1932

Abstract

The primary therapeutic target for diabetes management is the achievement of good glycemic control, of which glycated hemoglobin (HbA1c) remains the standard clinical marker. However, glycemic variability (GV; the amplitude, frequency, and duration of glycemic fluctuations around mean blood glucose) is an emerging target for blood glucose control. A growing body of evidence supports GV as an independent risk factor for diabetes complications. Several techniques have been developed to assess and quantify intraday and interday GV. Additionally, GV can be influenced by several nutritional factors, including carbohydrate quality, quantity; and distribution; protein intake; and fiber intake. These factors have important implications for clinical nutrition practice and for optimizing blood glucose control for diabetes management. This review discusses the available evidence for GV as a marker of glycemic control and risk factor for diabetes complications. GV quantification techniques and the influence of nutritional considerations for diabetes management are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-121214-104422
2015-07-17
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/nutr/35/1/annurev-nutr-121214-104422.html?itemId=/content/journals/10.1146/annurev-nutr-121214-104422&mimeType=html&fmt=ahah

Literature Cited

  1. Gerstein HC, Miller ME, Byington RP, Goff DC Jr. 1.  Action Control Cardiovasc. Risk Diabetes Study Group et al. 2008. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 358:2545–59 [Google Scholar]
  2. Patel A, MacMahon S, Chalmers J, Neal B. 2.  ADVANCE Collab. Group et al. 2008. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358:2560–72 [Google Scholar]
  3. Akhavan T, Luhovyy BL, Brown PH, Cho CE, Anderson GH. 3.  2010. Effect of premeal consumption of whey protein and its hydrolysate on food intake and postmeal glycemia and insulin responses in young adults. Am. J. Clin. Nutr. 91:966–75 [Google Scholar]
  4. 4. Am. Diabetes Assoc 2001. Postprandial blood glucose. American Diabetes Association. Diabetes Care 24:775–78 [Google Scholar]
  5. 5. Am. Diabetes Assoc 2013. Diagnosis and classification of diabetes mellitus. Diabetes Care 36:Suppl. 1S67–74 [Google Scholar]
  6. 6. Am. Diabetes Assoc 2013. Standards of medical care in diabetes—2013. Diabetes Care 36:Suppl. 1S11–66 [Google Scholar]
  7. Bantle JP, Wylie-Rosett J, Albright AL, Apovian CM. 7. Am. Diabetes Assoc et al. 2008. Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association. Diabetes Care 31:Suppl. 1S61–78 [Google Scholar]
  8. Amori RE, Lau J, Pittas AG. 8.  2007. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA 298:194–206 [Google Scholar]
  9. Aschner P, Kipnes MS, Lunceford JK, Sanchez M, Mickel C. 9.  et al. 2006. Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care 29:2632–37 [Google Scholar]
  10. Avignon A, Radauceanu A, Monnier L. 10.  1997. Nonfasting plasma glucose is a better marker of diabetic control than fasting plasma glucose in type 2 diabetes. Diabetes Care 20:1822–26 [Google Scholar]
  11. Avogaro A. 11.  2011. Postprandial glucose: marker or risk factor?. Diabetes Care 34:2333–35 [Google Scholar]
  12. Balkau B, Bertrais S, Ducimetiere P, Eschwege E. 12.  1999. Is there a glycemic threshold for mortality risk?. Diabetes Care 22:696–99 [Google Scholar]
  13. Barbieri M, Rizzo MR, Marfella R, Boccardi V, Esposito A. 13.  et al. 2013. Decreased carotid atherosclerotic process by control of daily acute glucose fluctuations in diabetic patients treated by DPP-IV inhibitors. Atherosclerosis 227:349–54 [Google Scholar]
  14. Barzilay JI, Spiekerman CF, Wahl PW, Kuller LH, Cushman M. 14.  et al. 1999. Cardiovascular disease in older adults with glucose disorders: comparison of American Diabetes Association criteria for diabetes mellitus with WHO criteria. Lancet 354:622–25 [Google Scholar]
  15. Bastyr EJ 3rd, Stuart CA, Brodows RG, Schwartz S, Graf CJ. 15.  et al. 2000. Therapy focused on lowering postprandial glucose, not fasting glucose, may be superior for lowering HbA1c. IOEZ Study Group. Diabetes Care 23:1236–41 [Google Scholar]
