitatory amino acid in the CNS. Neurochem. Int. 50:418–26 [Google Scholar]
  60. Dominy JE Jr, Hirschberger LL, Coloso RM, Stipanuk MH. 60.  2006. Regulation of cysteine dioxygenase degradation is mediated by intracellular cysteine levels and the ubiquitin-26 S proteasome system in the living rat. Biochem. J. 394:267–73 [Google Scholar]
  61. Dominy JE Jr, Hwang J, Guo S, Hirschberger LL, Zhang S, Stipanuk MH. 61.  2008. Synthesis of amino acid cofactor in cysteine dioxygenase is regulated by substrate and represents a novel post-translational regulation of activity. J. Biol. Chem. 283:12188–201 [Google Scholar]
  62. Dominy JE Jr, Hwang J, Stipanuk MH. 62.  2007. Overexpression of cysteine dioxygenase reduces intracellular cysteine and glutathione pools in HepG2/C3A cells. Am. J. Physiol. Endocrinol. Metab. 293:E62–69 [Google Scholar]
  63. Dominy JE Jr, Simmons CR, Hirschberger LL, Hwang J, Coloso RM, Stipanuk MH. 63.  2007. Discovery and characterization of a second mammalian thiol dioxygenase, cysteamine dioxygenase. J. Biol. Chem. 282:25189–98 [Google Scholar]
  64. Dubilier N, Mulders C, Ferdelman T, de Beer D, Pernthaler A. 64.  et al. 2001. Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature 411:298–302 [Google Scholar]
  65. Duperron S, Guezi H, Gaudron SM, Pop Ristova P, Wenzhofer F, Boetius A. 65.  2011. Relative abundances of methane- and sulphur-oxidising symbionts in the gills of a cold seep mussel and link to their potential energy sources. Geobiology 9:481–91 [Google Scholar]
  66. Ebesunun MO, Obajobi EO. 66.  2012. Elevated plasma homocysteine in type 2 diabetes mellitus: a risk factor for cardiovascular diseases. Pan Afr. Med. J. 12:48 [Google Scholar]
  67. Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW. 67.  et al. 2007. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc. Natl. Acad. Sci. USA 104:15560–65 [Google Scholar]
  68. Engbersen AM, Franken DG, Boers GH, Stevens EM, Trijbels FJ, Blom HJ. 68.  1995. Thermolabile 5,10-methylenetetrahydrofolate reductase as a cause of mild hyperhomocysteinemia. Am. J. Hum. Genet. 56:142–50 [Google Scholar]
  69. Enokido Y, Suzuki E, Iwasawa K, Namekata K, Okazawa H, Kimura H. 69.  2005. Cystathionine β-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J. 19:1854–56 [Google Scholar]
  70. Eto K, Asada T, Arima K, Makifuchi T, Kimura H. 70.  2002. Brain hydrogen sulfide is severely decreased in Alzheimer's disease. Biochem. Biophys. Res. Commun. 293:1485–88 [Google Scholar]
  71. Fago A, Jensen FB, Tota B, Feelisch M, Olson KR. 71.  et al. 2012. Integrating nitric oxide, nitrite and hydrogen sulfide signaling in the physiological adaptations to hypoxia: a comparative approach. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 162:1–6 [Google Scholar]
  72. Filipovic MR, Eberhardt M, Prokopovic V, Mijuskovic A, Orescanin-Dusic Z. 72.  et al. 2013. Beyond H2S and NO interplay: hydrogen sulfide and nitroprusside react directly to give nitroxyl (HNO). A new pharmacological source of HNO. J. Med. Chem. 56:1499–508 [Google Scholar]
  73. Filipovic MR, Miljkovic J, Nauser T, Royzen M, Klos K. 73.  et al. 2012. Chemical characterization of the smallest S-nitrosothiol, HSNO; cellular cross-talk of H2S and S-nitrosothiols. J. Am. Chem. Soc. 134:12016–27 [Google Scholar]
  74. Finkelstein JD. 74.  2000. Pathways and regulation of homocysteine metabolism in mammals. Semin. Thromb. Hemost. 26:219–25 [Google Scholar]
  75. Finkelstein JD, Martin JJ. 75.  1986. Methionine metabolism in mammals. Adaptation to methionine excess. J. Biol. Chem. 261:1582–87 [Google Scholar]
  76. Flores-Santana W, Salmon DJ, Donzelli S, Switzer CH, Basudhar D. 76.  et al. 2011. The specificity of nitroxyl chemistry is unique among nitrogen oxides in biological systems. Antioxid. Redox Signal. 14:1659–74 [Google Scholar]
  77. Forman HJ, Fukuto JM, Torres M. 77.  2004. Redox signaling: Thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am. J. Physiol. Cell Physiol. 287:C246–56 [Google Scholar]
  78. Forslund AH, Hambraeus L, van Beurden H, Holmback U, El-Khoury AE. 78.  et al. 2000. Inverse relationship between protein intake and plasma free amino acids in healthy men at physical exercise. Am. J. Physiol. Endocrinol. Metab. 278:E857–67 [Google Scholar]
  79. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA. 79.  et al. 1995. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 10:111–13 [Google Scholar]
  80. Fu YG, Sung JJ, Wu KC, Bai AH, Chan MC. 80.  et al. 2006. Inhibition of gastric cancer cells associated angiogenesis by 15d-prostaglandin J2 through the downregulation of angiopoietin-1. Cancer Lett. 243:246–54 [Google Scholar]
  81. Fukagawa NK, Galbraith RA. 81.  2004. Advancing age and other factors influencing the balance between amino acid requirements and toxicity. J. Nutr. 134:1569–74S [Google Scholar]
  82. Fukuto JM, Bartberger MD, Dutton AS, Paolocci N, Wink DA, Houk KN. 82.  2005. The physiological chemistry and biological activity of nitroxyl (HNO): the neglected, misunderstood, and enigmatic nitrogen oxide. Chem. Res. Toxicol. 18:790–801 [Google Scholar]
  83. Fukuto JM, Chiang K, Hszieh R, Wong P, Chaudhuri G. 83.  1992. The pharmacological activity of nitroxyl: a potent vasodilator with activity similar to nitric oxide and/or endothelium-derived relaxing factor. J. Pharmacol. Exp. Ther. 263:546–51 [Google Scholar]
  84. Furne J, Saeed A, Levitt MD. 84.  2008. Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295:R1479–85 [Google Scholar]
  85. Furne J, Springfield J, Koenig T, DeMaster E, Levitt MD. 85.  2001. Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: a specialized function of the colonic mucosa. Biochem. Pharmacol. 62:255–59 [Google Scholar]
  86. Garcia-Bereguiain MA, Samhan-Arias AK, Martin-Romero FJ, Gutierrez-Merino C. 86.  2008. Hydrogen sulfide raises cytosolic calcium in neurons through activation of L-type Ca2+ channels. Antioxid. Redox Signal. 10:31–42 [Google Scholar]
  87. Garg S, Vitvitsky V, Gendelman HE, Banerjee R. 87.  2006. Monocyte differentiation, activation, and mycobacterial killing are linked to transsulfuration-dependent redox metabolism. J. Biol. Chem. 281:38712–20 [Google Scholar]
  88. Garg SK, Yan Z, Vitvitsky V, Banerjee R. 88.  2011. Differential dependence on cysteine from transsulfuration versus transport during T cell activation. Antioxid. Redox Signal. 15:39–47 [Google Scholar]
  89. Geng B, Chang L, Pan C, Qi Y, Zhao J. 89.  et al. 2004. Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem. Biophys. Res. Commun. 318:756–63 [Google Scholar]