  16. Bessard J, Cracowski JL, Stanke-Labesque F, Bessard G. 16.  2001. Determination of isoprostaglandin F2α type III in human urine by gas chromatography-electronic impact mass spectrometry. Comparison with enzyme immunoassay. J. Chromatogr. B Biomed. Sci. Appl. 754:333–43 [Google Scholar]
  17. Bibra HV, Siegmund T, Ceriello A, Volozhyna M, Schumm-Draeger PM. 17.  2009. Optimized postprandial glucose control is associated with improved cardiac/vascular function—comparison of three insulin regimens in well-controlled type 2 diabetes. Horm. Metab. Res. 41:109–15 [Google Scholar]
  18. Bode BW, Schwartz S, Stubbs HA, Block JE. 18.  2005. Glycemic characteristics in continuously monitored patients with type 1 and type 2 diabetes: normative values. Diabetes Care 28:2361–66 [Google Scholar]
  19. Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrere B. 19.  1997. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. USA 94:14930–35 [Google Scholar]
  20. Bonds DE, Miller ME, Bergenstal RM, Buse JB, Byington RP. 20.  et al. 2010. The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study. BMJ 340:b4909 [Google Scholar]
  21. Bonora E, Calcaterra F, Lombardi S, Bonfante N, Formentini G. 21.  et al. 2001. Plasma glucose levels throughout the day and HbA1c interrelationships in type 2 diabetes: implications for treatment and monitoring of metabolic control. Diabetes Care 24:2023–29 [Google Scholar]
  22. Bonora E, Corrao G, Bagnardi V, Ceriello A, Comaschi M. 22.  et al. 2006. Prevalence and correlates of post-prandial hyperglycaemia in a large sample of patients with type 2 diabetes mellitus. Diabetologia 49:846–54 [Google Scholar]
  23. Borch-Johnsen K, Neil A, Balkau B, Larsen S, Nissinen A. 23.  et al. 2001. Glucose tolerance and cardiovascular mortality—comparison of fasting and 2-hour diagnostic criteria. Arch. Intern. Med. 161:397–405 [Google Scholar]
  24. Borg R, Kuenen JC, Carstensen B, Zheng H, Nathan DM. 24.  et al. 2010. Associations between features of glucose exposure and A1C: the A1C-Derived Average Glucose (ADAG) Study. Diabetes 59:1585–90 [Google Scholar]
  25. Bouma M, Dekker JH, de Sonnaville JJ, van der Does FE, de Vries H. 25.  et al. 1999. How valid is fasting plasma glucose as a parameter of glycemic control in non-insulin-using patients with type 2 diabetes?. Diabetes Care 22:904–7 [Google Scholar]
  26. Bragd J, Adamson U, Backlund LB, Lins PE, Moberg E, Oskarsson P. 26.  2008. Can glycaemic variability, as calculated from blood glucose self-monitoring, predict the development of complications in type 1 diabetes over a decade?. Diabetes Metab. 34:612–16 [Google Scholar]
  27. Brand-Miller JC, Thomas M, Swan V, Ahmad ZI, Petocz P, Colagiuri S. 27.  2003. Physiological validation of the concept of glycemic load in lean young adults. J. Nutr. 133:2728–32 [Google Scholar]
  28. Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P. 28.  et al. 2009. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58:1229–36 [Google Scholar]
  29. Brownlee M. 29.  2005. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–25 [Google Scholar]
  30. Brownlee M, Hirsch IB. 30.  2006. Glycemic variability: a hemoglobin A1c-independent risk factor for diabetic complications. JAMA 295:1707–8 [Google Scholar]
  31. Brynes AE, Lee JL, Brighton RE, Leeds AR, Dornhorst A, Frost GS. 31.  2003. A low glycemic diet significantly improves the 24-h blood glucose profile in people with type 2 diabetes, as assessed using the continuous glucose MiniMed monitor. Diabetes Care 26:548–49 [Google Scholar]
  32. Brynes AE, Edwards CM, Ghatei MA, Dornhorst A, Morgan LM. 32.  et al. 2003. A randomised four-intervention crossover study investigating the effect of carbohydrates on daytime profiles of insulin, glucose, non-esterified fatty acids and triacylglycerols in middle-aged men. Br. J. Nutr. 89:207–18 [Google Scholar]
  33. Bunn HF, Gabbay KH, Gallop PM. 33.  1978. The glycosylation of hemoglobin: relevance to diabetes mellitus. Science 200:21–27 [Google Scholar]
  34. Bunn HF, Haney DN, Kamin S, Gabbay KH, Gallop PM. 34.  1976. The biosynthesis of human hemoglobin A1c. Slow glycosylation of hemoglobin in vivo. J. Clin. Invest. 57:1652–59 [Google Scholar]