  90. Gherasim C, Lofgren M, Banerjee R. 90.  2013. Navigating the B12 road: assimilation, delivery and disorders of cobalamin. J. Biol. Chem. 288:13186–93 [Google Scholar]
  91. Ghosh W, Dam B. 91.  2009. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol. Rev. 33:999–1043 [Google Scholar]
  92. Girguis PR, Childress JJ. 92.  2006. Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature. J. Exp. Biol. 209:3516–28 [Google Scholar]
  93. Goslar T, Mars T, Podbregar M. 93.  2011. Total plasma sulfide as a marker of shock severity in nonsurgical adult patients. Shock 36:350–55 [Google Scholar]
  94. Goubern M, Andriamihaja M, Nubel T, Blachier F, Bouillaud F. 94.  2007. Sulfide, the first inorganic substrate for human cells. FASEB J. 21:1699–706 [Google Scholar]
  95. Greiner R, Palinkas Z, Basell K, Becher D, Antelmann H. 95.  et al. 2013. Polysulfides link H2S to protein thiol oxidation. Antioxid. Redox Signal. 19:1749–65 [Google Scholar]
  96. Gulati S, Baker P, Li YN, Fowler B, Kruger W. 96.  et al. 1996. Defects in human methionine synthase in cblG patients. Hum. Mol. Genet. 5:1859–65 [Google Scholar]
  97. Guttormsen AB, Solheim E, Refsum H. 97.  2004. Variation in plasma cystathionine and its relation to changes in plasma concentrations of homocysteine and methionine in healthy subjects during a 24-h observation period. Am. J. Clin. Nutr. 79:76–79 [Google Scholar]
  98. Han X, Patters AB, Jones DP, Zelikovic I, Chesney RW. 98.  2006. The taurine transporter: mechanisms of regulation. Acta Physiol. 187:61–73 [Google Scholar]
  99. Han Y, Qin J, Chang X, Yang Z, Tang X, Du J. 99.  2005. Hydrogen sulfide may improve the hippocampal damage induced by recurrent febrile seizures in rats. Biochem. Biophys. Res. Commun. 327:431–36 [Google Scholar]
  100. Hansen SH, Grunnet N. 100.  2013. Taurine, glutathione and bioenergetics. Adv. Exp. Med. Biol. 776:3–12 [Google Scholar]
  101. Hargrove JL. 101.  1988. Persulfide generated from L-cysteine inactivates tyrosine aminotransferase. Requirement for a protein with cysteine oxidase activity and gamma-cystathionase. J. Biol. Chem. 263:17262–69 [Google Scholar]
  102. Herrmann W, Schorr H, Obeid R, Makowski J, Fowler B, Kuhlmann MK. 102.  2005. Disturbed homocysteine and methionine cycle intermediates S-adenosylhomocysteine and S-adenosylmethionine are related to degree of renal insufficiency in type 2 diabetes. Clin. Chem. 51:891–97 [Google Scholar]
  103. Hildebrandt TM, Grieshaber MK. 103.  2008. Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J. 275:3352–61 [Google Scholar]
  104. Hill BC, Woon TC, Nicholls P, Peterson J, Greenwood C, Thomson AJ. 104.  1984. Interactions of sulphide and other ligands with cytochrome c oxidase. An electron-paramagnetic-resonance study. Biochem. J. 224:591–600 [Google Scholar]
  105. Hobbs CA, Sherman SL, Yi P, Hopkins SE, Torfs CP. 105.  et al. 2000. Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome. Am. J. Hum. Genet. 67:623–30 [Google Scholar]
  106. Hoogeveen EK, Kostense PJ, Beks PJ, Mackaay AJ, Jakobs C. 106.  et al. 1998. Hyperhomocysteinemia is associated with an increased risk of cardiovascular disease, especially in non-insulin-dependent diabetes mellitus: a population-based study. Arterioscler. Thromb. Vasc. Biol. 18:133–38 [Google Scholar]
  107. Hosoki R, Matsuki N, Kimura H. 107.  1997. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun. 237:527–31 [Google Scholar]
  108. Hotamisligil GS. 108.  2010. Endoplasmic reticulum stress and atherosclerosis. Nat. Med. 16:396–99 [Google Scholar]
  109. Hu LF, Lu M, Hon Wong PT, Bian JS. 109.  2011. Hydrogen sulfide: neurophysiology and neuropathology. Antioxid. Redox Signal. 15:405–19 [Google Scholar]
  110. Hu LF, Lu M, Wu ZY, Wong PT-H, Bian JS. 110.  2009. Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function. Mol. Pharmacol. 75:27–34 [Google Scholar]
  111. Huang J, Niknahad H, Khan S, O'Brien PJ. 111.  1998. Hepatocyte-catalysed detoxification of cyanide by L- and D-cysteine. Biochem. Pharmacol. 55:1983–90 [Google Scholar]
  112. Hultberg B, Agardh E, Andersson A, Brattstrom L, Isaksson A. 112.  et al. 1991. Increased levels of plasma homocysteine are associated with nephropathy, but not severe retinopathy in type 1 diabetes mellitus. Scand. J. Clin. Lab. Invest. 51:277–82 [Google Scholar]
  113. Huxtable RJ. 113.  1989. Taurine in the central nervous system and the mammalian actions of taurine. Prog. Neurobiol. 32:471–533 [Google Scholar]
  114. Huxtable RJ. 114.  1992. Physiological actions of taurine. Physiol. Rev. 72:101–63 [Google Scholar]
  115. Iantomasi T, Favilli F, Marraccini P, Magaldi T, Bruni P, Vincenzini MT. 115.  1997. Glutathione transport system in human small intestine epithelial cells. Biochim. Biophys. Acta 1330:274–83 [Google Scholar]
  116. Irvine JC, Favaloro JL, Widdop RE, Kemp-Harper BK. 116.  2007. Nitroxyl anion donor, Angeli's salt, does not develop tolerance in rat isolated aortae. Hypertension 49:885–92 [Google Scholar]
  117. Irwin MI, Hegsted DM. 117.  1971. A conspectus of research on amino acid requirements of man. J. Nutr. 101:539–66 [Google Scholar]
  118. Ishii I, Akahoshi N, Yamada H, Nakano S, Izumi T, Suematsu M. 118.  2010. Cystathionine γ-lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J. Biol. Chem. 285:26358–68 [Google Scholar]
  119. Ishii I, Akahoshi N, Yu XN, Kobayashi Y, Namekata K. 119.  et al. 2004. Murine cystathionine γ-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. Biochem. J. 381:113–23 [Google Scholar]
  120. Jackson MR, Melideo SL, Jorns MS. 120.  2012. Human sulfide:quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry 51:6804–15 [Google Scholar]
  121. Jacobs RL, House JD, Brosnan ME, Brosnan JT. 121.  1998. Effects of streptozotocin-induced diabetes and of insulin treatment on homocysteine metabolism in the rat. Diabetes 47:1967–70 [Google Scholar]
  122. Jacobs RL, Stead LM, Brosnan ME, Brosnan JT. 122.  2001. Hyperglucagonemia in rats results in decreased plasma homocysteine and increased flux through the transsulfuration pathway in liver. J. Biol. Chem. 276:43740–47 [Google Scholar]
  123. Jennings ML. 123.  2013. Transport of hydrogen sulfide and hydrosulfide anion across the human red blood cell membrane rapid H2S diffusion and AE1-mediated Cl/HS exchange. Am. J. Physiol. Cell Physiol. 305:C941–50 [Google Scholar]
  124. Jiang HL, Wu HC, Li ZL, Geng B, Tang CS. 124.  2005. [Changes of the new gaseous transmitter H2S in patients with coronary heart disease.]. Di Yi Jun Yi Da Xue Xue Bao 25:951–54 [Google Scholar]
  125. Johansen D, Ytrehus K, Baxter GF. 125.  2006. Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury. Evidence for a role of KATP channels. Basic Res. Cardiol. 101:53–60 [Google Scholar]
  126. Kabil O, Banerjee R. 126.  2010. The redox biochemistry of hydrogen sulfide. J. Biol. Chem. 285:21903–7 [Google Scholar]
  127. Kabil O, Banerjee R. 127.  2012. Characterization of patient mutations in human persulfide dioxygenase (ETHE1) involved in H2S catabolism. J. Biol. Chem. 287:44561–67 [Google Scholar]
  128. Kabil O, Vitvitsky V, Xie P, Banerjee R. 128.  2011. The quantitative significance of the transsulfuration enzymes for H2S production in murine tissues. Antioxid. Redox Signal. 15:363–72 [Google Scholar]
  129. Kabil O, Zhou Y, Banerjee R. 129.  2006. Human cystathionine beta-synthase is a target for sumoylation. Biochemistry 45:13528–36 [Google Scholar]
  130. Kamoun P. 130.  2001. Mental retardation in Down syndrome: a hydrogen sulfide hypothesis. Med. Hypotheses 57:389–92 [Google Scholar]
  131. Kamoun P, Belardinelli MC, Chabli A, Lallouchi K, Chadefaux-Vekemans B. 131.  2003. Endogenous hydrogen sulfide overproduction in Down syndrome. Am. J. Med. Genet. A 116A:310–11 [Google Scholar]
  132. Kang SS, Wong PW, Susmano A, Sora J, Norusis M, Ruggie N. 132.  1991. Thermolabile methylenetetrahydrofolate reductase: an inherited risk factor for coronary artery disease. Am. J. Hum. Genet. 48:536–45 [Google Scholar]
  133. Kannan R, Mittur A, Bao Y, Tsuruo T, Kaplowitz N. 133.  1999. GSH transport in immortalized mouse brain endothelial cells: evidence for apical localization of a sodium-dependent GSH transporter. J. Neurochem. 73:390–99 [Google Scholar]
  134. Katori T, Hoover DB, Ardell JL, Helm RH, Belardi DF. 134.  et al. 2005. Calcitonin gene-related peptide in vivo positive inotropy is attributable to regional sympatho-stimulation and is blunted in congestive heart failure. Circ. Res. 96:234–43 [Google Scholar]
  135. Kelleher ZT, Matsumoto A, Stamler JS, Marshall HE. 135.  2007. NOS2 regulation of NF-κB by S-nitrosylation of p65. J. Biol. Chem. 282:30667–72 [Google Scholar]
  136. Kilberg MS, Handlogten ME, Christensen HN. 136.  1981. Characteristics of system ASC for transport of neutral amino acids in the isolated rat hepatocyte. J. Biol. Chem. 256:3304–12 [Google Scholar]
  137. Kimura H. 137.  2010. Hydrogen sulfide: from brain to gut. Antioxid. Redox Signal. 12:1111–23 [Google Scholar]
  138. Kimura H. 138.  2011. Hydrogen sulfide: its production, release and functions. Amino Acids 41:113–21 [Google Scholar]
  139. Kimura Y, Dargusch R, Schubert D, Kimura H. 139.  2006. Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid. Redox Signal. 8:661–70 [Google Scholar]
  140. Kimura Y, Goto Y, Kimura H. 140.  2010. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid. Redox Signal. 12:1–13 [Google Scholar]
  141. Kimura Y, Kimura H. 141.  2004. Hydrogen sulfide protects neurons from oxidative stress. FASEB J. 18:1165–67 [Google Scholar]
  142. Kirke PN, Molloy AM, Daly LE, Burke H, Weir DG, Scott JM. 142.  1993. Maternal plasma folate and vitamin B12 are independent risk factors for neural tube defects. Q. J. Med. 86:703–8 [Google Scholar]
  143. Kletzin A, Urich T, Muller F, Bandeiras TM, Gomes CM. 143.  2004. Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J. Bioenerg. Biomembr. 36:77–91 [Google Scholar]
  144. Koenitzer JR, Isbell TS, Patel HD, Benavides GA, Dickinson DA. 144.  et al. 2007. Hydrogen sulfide mediates vasoactivity in an O2-dependent manner. Am. J. Physiol. Heart Circ. Physiol. 292:H1953–60 [Google Scholar]
  145. Kombian SB, Reiffenstein RJ, Colmers WF. 145.  1993. The actions of hydrogen sulfide on dorsal raphe serotonergic neurons in vitro. J. Neurophysiol. 70:81–96 [Google Scholar]
  146. Korendyaseva TK, Kuvatov DN, Volkov VA, Martinov MV, Vitvitsky VM. 146.  et al. 2008. An allosteric mechanism for switching between parallel tracks in mammalian sulfur metabolism. PLoS Comput. Biol. 4:e1000076 [Google Scholar]
  147. Korendyaseva TK, Martinov MV, Dudchenko AM, Vitvitsky VM. 147.  2010. Distribution of methionine between cells and incubation medium in suspension of rat hepatocytes. Amino Acids 39:1281–89 [Google Scholar]
  148. Kraus JP, Janosik M, Kozich V, Mandell R, Shih V. 148.  et al. 1999. Cystathionine beta-synthase mutations in homocystinuria. Hum. Mutat. 13:362–75 [Google Scholar]
  149. Krishnan N, Fu C, Pappin DJ, Tonks NK. 149.  2011. H2S-induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci. Signal. 4:ra86 [Google Scholar]
  150. Kulkarni KH, Monjok EM, Zeyssig R, Kouamou G, Bongmba ON. 150.  et al. 2009. Effect of hydrogen sulfide on sympathetic neurotransmission and catecholamine levels in isolated porcine iris-ciliary body. Neurochem. Res. 34:400–6 [Google Scholar]
  151. Kurpad AV, Regan MM, Varalakshmi S, Gnanou J, Lingappa A, Young VR. 151.  2004. Effect of cystine on the methionine requirement of healthy Indian men determined by using the 24-h indicator amino acid balance approach. Am. J. Clin. Nutr. 80:1526–35 [Google Scholar]
  152. Kurpad AV, Regan MM, Varalakshmi S, Vasudevan J, Gnanou J. 152.  et al. 2003. Daily methionine requirements of healthy Indian men, measured by a 24-h indicator amino acid oxidation and balance technique. Am. J. Clin. Nutr. 77:1198–205 [Google Scholar]
  153. Lash LH, Jones DP. 153.  1983. Transport of glutathione by renal basal-lateral membrane vesicles. Biochem. Biophys. Res. Commun. 112:55–60 [Google Scholar]
  154. Lash LH, Jones DP. 154.  1984. Renal glutathione transport. Characteristics of the sodium-dependent system in the basal-lateral membrane. J. Biol. Chem. 259:14508–14 [Google Scholar]
  155. Lash LH, Putt DA, Xu F, Matherly LH. 155.  2007. Role of rat organic anion transporter 3 (Oat3) in the renal basolateral transport of glutathione. Chem. Biol. Interact. 170:124–34 [Google Scholar]
  156. Leclerc D, Wilson A, Dumas R, Gafuik C, Song D. 156.  et al. 1998. Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc. Natl. Acad. Sci. USA 95:3059–64 [Google Scholar]
  157. Lee JI, Dominy JE Jr, Sikalidis AK, Hirschberger LL, Wang W, Stipanuk MH. 157.  2008. HepG2/C3A cells respond to cysteine deprivation by induction of the amino acid deprivation/integrated stress response pathway. Physiol. Genomics 33:218–29 [Google Scholar]