  35. Buscemi S, Cosentino L, Rosafio G, Morgana M, Mattina A. 35.  et al. 2013. Effects of hypocaloric diets with different glycemic indexes on endothelial function and glycemic variability in overweight and in obese adult patients at increased cardiovascular risk. Clin. Nutr. 32:346–52 [Google Scholar]
  36. Buscemi S, Re A, Batsis JA, Arnone M, Mattina A. 36.  et al. 2010. Glycaemic variability using continuous glucose monitoring and endothelial function in the metabolic syndrome and in type 2 diabetes. Diabet Med. 27:872–78 [Google Scholar]
  37. Cameron FJ, Donath SM, Baghurst PA. 37.  2010. Measuring glycaemic variation. Curr. Diabetes Rev. 6:17–26 [Google Scholar]
  38. Campbell PJ, Mandarino LJ, Gerich JE. 38.  1988. Quantification of the relative impairment in actions of insulin on hepatic glucose production and peripheral glucose uptake in non-insulin-dependent diabetes mellitus. Metabolism 37:15–21 [Google Scholar]
  39. Carroll MF, Gutierrez A, Castro M, Tsewang D, Schade DS. 39.  2003. Targeting postprandial hyperglycemia: a comparative study of insulinotropic agents in type 2 diabetes. J. Clin. Endocrinol. Metab. 88:5248–54 [Google Scholar]
  40. Cavalot F, Pagliarino A, Valle M, Di Martino L, Bonomo K. 40.  et al. 2011. Postprandial blood glucose predicts cardiovascular events and all-cause mortality in type 2 diabetes in a 14-year follow-up: lessons from the San Luigi Gonzaga Diabetes Study. Diabetes Care 34:2237–43 [Google Scholar]
  41. Ceriello A. 41.  2005. Postprandial hyperglycemia and diabetes complications: Is it time to treat?. Diabetes 54:1–7 [Google Scholar]
  42. Ceriello A. 42.  2009. Postprandial hyperglycemia and cardiovascular disease: Is the HEART2D study the answer?. Diabetes Care 32:521–22 [Google Scholar]
  43. Ceriello A. 43.  2010. The glucose triad and its role in comprehensive glycaemic control: current status, future management. Int. J. Clin. Pract. 64:1705–11 [Google Scholar]
  44. Ceriello A. 44.  2010. Point: Postprandial glucose levels are a clinically important treatment target. Diabetes Care 33:1905–7 [Google Scholar]
  45. Ceriello A, Cavarape A, Martinelli L, Da Ros R, Marra G. 45.  et al. 2004. The post-prandial state in type 2 diabetes and endothelial dysfunction: effects of insulin aspart. Diabet. Med. 21:171–75 [Google Scholar]
  46. Ceriello A, Colagiuri S, Gerich J, Tuomilehto J. 46.  Guidel. Dev. Group 2008. Guideline for management of postmeal glucose. Nutr. Metab. Cardiovasc. Dis. 18:S17–33 [Google Scholar]
  47. Ceriello A, Davidson J, Hanefeld M, Leiter L, Monnier L. 47.  et al. 2006. Postprandial hyperglycaemia and cardiovascular complications of diabetes: an update. Nutr. Metab. Cardiovasc. Dis. 16:453–56 [Google Scholar]
  48. Ceriello A, Esposito K, Ihnat M, Thorpe J, Giugliano D. 48.  2010. Effect of acute hyperglycaemia, long-term glycaemic control and insulin on endothelial dysfunction and inflammation in type 1 diabetic patients with different characteristics. Diabet. Med. 27:911–17 [Google Scholar]
  49. Ceriello A, Esposito K, Piconi L, Ihnat M, Thorpe J. 49.  et al. 2008. Glucose “peak” and glucose “spike”: impact on endothelial function and oxidative stress. Diabetes Res. Clin. Pract. 82:262–67 [Google Scholar]
  50. Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE. 50.  et al. 2008. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 57:1349–54 [Google Scholar]
  51. Ceriello A, Hanefeld M, Leiter L, Monnier L, Moses A. 51.  et al. 2004. Postprandial glucose regulation and diabetic complications. Arch. Intern. Med. 164:2090–95 [Google Scholar]
  52. Ceriello A, Ihnat MA. 52.  2010. “Glycaemic variability”: a new therapeutic challenge in diabetes and the critical care setting. Diabet. Med. 27:862–67 [Google Scholar]
  53. Ceriello A, Quagliaro L, Catone B, Pascon R, Piazzola M. 53.  et al. 2002. Role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes Care 25:1439–43 [Google Scholar]
  54. Ceriello A, Quagliaro L, Piconi L, Assaloni R, Da Ros R. 54.  et al. 2004. Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes 53:701–10 [Google Scholar]
  55. Ceriello A, Taboga C, Tonutti L, Quagliaro L, Piconi L. 55.  et al. 2002. Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects of short- and long-term simvastatin treatment. Circulation 106:1211–18 [Google Scholar]