  158. Lee SW, Hu YS, Hu LF, Lu Q, Dawe GS. 158.  et al. 2006. Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia 54:116–24 [Google Scholar]
  159. Leschelle X, Goubern M, Andriamihaja M, Blottiere HM, Couplan E. 159.  et al. 2005. Adaptative metabolic response of human colonic epithelial cells to the adverse effects of the luminal compound sulfide. Biochim. Biophys. Acta 1725:201–12 [Google Scholar]
  160. Levitt MD, Abdel-Rehim MS, Furne J. 160.  2011. Free and acid-labile hydrogen sulfide concentrations in mouse tissues: anomalously high free hydrogen sulfide in aortic tissue. Antioxid. Redox Signal. 15:373–78 [Google Scholar]
  161. Li L, Bhatia M, Zhu YZ, Zhu YC, Ramnath RD. 161.  et al. 2005. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J. 19:1196–98 [Google Scholar]
  162. Li L, Hsu A, Moore PK. 162.  2009. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation—a tale of three gases!. Pharmacol. Ther. 123:386–400 [Google Scholar]
  163. Lim JJ, Liu YH, Khin ES, Bian JS. 163.  2008. Vasoconstrictive effect of hydrogen sulfide involves downregulation of cAMP in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 295:C1261–70 [Google Scholar]
  164. Lu SC. 164.  2013. Glutathione synthesis. Biochim. Biophys. Acta 1830:3143–53 [Google Scholar]
  165. Martensson J. 165.  1986. The effect of fasting on leukocyte and plasma glutathione and sulfur amino acid concentrations. Metabolism 35:118–21 [Google Scholar]
  166. Martinov MV, Vitvitsky VM, Banerjee R, Ataullakhanov FI. 166.  2010. The logic of the hepatic methionine metabolic cycle. Biochim. Biophys. Acta 1804:89–96 [Google Scholar]
  167. Massey V, Edmondson D. 167.  1970. On the mechanism of inactivation of xanthine oxidase by cyanide. J. Biol. Chem. 245:6595–98 [Google Scholar]
  168. Massion PB, Pelat M, Belge C, Balligand JL. 168.  2005. Regulation of the mammalian heart function by nitric oxide. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 142:144–50 [Google Scholar]
  169. Meister A, Anderson ME. 169.  1983. Glutathione. Annu. Rev. Biochem. 52:711–60 [Google Scholar]
  170. Meister A, Fraser PE, Tice SV. 170.  1954. Enzymatic desulfuration of beta-mercaptopyruvate to pyruvate. J. Biol. Chem. 206:561–75 [Google Scholar]
  171. Mikami Y, Shibuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H. 171.  2011. Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem. J. 439:479–85 [Google Scholar]
  172. Miller DL, Roth MB. 172.  2007. Hydrogen sulfide increases thermotolerance and lifespan in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 104:20618–22 [Google Scholar]
  173. Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. 173.  2005. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4:119–25 [Google Scholar]
  174. Mills JL, McPartlin JM, Kirke PN, Lee YJ, Conley MR. 174.  et al. 1995. Homocysteine metabolism in pregnancies complicated by neural-tube defects. Lancet 345:149–51 [Google Scholar]
  175. Mineri R, Rimoldi M, Burlina AB, Koskull S, Perletti C. 175.  et al. 2008. Identification of new mutations in the ETHE1 gene in a cohort of 14 patients presenting with ethylmalonic encephalopathy. J. Med. Genet. 45:473–78 [Google Scholar]
  176. Mirandola P, Gobbi G, Malinverno C, Carubbi C, Ferne FM. 176.  et al. 2013. Impact of sulphurous water politzer inhalation on audiometric parameters in children with otitis media with effusion. Clin. Exp. Otorhinolaryngol. 6:7–11 [Google Scholar]
  177. Mitsuhashi H, Ikeuchi H, Yamashita S, Kuroiwa T, Kaneko Y. 177.  et al. 2004. Increased levels of serum sulfite in patients with acute pneumonia. Shock 21:99–102 [Google Scholar]
  178. Mitsuhashi H, Yamashita S, Ikeuchi H, Kuroiwa T, Kaneko Y. 178.  et al. 2005. Oxidative stress-dependent conversion of hydrogen sulfide to sulfite by activated neutrophils. Shock 24:529–34 [Google Scholar]
  179. Miyazaki T, Matsuzaki Y, Ikegami T, Miyakawa S, Doy M. 179.  et al. 2004. The harmful effect of exercise on reducing taurine concentration in the tissues of rats treated with CCl4 administration. J. Gastroenterol. 39:557–62 [Google Scholar]
  180. Mok YY, Atan MS, Yoke Ping C, Zhong Jing W, Bhatia M. 180.  et al. 2004. Role of hydrogen sulphide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulphide biosynthesis. Br. J. Pharmacol. 143:881–89 [Google Scholar]
  181. Morales I, Dopico JG, Sabate M, Gonzalez-Hernandez T, Rodriguez M. 181.  2007. Substantia nigra osmoregulation: taurine and ATP involvement. Am. J. Physiol. Cell Physiol. 292:C1934–41 [Google Scholar]
  182. Moriarty-Craige SE, Jones DP. 182.  2004. Extracellular thiols and thiol/disulfide redox in metabolism. Annu. Rev. Nutr. 24:481–509 [Google Scholar]
  183. Mosharov E, Cranford MR, Banerjee R. 183.  2000. The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry 39:13005–11 [Google Scholar]
  184. Motl N, Yadav PK, Banerjee R. 184.  2013. Enzymology of hydrogen sulfide turnover. Hydrogen Sulfide and Its Therapeutic Applications H Kimura 1–35 Wien: Springer-Verlag [Google Scholar]
  185. Mudd SH, Ebert MH, Scriver CR. 185.  1980. Labile methyl group balances in the human: the role of sarcosine. Metabolism 29:707–20 [Google Scholar]
  186. Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W. 186.  et al. 2009. H2S signals through protein S-sulfhydration. Sci. Signal. 2:ra72 [Google Scholar]
  187. Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM. 187.  et al. 2011. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ. Res. 109:1259–68 [Google Scholar]
  188. Muyzer G, Stams AJ. 188.  2008. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 6:441–54 [Google Scholar]
  189. Myoishi M, Hao H, Minamino T, Watanabe K, Nishihira K. 189.  et al. 2007. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation 116:1226–33 [Google Scholar]
  190. Nagai Y, Tsugane M, Oka J, Kimura H. 190.  2004. Hydrogen sulfide induces calcium waves in astrocytes. FASEB J. 18:557–59 [Google Scholar]
  191. Nahas R, Sheikh O. 191.  2011. Complementary and alternative medicine for the treatment of major depressive disorder. Can. Fam. Phys. 57:659–63 [Google Scholar]
  192. Nicoletti FP, Thompson MK, Franzen S, Smulevich G. 192.  2011. Degradation of sulfide by dehaloperoxidase-hemoglobin from Amphitrite ornata. J. Biol. Inorg. Chem. 16:611–19 [Google Scholar]
  193. Nishida M, Sawa T, Kitajima N, Ono K, Inoue H. 193.  et al. 2012. Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nat. Chem. Biol. 8:714–24 [Google Scholar]