  56. Chandalia M, Garg A, Lutjohann D, von Bergmann K, Grundy SM, Brinkley LJ. 56.  2000. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N. Engl. J. Med. 342:1392–98 [Google Scholar]
  57. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A. 57.  et al. 2003. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 290:486–94 [Google Scholar]
  58. Chittari MV, McTernan P, Bawazeer N, Constantinides K, Ciotola M. 58.  et al. 2011. Impact of acute hyperglycaemia on endothelial function and retinal vascular reactivity in patients with type 2 diabetes. Diabet. Med. 28:450–54 [Google Scholar]
  59. Coutinho M, Gerstein HC, Wang Y, Yusuf S. 59.  1999. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 22:233–40 [Google Scholar]
  60. Dahl JH, van Breemen RB. 60.  2010. Rapid quantitative analysis of 8-iso-prostaglandin-F using liquid chromatography-tandem mass spectrometry and comparison with an enzyme immunoassay method. Anal. Biochem. 404:211–16 [Google Scholar]
  61. Dandona P, Aljada A, Mohanty P, Ghanim H, Hamouda W. 61.  et al. 2001. Insulin inhibits intranuclear nuclear factor κB and stimulates IκB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect?. J. Clin. Endocrinol. Metab. 86:3257–65 [Google Scholar]
  62. Dandona P, Chaudhuri A, Ghanim H, Mohanty P. 62.  2009. Insulin as an anti-inflammatory and antiatherogenic modulator. J. Am. Coll. Cardiol. 53:S14–20 [Google Scholar]
  63. Davi G, Ciabattoni G, Consoli A, Mezzetti A, Falco A. 63.  et al. 1999. In vivo formation of 8-iso-prostaglandin F and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation 99:224–29 [Google Scholar]
  64. Davi G, Falco A, Patrono C. 64.  2005. Lipid peroxidation in diabetes mellitus. Antioxid. Redox Signal. 7:256–68 [Google Scholar]
  65. De Natale C, Annuzzi G, Bozzetto L, Mazzarella R, Costabile G. 65.  et al. 2009. Effects of a plant-based high-carbohydrate/high-fiber diet versus high-monounsaturated fat/low-carbohydrate diet on postprandial lipids in type 2 diabetic patients. Diabetes Care 32:2168–73 [Google Scholar]
  66. de Vegt F, Dekker JM, Ruhe HG, Stehouwer CD, Nijpels G. 66.  et al. 1999. Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population: the Hoorn Study. Diabetologia 42:926–31 [Google Scholar]
  67. Derr R, Garrett E, Stacy GA, Saudek CD. 67.  2003. Is HbA1c affected by glycemic instability?. Diabetes Care 26:2728–33 [Google Scholar]
  68. Devaraj S, Hirany SV, Burk RF, Jialal I. 68.  2001. Divergence between LDL oxidative susceptibility and urinary F(2)-isoprostanes as measures of oxidative stress in type 2 diabetes. Clin. Chem. 47:1974–79 [Google Scholar]
  69. Di Flaviani A, Picconi F, Di Stefano P, Giordani I, Malandrucco I. 69.  et al. 2011. Impact of glycemic and blood pressure variability on surrogate measures of cardiovascular outcomes in type 2 diabetic patients. Diabetes Care 34:1605–9 [Google Scholar]
  70. Dinneen S, Gerich J, Rizza R. 70.  1992. Carbohydrate metabolism in non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 327:707–13 [Google Scholar]
  71. Donahue RP, Abbott RD, Reed DM, Yano K. 71.  1987. Postchallenge glucose concentration and coronary heart disease in men of Japanese ancestry. Honolulu Heart Program. Diabetes 36:689–92 [Google Scholar]
  72. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N. 72.  et al. 2009. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. 360:129–39 [Google Scholar]
  73. Egi M, Bellomo R, Stachowski E, French CJ, Hart G. 73.  2006. Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology 105:244–52 [Google Scholar]
  74. El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL. 74.  et al. 2008. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J. Exp. Med. 205:2409–17 [Google Scholar]
  75. Esposito K, Ciotola M, Carleo D, Schisano B, Sardelli L. 75.  et al. 2008. Post-meal glucose peaks at home associate with carotid intima-media thickness in type 2 diabetes. J. Clin. Endocrinol. Metab. 93:1345–50 [Google Scholar]
  76. Esposito K, Giugliano D, Nappo F, Marfella R. 76.  Campanian Postprandial Hyperglycemia Study Group 2004. Regression of carotid atherosclerosis by control of postprandial hyperglycemia in type 2 diabetes mellitus. Circulation 110:214–19 [Google Scholar]