  194. Oh GS, Pae HO, Lee BS, Kim BN, Kim JM. 194.  et al. 2006. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-κB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic. Biol. Med. 41:106–19 [Google Scholar]
  195. Olina M, Aluffi Valletti P, Pia F, Toso A, Borello G. 195.  et al. 2008. [Hydrological indications in the therapy of pharyngitis.]. Recenti Prog. Med. 99:314–21 [Google Scholar]
  196. Olson KR. 196.  2009. Is hydrogen sulfide a circulating “gasotransmitter” in vertebrate blood?. Biochim. Biophys. Acta 1787:856–63 [Google Scholar]
  197. Olson KR. 197.  2012. A practical look at the chemistry and biology of hydrogen sulfide. Antioxid. Redox Signal. 17:32–44 [Google Scholar]
  198. Olson KR. 198.  2013. Hydrogen sulfide: both feet on the gas and none on the brake?. Front. Physiol. 4:2 [Google Scholar]
  199. Olson KR, Dombkowski RA, Russell MJ, Doellman MM, Head SK. 199.  et al. 2006. Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J. Exp. Biol. 209:4011–23 [Google Scholar]
  200. Olteanu H, Munson T, Banerjee R. 200.  2002. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase. Biochemistry 41:13378–85 [Google Scholar]
  201. Orentreich N, Matias JR, DeFelice A, Zimmerman JA. 201.  1993. Low methionine ingestion by rats extends life span. J. Nutr. 123:269–74 [Google Scholar]
  202. Overmann J, van Gemerden H. 202.  2000. Microbial interactions involving sulfur bacteria: implications for the ecology and evolution of bacterial communities. FEMS Microbiol. Rev. 24:591–99 [Google Scholar]
  203. Palacin M, Estevez R, Bertran J, Zorzano A. 203.  1998. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol. Rev. 78:969–1054 [Google Scholar]
  204. Pan J, Carroll KS. 204.  2013. Persulfide reactivity in the detection of protein S-sulfhydration. ACS Chem. Biol. 8:1110–16 [Google Scholar]
  205. Panza F, Frisardi V, Capurso C, D'Introno A, Colacicco AM. 205.  et al. 2009. Polyunsaturated fatty acid and S-adenosylmethionine supplementation in predementia syndromes and Alzheimer's disease: a review. Sci. World J. 9:373–89 [Google Scholar]
  206. Paolocci N, Saavedra WF, Miranda KM, Martignani C, Isoda T. 206.  et al. 2001. Nitroxyl anion exerts redox-sensitive positive cardiac inotropy in vivo by calcitonin gene-related peptide signaling. Proc. Natl. Acad. Sci. USA 98:10463–68 [Google Scholar]
  207. Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A. 207.  et al. 2009. Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc. Natl. Acad. Sci. USA 106:21972–77 [Google Scholar]
  208. Pascale RM, Simile MM, Gaspa L, Daino L, Seddaiu MA. 208.  et al. 1993. Alterations of ornithine decarboxylase gene during the progression of rat liver carcinogenesis. Carcinogenesis 14:1077–80 [Google Scholar]
  209. Patel P, Vatish M, Heptinstall J, Wang R, Carson RJ. 209.  2009. The endogenous production of hydrogen sulphide in intrauterine tissues. Reprod. Biol. Endocrinol. 7:10 [Google Scholar]
  210. Paul BD, Snyder SH. 210.  2012. H2S signalling through protein sulfhydration and beyond. Nat. Rev. Mol. Cell Biol. 13:499–507 [Google Scholar]
  211. Pedersen OO, Karlsen RL. 211.  1980. The toxic effect of L-cysteine on the rat retina. A morphological and biochemical study. Invest. Ophthalmol. Vis. Sci. 19:886–92 [Google Scholar]
  212. Perry TL, Hansen S, MacDougall L. 212.  1966. Homolanthionine excretion in homocystinuria. Science 152:1750–2 [Google Scholar]
  213. Petersen LC. 213.  1977. The effect of inhibitors on the oxygen kinetics of cytochrome c oxidase. Biochim. Biophys. Acta 460:299–307 [Google Scholar]
  214. Pfeffer M, Ressler C. 214.  1967. Beta-cyanoalanine, an inhibitor of rat liver cystathionase. Biochem. Pharmacol. 16:2299–308 [Google Scholar]
  215. Pietri R, Lewis A, Leon RG, Casabona G, Kiger L. 215.  et al. 2009. Factors controlling the reactivity of hydrogen sulfide with hemeproteins. Biochemistry 48:4881–94 [Google Scholar]
  216. Pogribna M, Melnyk S, Pogribny I, Chango A, Yi P, James SJ. 216.  2001. Homocysteine metabolism in children with Down syndrome: in vitro modulation. Am. J. Hum. Genet. 69:88–95 [Google Scholar]
  217. Powell MA, Somero GN. 217.  1986. Hydrogen sulfide oxidation is coupled to oxidative phosphorylation in mitochondria of Solemya reidi. Science 233:563–66 [Google Scholar]
  218. Predmore BL, Kondo K, Bhushan S, Zlatopolsky MA, King AL. 218.  et al. 2012. The polysulfide diallyl trisulfide protects the ischemic myocardium by preservation of endogenous hydrogen sulfide and increasing nitric oxide bioavailability. Am. J. Physiol. Heart Circ. Physiol. 302:H2410–18 [Google Scholar]
  219. Prudova A, Albin M, Bauman Z, Lin A, Vitvitsky V, Banerjee R. 219.  2007. Testosterone regulation of homocysteine metabolism modulates redox status in human prostate cancer cells. Antioxid. Redox Signal. 9:1875–81 [Google Scholar]
  220. Purohit V, Abdelmalek MF, Barve S, Benevenga NJ, Halsted CH. 220.  et al. 2007. Role of S-adenosylmethionine, folate, and betaine in the treatment of alcoholic liver disease: summary of a symposium. Am. J. Clin. Nutr. 86:14–24 [Google Scholar]
  221. Qabazard B, Li L, Gruber J, Peh MT, Ng LF. 221.  et al. 2014. Hydrogen sulfide is an endogenous regulator of ageing in Caenorhabditis elegans. Antioxid. Redox Signal. In press
  222. Rao AM, Drake MR, Stipanuk MH. 222.  1990. Role of the transsulfuration pathway and of gamma-cystathionase activity in the formation of cysteine and sulfate from methionine in rat hepatocytes. J. Nutr. 120:837–45 [Google Scholar]
  223. Ratnam S, Maclean KN, Jacobs RL, Brosnan ME, Kraus JP, Brosnan JT. 223.  2002. Hormonal regulation of cystathionine β-synthase expression in liver. J. Biol. Chem. 277:42912–18 [Google Scholar]
  224. Refsum H, Ueland PM, Nygard O, Vollset SE. 224.  1998. Homocysteine and cardiovascular disease. Annu. Rev. Med. 49:31–62 [Google Scholar]
  225. Rej R. 225.  1977. Aminooxyacetate is not an adequate differential inhibitor of aspartate aminotransferase isoenzymes. Clin. Chem. 23:1508–9 [Google Scholar]
  226. Renga B. 226.  2011. Hydrogen sulfide generation in mammals: the molecular biology of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). Inflamm. Allergy Drug Targets 10:85–91 [Google Scholar]
  227. Richie JP Jr, Komninou D, Leutzinger Y, Kleinman W, Orentreich N. 227.  et al. 2004. Tissue glutathione and cysteine levels in methionine-restricted rats. Nutrition 20:800–5 [Google Scholar]
  228. Richman PG, Meister A. 228.  1975. Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J. Biol. Chem. 250:1422–26 [Google Scholar]
  229. Riedijk MA, Stoll B, Chacko S, Schierbeek H, Sunehag AL. 229.  et al. 2007. Methionine transmethylation and transsulfuration in the piglet gastrointestinal tract. Proc. Natl. Acad. Sci. USA 104:3408–13 [Google Scholar]
  230. Robillon JF, Canivet B, Candito M, Sadoul JL, Jullien D. 230.  et al. 1994. Type 1 diabetes mellitus and homocyst(e)ine. Diabetes Metab. 20:494–96 [Google Scholar]
  231. Roman HB, Hirschberger LL, Krijt J, Valli A, Kozich V, Stipanuk MH. 231.  2013. The cysteine dioxygenase knockout mouse: Altered cysteine metabolism in nonhepatic tissues leads to excess H2S/HS production and evidence of pancreatic and lung toxicity. Antioxid. Redox Signal. 19:1321–36 [Google Scholar]
  232. Rose WC, Wixom RL. 232.  1955. The amino acid requirements of man. XIII. The sparing effect of cystine on the methionine requirement. J. Biol. Chem. 216:753–73 [Google Scholar]
  233. Roth SH, Skrajny B, Reiffenstein RJ. 233.  1995. Alteration of the morphology and neurochemistry of the developing mammalian nervous system by hydrogen sulphide. Clin. Exp. Pharmacol. Physiol. 22:379–80 [Google Scholar]
  234. Rowling MJ, McMullen MH, Chipman DC, Schalinske KL. 234.  2002. Hepatic glycine N-methyltransferase is up-regulated by excess dietary methionine in rats. J. Nutr. 132:2545–50 [Google Scholar]
  235. Roy A, Khan AH, Islam MT, Prieto MC, Majid DS. 235.  2012. Interdependency of cystathione gamma-lyase and cystathione beta-synthase in hydrogen sulfide-induced blood pressure regulation in rats. Am. J. Hypertens. 25:74–81 [Google Scholar]
  236. Rucklidge JJ, Johnstone J, Kaplan BJ. 236.  2009. Nutrient supplementation approaches in the treatment of ADHD. Expert Rev. Neurother. 9:461–76 [Google Scholar]
  237. Rudolph TK, Freeman BA. 237.  2009. Transduction of redox signaling by electrophile-protein reactions. Sci. Signal. 2:re7 [Google Scholar]
  238. Ruiz F, Corrales FJ, Miqueo C, Mato JM. 238.  1998. Nitric oxide inactivates rat hepatic methionine adenosyltransferase in vivo by S-nitrosylation. Hepatology 28:1051–57 [Google Scholar]
  239. Salami A, Dellepiane M, Strinati F, Guastini L, Mora R. 239.  2010. Sulphurous thermal water inhalations in the treatment of chronic rhinosinusitis. Rhinology 48:71–76 [Google Scholar]
  240. Sano M, Minamino T, Toko H, Miyauchi H, Orimo M. 240.  et al. 2007. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446:444–48 [Google Scholar]
  241. Sato Y, Ouchi K, Funase Y, Yamauchi K, Aizawa T. 241.  2013. Relationship between metformin use, vitamin B12 deficiency, hyperhomocysteinemia and vascular complications in patients with type 2 diabetes. Endocr. J. 60:1275–80 [Google Scholar]
  242. Sawa T, Zaki MH, Okamoto T, Akuta T, Tokutomi Y. 242.  et al. 2007. Protein S-guanylation by the biological signal 8-nitroguanosine 3′,5′-cyclic monophosphate. Nat. Chem. Biol. 3:727–35 [Google Scholar]
  243. Scalabrino G, Poso H, Holtta E, Hannonen P, Kallio A, Janne J. 243.  1978. Synthesis and accumulation of polyamines in rat liver during chemical carcinogenesis. Int. J. Cancer 21:239–45 [Google Scholar]
  244. Schreiber G, Schreiber M. 244.  1972. Protein synthesis in single cell suspensions from rat liver. I. General properties of the system and permeability of the cells for leucine and methionine. J. Biol. Chem. 247:6340–46 [Google Scholar]
  245. Schuller-Levis GB, Park E. 245.  2003. Taurine: new implications for an old amino acid. FEMS Microbiol. Lett. 226:195–202 [Google Scholar]
  246. Seelig GF, Simondsen RP, Meister A. 246.  1984. Reversible dissociation of gamma-glutamylcysteine synthetase into two subunits. J. Biol. Chem. 259:9345–47 [Google Scholar]
  247. Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T. 247.  et al. 2012. Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol. Cell 45:13–24 [Google Scholar]
  248. Sessa A, Desiderio MA, Baizini M, Perin A. 248.  1981. Diamine oxidase activity in regenerating rat liver and in 4-dimethylaminoazobenzene-induced and Yoshida AH 130 hepatomas. Cancer Res. 41:1929–34 [Google Scholar]
  249. Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y. 249.  et al. 2013. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat. Commun. 4:1366 [Google Scholar]
  250. Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H. 250.  2009. Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J. Biochem. 146:623–26 [Google Scholar]
  251. Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T. 251.  et al. 2009. 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid. Redox Signal. 11:703–14 [Google Scholar]
  252. Sikalidis AK, Lee JI, Stipanuk MH. 252.  2011. Gene expression and integrated stress response in HepG2/C3A cells cultured in amino acid deficient medium. Amino Acids 41:159–71 [Google Scholar]
  253. Silverman RB, Abeles RH. 253.  1977. Mechanism of inactivation of gamma-cystathionase by beta,beta,beta-trifluoroalanine. Biochemistry 16:5515–20 [Google Scholar]
  254. Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R. 254.  2009. Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J. Biol. Chem. 284:22457–66 [Google Scholar]
  255. Singh SP, Wishnok JS, Keshive M, Deen WM, Tannenbaum SR. 255.  1996. The chemistry of the S-nitrosoglutathione/glutathione system. Proc. Natl. Acad. Sci. USA 93:14428–33 [Google Scholar]
  256. Skrajny B, Hannah RS, Roth SH. 256.  1992. Low concentrations of hydrogen sulphide alter monoamine levels in the developing rat central nervous system. Can. J. Physiol. Pharmacol. 70:1515–18 [Google Scholar]
  257. Souba WW, Pacitti AJ. 257.  1992. How amino acids get into cells: mechanisms, models, menus, and mediators. J. Parenter. Enteral Nutr. 16:569–78 [Google Scholar]
  258. Sparatore A, Perrino E, Tazzari V, Giustarini D, Rossi R. 258.  et al. 2009. Pharmacological profile of a novel H2S-releasing aspirin. Free Radic. Biol. Med. 46:586–92 [Google Scholar]
  259. Stamatakis K, Perez-Sala D. 259.  2006. Prostanoids with cyclopentenone structure as tools for the characterization of electrophilic lipid-protein interactomes. Ann. N. Y. Acad. Sci. 1091:548–70 [Google Scholar]
  260. Stamler JS. 260.  1995. S-nitrosothiols and the bioregulatory actions of nitrogen oxides through reactions with thiol groups. Curr. Top. Microbiol. Immunol. 196:19–36 [Google Scholar]
  261. Stead LM, Brosnan ME, Brosnan JT. 261.  2000. Characterization of homocysteine metabolism in the rat liver. Biochem. J. 350:Part 3685–92 [Google Scholar]