  77. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F. 77.  et al. 2002. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 106:2067–72 [Google Scholar]
  78. Evert AB, Boucher JL, Cypress M, Dunbar SA, Franz MJ. 78.  et al. 2013. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 36:3821–42 [Google Scholar]
  79. Fabricatore AN, Ebbeling CB, Wadden TA, Ludwig DS. 79.  2011. Continuous glucose monitoring to assess the ecologic validity of dietary glycemic index and glycemic load. Am. J. Clin. Nutr. 94:1519–24 [Google Scholar]
  80. Festa A, Williams K, Hanley AJ, Haffner SM. 80.  2008. Beta-cell dysfunction in subjects with impaired glucose tolerance and early type 2 diabetes: comparison of surrogate markers with first-phase insulin secretion from an intravenous glucose tolerance test. Diabetes 57:1638–44 [Google Scholar]
  81. Fiallo-Scharer R. 81. Diabetes Res. Child. Netw. Study Group 2005. Eight-point glucose testing versus the continuous glucose monitoring system in evaluation of glycemic control in type 1 diabetes. J. Clin. Endocrinol. Metab. 90:3387–91 [Google Scholar]
  82. Folli F, Guzzi V, Perego L, Coletta DK, Finzi G. 82.  et al. 2010. Proteomics reveals novel oxidative and glycolytic mechanisms in type 1 diabetic patients' skin which are normalized by kidney-pancreas transplantation. PLOS ONE 5:e9923 [Google Scholar]
  83. Frid AH, Nilsson M, Holst JJ, Björck IM. 83.  2005. Effect of whey on blood glucose and insulin responses to composite breakfast and lunch meals in type 2 diabetic subjects. Am. J. Clin. Nutr. 82:69–75 [Google Scholar]
  84. Frier BM, Schernthaner G, Heller SR. 84.  2011. Hypoglycemia and cardiovascular risks. Diabetes Care 34:Suppl. 2S132–37 [Google Scholar]
  85. Fuller JH, Shipley MJ, Rose G, Jarrett RJ, Keen H. 85.  1980. Coronary-heart-disease risk and impaired glucose tolerance. The Whitehall Study. Lancet 1:1373–76 [Google Scholar]
  86. Gannon MC, Nuttall FQ. 86.  2004. Effect of a high-protein, low-carbohydrate diet on blood glucose control in people with type 2 diabetes. Diabetes 53:2375–82 [Google Scholar]
  87. Gannon MC, Nuttall FQ. 87.  2010. Amino acid ingestion and glucose metabolism—a review. IUBMB Life 62:660–68 [Google Scholar]
  88. Gannon MC, Nuttall FQ, Lane JT, Burmeister LA. 88.  1992. Metabolic response to cottage cheese or egg white protein, with or without glucose, in type II diabetic subjects. Metabolism 41:1137–45 [Google Scholar]
  89. Gannon MC, Nuttall FQ, Saeed A, Jordan K, Hoover H. 89.  2003. An increase in dietary protein improves the blood glucose response in persons with type 2 diabetes. Am. J. Clin. Nutr. 78:734–41 [Google Scholar]
  90. Gastaldelli A, Miyazaki Y, Pettiti M, Matsuda M, Mahankali S. 90.  et al. 2002. Metabolic effects of visceral fat accumulation in type 2 diabetes. J. Clin. Endocrinol. Metab. 87:5098–103 [Google Scholar]
  91. Giacco R, Parillo M, Rivellese AA, Lasorella G, Giacco A. 91.  et al. 2000. Long-term dietary treatment with increased amounts of fiber-rich low-glycemic index natural foods improves blood glucose control and reduces the number of hypoglycemic events in type 1 diabetic patients. Diabetes Care 23:1461–66 [Google Scholar]
  92. Gimeno-Orna JA, Castro-Alonso FJ, Boned-Juliani B, Lou-Arnal LM. 92.  2003. Fasting plasma glucose variability as a risk factor of retinopathy in type 2 diabetic patients. J. Diabetes Complications 17:78–81 [Google Scholar]
  93. Giugliano D, Maiorino MI, Bellastella G, Chiodini P, Ceriello A, Esposito K. 93.  2011. Efficacy of insulin analogs in achieving the hemoglobin A1c target of <7% in type 2 diabetes: meta-analysis of randomized controlled trials. Diabetes Care 34:510–17 [Google Scholar]
  94. Gordin D, Ronnback M, Forsblom C, Makinen V, Saraheimo M, Groop PH. 94.  2008. Glucose variability, blood pressure and arterial stiffness in type 1 diabetes. Diabetes Res. Clin. Pract. 80:e4–7 [Google Scholar]
  95. Gribble FM, Manley SE, Levy JC. 95.  2001. Randomized dose ranging study of the reduction of fasting and postprandial glucose in type 2 diabetes by nateglinide (A-4166). Diabetes Care 24:1221–25 [Google Scholar]
  96. Grover-Paez F, Zavalza-Gomez AB. 96.  2009. Endothelial dysfunction and cardiovascular risk factors. Diabetes Res. Clin. Pract. 84:1–10 [Google Scholar]
  97. Gunnerud UJ, Heinzle C, Holst JJ, Ostman EM, Björck IM. 97.  2012. Effects of pre-meal drinks with protein and amino acids on glycemic and metabolic responses at a subsequent composite meal. PLOS ONE 7:e44731 [Google Scholar]
  98. Gunnerud UJ, Ostman EM, Björck IM. 98.  2013. Effects of whey proteins on glycaemia and insulinaemia to an oral glucose load in healthy adults; a dose-response study. Eur. J. Clin. Nutr. 67:749–53 [Google Scholar]
  99. Hanefeld M, Cagatay M, Petrowitsch T, Neuser D, Petzinna D, Rupp M. 99.  2004. Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: meta-analysis of seven long-term studies. Eur. Heart J. 25:10–16 [Google Scholar]
  100. Hanefeld M, Chiasson JL, Koehler C, Henkel E, Schaper F, Temelkova-Kurktschiev T. 100.  2004. Acarbose slows progression of intima-media thickness of the carotid arteries in subjects with impaired glucose tolerance. Stroke 35:1073–78 [Google Scholar]
  101. Hanefeld M, Fischer S, Julius U, Schulze J, Schwanebeck U. 101.  et al. 1996. Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up. Diabetologia 39:1577–83 [Google Scholar]
  102. Hanefeld M, Koehler C, Schaper F, Fuecker K, Henkel E, Temelkova-Kurktschiev T. 102.  1999. Postprandial plasma glucose is an independent risk factor for increased carotid intima-media thickness in non-diabetic individuals. Atherosclerosis 144:229–35 [Google Scholar]
  103. Hernandez TL, Van Pelt RE, Anderson MA, Daniels LJ, West NA. 103.  et al. 2014. A higher-complex carbohydrate diet in gestational diabetes achieves glucose targets and lowers postprandial lipids: a randomized crossover study. Diabetes Care 37:1254–62 [Google Scholar]
  104. Hirsch IB. 104.  2005. Glycemic variability: It's not just about A1C anymore!. Diabetes Technol. Ther. 7:780–83 [Google Scholar]
  105. Hirsch IB, Brownlee M. 105.  2010. Beyond hemoglobin A1c—need for additional markers of risk for diabetic microvascular complications. JAMA 303:2291–92 [Google Scholar]
  106. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 106.  2008. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359:1577–89 [Google Scholar]
  107. Ihnat MA, Kaltreider RC, Thorpe JE, Green DE, Kamat CD. 107.  2007. Attenuated superoxide dismutase induction in retinal cells in response to intermittent high versus continuous high glucose. Am. J. Biochem. Biotechnol. 3:16–23 [Google Scholar]
  108. Ihnat MA, Thorpe JE, Ceriello A. 108.  2007. Hypothesis: the “metabolic memory,” the new challenge of diabetes. Diabet. Med. 24:582–86 [Google Scholar]
  109. 109. Intl. Diabetes Fed 2011. Guideline for Management of Postmeal Glucose in Diabetes. Brussels: Intl. Diabetes Fed.
  110. 110. Intl. Diabetes Fed 2013. IDF Diabetes Atlas. Brussels: Intl. Diabetes Fed, 6th. http://www.idf.org/diabetesatlas/
  111. 111. Intl. Expert Comm 2009. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 32:1327–34 [Google Scholar]
  112. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E. 112.  et al. 2012. Management of hyperglycemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 35:1364–79 [Google Scholar]
  113. Jakubowicz D, Froy O, Ahren B, Boaz M, Landau Z. 113.  et al. 2014. Incretin, insulinotropic and glucose-lowering effects of whey protein pre-load in type 2 diabetes: a randomised clinical trial. Diabetologia 57:1807–11 [Google Scholar]
  114. Järvi AE, Karlstrom BE, Granfeldt YE, Björck IE, Asp NG, Vessby BO. 114.  1999. Improved glycemic control and lipid profile and normalized fibrinolytic activity on a low-glycemic index diet in type 2 diabetic patients. Diabetes Care 22:10–18 [Google Scholar]
  115. Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H. 115.  et al. 1981. Glycemic index of foods: a physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 34:362–66 [Google Scholar]
  116. Tamborlane WV, Beck RW, Bode BW, Buckingham B. 116.  Juv. Diabetes Res. Found. Contin. Glucose Monit. Study Group et al. 2008. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N. Engl. J. Med. 359:1464–76 [Google Scholar]