  262. Steegborn C, Clausen T, Sondermann P, Jacob U, Worbs M. 262.  et al. 1999. Kinetics and inhibition of recombinant human cystathionine gamma-lyase. Toward the rational control of transsulfuration. J. Biol. Chem. 274:12675–84 [Google Scholar]
  263. Steen C, Rosenblatt DS, Scheying H, Braeuer HC, Kohlschutter A. 263.  1997. Cobalamin E (cblE) disease: a severe neurological disorder with megaloblastic anaemia, homocystinuria and low serum methionine. J. Inherit. Metab. Dis. 20:705–6 [Google Scholar]
  264. Stewart FJ, Cavanaugh CM. 264.  2006. Symbiosis of thioautotrophic bacteria with Riftia pachyptila. Prog. Mol. Subcell. Biol. 41:197–225 [Google Scholar]
  265. Stipanuk MH, Coloso RM, Garcia RA, Banks MF. 265.  1992. Cysteine concentration regulates cysteine metabolism to glutathione, sulfate and taurine in rat hepatocytes. J. Nutr. 122:420–27 [Google Scholar]
  266. Stipanuk MH, Londono M, Lee JI, Hu M, Yu AF. 266.  2002. Enzymes and metabolites of cysteine metabolism in nonhepatic tissues of rats show little response to changes in dietary protein or sulfur amino acid levels. J. Nutr. 132:3369–78 [Google Scholar]
  267. Stipanuk MH, Ueki I. 267.  2011. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J. Inherit. Metab. Dis. 34:17–32 [Google Scholar]
  268. Stipanuk MH, Ueki I, Dominy JE Jr, Simmons CR, Hirschberger LL. 268.  2009. Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids 37:55–63 [Google Scholar]
  269. Sturman JA. 269.  1993. Taurine in development. Physiol. Rev. 73:119–47 [Google Scholar]
  270. Sturman JA, Messing JM, Gargano AD, Rerecich M, Imaki H, Rudelli R. 270.  1989. Cystine neurotoxicity is increased by taurine deficiency. Neurotoxicology 10:15–28 [Google Scholar]
  271. Szabo C, Ransy C, Modis K, Andriamihaja M, Murghes B. 271.  et al. 2014. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br. J. Pharmacol. 171:2099–122 [Google Scholar]
  272. Talipov MR, Timerghazin QK. 272.  2013. Protein control of S-nitrosothiol reactivity: interplay of antagonistic resonance structures. J. Phys. Chem. B 117:1827–37 [Google Scholar]
  273. Tanase S, Morino Y. 273.  1976. Irreversible inactivation of aspartate aminotransferases during transamination with L-propargylglycine. Biochem. Biophys. Res. Commun. 68:1301–8 [Google Scholar]
  274. Taoka S, Ohja S, Shan X, Kruger WD, Banerjee R. 274.  1998. Evidence for heme-mediated redox regulation of human cystathionine beta-synthase activity. J. Biol. Chem. 273:25179–84 [Google Scholar]
  275. Thomas T, Thomas TJ. 275.  2003. Polyamine metabolism and cancer. J. Cell. Mol. Med. 7:113–26 [Google Scholar]
  276. Timerghazin QK, Peslherbe GH, English AM. 276.  2007. Resonance description of S-nitrosothiols: insights into reactivity. Org. Lett. 9:3049–52 [Google Scholar]
  277. Timerghazin QK, Peslherbe GH, English AM. 277.  2008. Structure and stability of HSNO, the simplest S-nitrosothiol. Phys. Chem. Chem. Phys. 10:1532–39 [Google Scholar]
  278. Tiranti V, D'Adamo P, Briem E, Ferrari G, Mineri R. 278.  et al. 2004. Ethylmalonic encephalopathy is caused by mutations in ETHE1, a gene encoding a mitochondrial matrix protein. Am. J. Hum. Genet. 74:239–52 [Google Scholar]
  279. Tiranti V, Viscomi C, Hildebrandt T, Di Meo I, Mineri R. 279.  et al. 2009. Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat. Med. 15:200–5 [Google Scholar]
  280. Tomaskova Z, Bertova A, Ondrias K. 280.  2011. On the involvement of H2S in nitroso signaling and other mechanisms of H2S action. Curr. Pharm. Biotechnol. 12:1394–405 [Google Scholar]
  281. Tousoulis D, Papageorgiou N, Androulakis E, Siasos G, Latsios G. 281.  et al. 2013. Diabetes mellitus-associated vascular impairment: novel circulating biomarkers and therapeutic approaches. J. Am. Coll. Cardiol. 62:667–76 [Google Scholar]
  282. Triguero A, Barber T, Garcia C, Puertes IR, Sastre J, Vina JR. 282.  1997. Liver intracellular L-cysteine concentration is maintained after inhibition of the trans-sulfuration pathway by propargylglycine in rats. Br J. Nutr. 78:823–31 [Google Scholar]
  283. Troen AM, Lutgens E, Smith DE, Rosenberg IH, Selhub J. 283.  2003. The atherogenic effect of excess methionine intake. Proc. Natl. Acad. Sci. USA 100:15089–94 [Google Scholar]
  284. Tuz K, Ordaz B, Vaca L, Quesada O, Pasantes-Morales H. 284.  2001. Isovolumetric regulation mechanisms in cultured cerebellar granule neurons. J. Neurochem. 79:143–51 [Google Scholar]
  285. Ubuka T, Ohta J, Yao WB, Abe T, Teraoka T, Kurozumi Y. 285.  1992. L-Cysteine metabolism via 3-mercaptopyruvate pathway and sulfate formation in rat liver mitochondria. Amino Acids 2:143–55 [Google Scholar]
  286. Ubuka T, Umemura S, Yuasa S, Kinuta M, Watanabe K. 286.  1978. Purification and characterization of mitochondrial cysteine aminotransferase from rat liver. Physiol. Chem. Phys. 10:483–500 [Google Scholar]
  287. Uchida K, Shibata T. 287.  2008. 15-Deoxy-Delta(12,14)-prostaglandin J2: an electrophilic trigger of cellular responses. Chem. Res. Toxicol. 21:138–44 [Google Scholar]
  288. Ueki I, Roman HB, Valli A, Fieselmann K, Lam J. 288.  et al. 2011. Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide. Am. J. Physiol. Endocrinol. Metab. 301:E668–84 [Google Scholar]
  289. Viscomi C, Burlina AB, Dweikat I, Savoiardo M, Lamperti C. 289.  et al. 2010. Combined treatment with oral metronidazole and N-acetylcysteine is effective in ethylmalonic encephalopathy. Nat. Med. 16:869–71 [Google Scholar]
  290. Vitvitsky V, Dayal S, Stabler S, Zhou Y, Wang H. 290.  et al. 2004. Perturbations in homocysteine-linked redox homeostasis in a murine model for hyperhomocysteinemia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287:R39–46 [Google Scholar]
  291. Vitvitsky V, Garg SK, Banerjee R. 291.  2011. Taurine biosynthesis by neurons and astrocytes. J. Biol. Chem. 286:32002–10 [Google Scholar]
  292. Vitvitsky V, Kabil O, Banerjee R. 292.  2012. High turnover rates for hydrogen sulfide allow for rapid regulation of its tissue concentrations. Antioxid. Redox Signal. 17:22–31 [Google Scholar]
  293. Vitvitsky V, Martinov M, Ataullakhanov F, Miller RA, Banerjee R. 293.  2013. Sulfur-based redox alterations in long-lived Snell dwarf mice. Mech. Ageing Dev. 134:321–30 [Google Scholar]
  294. Vitvitsky V, Mosharov E, Tritt M, Ataullakhanov F, Banerjee R. 294.  2003. Redox regulation of homocysteine-dependent glutathione synthesis. Redox Rep. 8:57–63 [Google Scholar]
  295. Vitvitsky V, Prudova A, Stabler S, Dayal S, Lentz SR, Banerjee R. 295.  2007. Testosterone regulation of renal cystathionine beta-synthase: implications for sex-dependent differences in plasma homocysteine levels. Am. J. Physiol. Ren. Physiol. 293:F594–600 [Google Scholar]