  117. Kang X, Wang C, Lifang L, Chen D, Yang Y. 117.  et al. 2013. Effects of different proportion of carbohydrate in breakfast on postprandial glucose excursion in normal glucose tolerance and impaired glucose regulation subjects. Diabetes Technol. Ther. 15:569–74 [Google Scholar]
  118. Kawano H, Motoyama T, Hirashima O, Hirai N, Miyao Y. 118.  et al. 1999. Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J. Am. Coll. Cardiol. 34:146–54 [Google Scholar]
  119. Kilpatrick ES, Rigby AS, Atkin SL. 119.  2006. The effect of glucose variability on the risk of microvascular complications in type 1 diabetes. Diabetes Care 29:1486–90 [Google Scholar]
  120. Kilpatrick ES, Rigby AS, Atkin SL. 120.  2008. A1C variability and the risk of microvascular complications in type 1 diabetes: data from the Diabetes Control and Complications Trial. Diabetes Care 31:2198–202 [Google Scholar]
  121. Kilpatrick ES, Rigby AS, Atkin SL. 121.  2008. Mean blood glucose compared with HbA1c in the prediction of cardiovascular disease in patients with type 1 diabetes. Diabetologia 51:365–71 [Google Scholar]
  122. Kilpatrick ES, Rigby AS, Atkin SL. 122.  2009. Effect of glucose variability on the long-term risk of microvascular complications in type 1 diabetes. Diabetes Care 32:1901–3 [Google Scholar]
  123. Kilpatrick ES, Rigby AS, Goode K, Atkin SL. 123.  2007. Relating mean blood glucose and glucose variability to the risk of multiple episodes of hypoglycaemia in type 1 diabetes. Diabetologia 50:2553–61 [Google Scholar]
  124. Kitabchi AE, Kaminska E, Fisher JN, Sherman A, Pitts K. 124.  et al. 2000. Comparative efficacy and potency of long-term therapy with glipizide or glyburide in patients with type 2 diabetes mellitus. Am. J. Med. Sci. 319:143–48 [Google Scholar]
  125. Klein S, Sheard NF, Pi-Sunyer X, Daly A, Wylie-Rosett J. 125.  et al. 2004. Weight management through lifestyle modification for the prevention and management of type 2 diabetes: rationale and strategies. A statement of the American Diabetes Association, the North American Association for the Study of Obesity, and the American Society for Clinical Nutrition. Diabetes Care 27:2067–73 [Google Scholar]
  126. Klonoff DC. 126.  2005. Continuous glucose monitoring: roadmap for 21st century diabetes therapy. Diabetes Care 28:1231–39 [Google Scholar]
  127. Kovatchev BP, Cox DJ, Farhy LS, Straume M, Gonder-Frederick L, Clarke WL. 127.  2000. Episodes of severe hypoglycemia in type 1 diabetes are preceded and followed within 48 hours by measurable disturbances in blood glucose. J. Clin. Endocrinol. Metab. 85:4287–92 [Google Scholar]
  128. Kovatchev BP, Cox DJ, Kumar A, Gonder-Frederick L, Clarke WL. 128.  2003. Algorithmic evaluation of metabolic control and risk of severe hypoglycemia in type 1 and type 2 diabetes using self-monitoring blood glucose data. Diabetes Technol. Ther. 5:817–28 [Google Scholar]
  129. Kovatchev BP, Otto E, Cox D, Gonder-Frederick L, Clarke W. 129.  2006. Evaluation of a new measure of blood glucose variability in diabetes. Diabetes Care 29:2433–38 [Google Scholar]
  130. Krinsley JS. 130.  2008. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit. Care Med. 36:3008–13 [Google Scholar]
  131. Kudva YC, Basu A, Jenkins GD, Pons GM, Vogelsang DA. 131.  et al. 2007. Glycemic variation and hypoglycemia in patients with well-controlled type 1 diabetes on a multiple daily insulin injection program with use of glargine and ultralente as basal insulin. Endocr. Pract. 13:244–50 [Google Scholar]
  132. Kuenen JC, Borg R, Kuik DJ, Zheng H, Schoenfeld D. 132.  et al. 2011. Does glucose variability influence the relationship between mean plasma glucose and HbA1c levels in type 1 and type 2 diabetic patients?. Diabetes Care 34:1843–47 [Google Scholar]
  133. Lachin JM, Genuth S, Nathan DM, Zinman B, Rutledge BN. 133.  DCCT/EDIC Group 2008. Effect of glycemic exposure on the risk of microvascular complications in the Diabetes Control and Complications Trial—revisited. Diabetes 57:995–1001 [Google Scholar]
  134. Lawson JA, Rokach J, FitzGerald GA. 134.  1999. Isoprostanes: formation, analysis and use as indices of lipid peroxidation in vivo. J. Biol. Chem. 274:24441–44 [Google Scholar]