  296. Vitvitsky V, Thomas M, Ghorpade A, Gendelman HE, Banerjee R. 296.  2006. A functional transsulfuration pathway in the brain links to glutathione homeostasis. J. Biol. Chem. 281:35785–93 [Google Scholar]
  297. Vorobets VS, Kovach SK, Kolbasov GY. 297.  2002. Distribution of ion species and formation of ion pairs in concentrated polysulfide solutions in photoelectrochemical transducers. Russ. J. Appl. Chem. 75:229–34 [Google Scholar]
  298. Wagner CA, Lang F, Broer S. 298.  2001. Function and structure of heterodimeric amino acid transporters. Am. J. Physiol. Cell Physiol. 281:C1077–93 [Google Scholar]
  299. Wang R. 299.  2012. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev. 92:791–896 [Google Scholar]
  300. Wang T, Wang Q, Wang Z, Xiao Z, Liu L. 300.  2013. Diagnostic value of the combined measurement of serum Hcy, serum Cys C, and urinary microalbumin in type 2 diabetes mellitus with early complicating diabetic nephropathy. ISRN Endocrinol. 2013:407452 [Google Scholar]
  301. Wang Z, Liu DX, Wang FW, Zhang Q, Du ZX. 301.  et al. 2013. L-Cysteine promotes the proliferation and differentiation of neural stem cells via the CBS/H(2)S pathway. Neuroscience 237:106–17 [Google Scholar]
  302. Warenycia MW, Smith KA, Blashko CS, Kombian SB, Reiffenstein RJ. 302.  1989. Monoamine oxidase inhibition as a sequel of hydrogen sulfide intoxication: increases in brain catecholamine and 5-hydroxytryptamine levels. Arch. Toxicol. 63:131–36 [Google Scholar]
  303. Warskulat U, Heller-Stilb B, Oermann E, Zilles K, Haas H. 303.  et al. 2007. Phenotype of the taurine transporter knockout mouse. Methods Enzymol. 428:439–58 [Google Scholar]
  304. Waterland RA. 304.  2006. Assessing the effects of high methionine intake on DNA methylation. J. Nutr. 136:1706–10S [Google Scholar]
  305. Watkins D, Rosenblatt DS. 305.  1988. Genetic heterogeneity among patients with methylcobalamin deficiency. Definition of two complementation groups, cblE and cblG. J. Clin. Invest. 81:1690–94 [Google Scholar]
  306. Watkins D, Rosenblatt DS. 306.  1989. Functional methionine synthase deficiency (cblE and cblG): clinical and biochemical heterogeneity. Am. J. Med. Genet. 34:427–34 [Google Scholar]
  307. Whiteman M, Le Trionnaire S, Chopra M, Fox B, Whatmore J. 307.  2011. Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clin. Sci. 121:459–88 [Google Scholar]
  308. Whiteman M, Li L, Kostetski I, Chu SH, Siau JL. 308.  et al. 2006. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem. Biophys. Res. Commun. 343:303–10 [Google Scholar]
  309. Whitfield NL, Kreimier EL, Verdial FC, Skovgaard N, Olson KR. 309.  2008. Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294:R1930–37 [Google Scholar]
  310. Wilson A, Platt R, Wu Q, Leclerc D, Christensen B. 310.  et al. 1999. A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol. Genet. Metab. 67:317–23 [Google Scholar]
  311. Wong PS, Hyun J, Fukuto JM, Shirota FN, DeMaster EG. 311.  et al. 1998. Reaction between S-nitrosothiols and thiols: generation of nitroxyl (HNO) and subsequent chemistry. Biochemistry 37:5362–71 [Google Scholar]
  312. Wu C, Miloslavskaya I, Demontis S, Maestro R, Galaktionov K. 312.  2004. Regulation of cellular response to oncogenic and oxidative stress by Seladin-1. Nature 432:640–45 [Google Scholar]
  313. Wu L, Yang W, Jia X, Yang G, Duridanova D. 313.  et al. 2009. Pancreatic islet overproduction of H2S and suppressed insulin release in Zucker diabetic rats. Lab. Invest. 89:59–67 [Google Scholar]
  314. Yadav PK, Xie P, Banerjee R. 314.  2012. Allosteric communication between the pyridoxal 5′-phosphate (PLP) and heme sites in the H2S generator human cystathionine β-synthase. J. Biol. Chem. 287:37611–20 [Google Scholar]
  315. Yadav PK, Yamada K, Chiku T, Koutmos M, Banerjee R. 315.  2013. Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase. J. Biol. Chem. 288:20002–13 [Google Scholar]
  316. Yan Z, Banerjee R. 316.  2010. Redox remodeling as an immunoregulatory strategy. Biochemistry 49:1059–66 [Google Scholar]
  317. Yang G, Sun X, Wang R. 317.  2004. Hydrogen sulfide-induced apoptosis of human aorta smooth muscle cells via the activation of mitogen-activated protein kinases and caspase-3. FASEB J. 18:1782–84 [Google Scholar]
  318. Yang G, Wu L, Bryan S, Khaper N, Mani S, Wang R. 318.  2010. Cystathionine gamma-lyase deficiency and overproliferation of smooth muscle cells. Cardiovasc. Res. 86:487–95 [Google Scholar]
  319. Yang G, Wu L, Jiang B, Yang W, Qi J. 319.  et al. 2008. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–90 [Google Scholar]
  320. Yong QC, Choo CH, Tan BH, Low CM, Bian JS. 320.  2010. Effect of hydrogen sulfide on intracellular calcium homeostasis in neuronal cells. Neurochem. Int. 56:508–15 [Google Scholar]
  321. Yong QC, Hu LF, Wang S, Huang D, Bian JS. 321.  2010. Hydrogen sulfide interacts with nitric oxide in the heart: possible involvement of nitroxyl. Cardiovasc. Res. 88:482–91 [Google Scholar]
  322. Yong R, Searcy DG. 322.  2001. Sulfide oxidation coupled to ATP synthesis in chicken liver mitochondria. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 129:129–37 [Google Scholar]
  323. Yu YB, Yang SF. 323.  1979. Auxin-induced ethylene production and its inhibition by aminoethyoxyvinylglycine and cobalt ion. Plant Physiol. 64:1074–77 [Google Scholar]
  324. Yusuf M, Kwong Huat BT, Hsu A, Whiteman M, Bhatia M, Moore PK. 324.  2005. Streptozotocin-induced diabetes in the rat is associated with enhanced tissue hydrogen sulfide biosynthesis. Biochem. Biophys. Res. Commun. 333:1146–52 [Google Scholar]
  325. Zaghini G, Biagi G. 325.  2005. Nutritional peculiarities and diet palatability in the cat. Vet. Res. Commun. 29:Suppl. 239–44 [Google Scholar]
  326. Zhang Y, Tang ZH, Ren Z, Qu SL, Liu MH. 326.  et al. 2013. Hydrogen sulfide, the next potent preventive and therapeutic agent in aging and age-associated diseases. Mol. Cell. Biol. 33:1104–13 [Google Scholar]
  327. Zhao W, Wang R. 327.  2002. H2S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am. J. Physiol. Heart Circ. Physiol. 283:H474–80 [Google Scholar]
  328. Zhao W, Zhang J, Lu Y, Wang R. 328.  2001. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J. 20:6008–16 [Google Scholar]
/content/journals/10.1146/annurev-nutr-071813-105654
Loading
/content/journals/10.1146/annurev-nutr-071813-105654
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error