  135. Levitan EB, Song Y, Ford ES, Liu S. 135.  2004. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch. Intern. Med. 164:2147–55 [Google Scholar]
  136. Lin CC, Li CI, Yang SY, Liu CS, Chen CC. 136.  et al. 2012. Variation of fasting plasma glucose: a predictor of mortality in patients with type 2 diabetes. Am. J. Med. 125:416e9–18 [Google Scholar]
  137. Lowe LP, Liu K, Greenland P, Metzger BE, Dyer AR, Stamler J. 137.  1997. Diabetes, asymptomatic hyperglycemia, and 22-year mortality in black and white men. The Chicago Heart Association Detection Project in Industry Study. Diabetes Care 20:163–69 [Google Scholar]
  138. Lu ZX, Walker KZ, Muir JG, O'Dea K. 138.  2004. Arabinoxylan fibre improves metabolic control in people with type II diabetes. Eur. J. Clin. Nutr. 58:621–28 [Google Scholar]
  139. Ma J, Stevens JE, Cukier K, Maddox AF, Wishart JM. 139.  et al. 2009. Effects of a protein preload on gastric emptying, glycemia, and gut hormones after a carbohydrate meal in diet-controlled type 2 diabetes. Diabetes Care 32:1600–2 [Google Scholar]
  140. Magnoni D, Rouws CH, Lansink M, van Laere KM, Campos AC. 140.  2008. Long-term use of a diabetes-specific oral nutritional supplement results in a low-postprandial glucose response in diabetes patients. Diabetes Res. Clin. Pract. 80:75–82 [Google Scholar]
  141. Malmberg K. 141.  1997. Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction) Study Group. BMJ 314:1512–15 [Google Scholar]
  142. Mann J. 142.  2001. Dietary fibre and diabetes revisited. Eur. J. Clin. Nutr. 55:919–21 [Google Scholar]
  143. Mann JI, De Leeuw I, Hermansen K, Karamanos B, Karlstrom B. 143.  et al. 2004. Evidence-based nutritional approaches to the treatment and prevention of diabetes mellitus. Nutr. Metab. Cardiovasc. Dis. 14:373–94 [Google Scholar]
  144. Marcovecchio ML, Dalton RN, Chiarelli F, Dunger DB. 144.  2011. A1C variability as an independent risk factor for microalbuminuria in young people with type 1 diabetes. Diabetes Care 34:1011–13 [Google Scholar]
  145. Maurizi AR, Pozzilli P. 145.  2013. Do we need continuous glucose monitoring in type 2 diabetes?. Diabetes Metab. Res. Rev. doi: 10.1002/dmrr.2450
  146. Mazze RS, Strock E, Wesley D, Borgman S, Morgan B. 146.  et al. 2008. Characterizing glucose exposure for individuals with normal glucose tolerance using continuous glucose monitoring and ambulatory glucose profile analysis. Diabetes Technol. Ther. 10:149–59 [Google Scholar]
  147. McCarter RJ, Hempe JM, Chalew SA. 147.  2006. Mean blood glucose and biological variation have greater influence on HbA1c levels than glucose instability: an analysis of data from the Diabetes Control and Complications Trial. Diabetes Care 29:352–55 [Google Scholar]
  148. McDonnell CM, Donath SM, Vidmar SI, Werther GA, Cameron FJ. 148.  2005. A novel approach to continuous glucose analysis utilizing glycemic variation. Diabetes Technol. Ther. 7:253–63 [Google Scholar]
  149. Meigs JB, Nathan DM, D'Agostino RB Sr, Wilson PW, Framingham Offspring S. 149.  2002. Fasting and postchallenge glycemia and cardiovascular disease risk: the Framingham Offspring Study. Diabetes Care 25:1845–50 [Google Scholar]
  150. Mitrakou A, Kelley D, Veneman T, Jenssen T, Pangburn T. 150.  et al. 1990. Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in NIDDM. Diabetes 39:1381–90 [Google Scholar]
  151. Moberg EA, Lins PE, Adamson UK. 151.  1994. Variability of blood glucose levels in patients with type 1 diabetes mellitus on intensified insulin regimens. Diabetes Metab. 20:546–52 [Google Scholar]
  152. Molnar GD, Taylor WF, Ho MM. 152.  1972. Day-to-day variation of continuously monitored glycaemia: a further measure of diabetic instability. Diabetologia 8:342–48 [Google Scholar]
  153. Monnier L, Colette C. 153.  2008. Glycemic variability: Should we and can we prevent it?. Diabetes Care 31:Suppl. 2S150–54 [Google Scholar]
  154. Monnier L, Colette C, Dunseath GJ, Owens DR. 154.  2007. The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care 30:263–69 [Google Scholar]
  155. Monnier L, Colette C, Lapinski H. 155.  2004. Global assessment for quality and safety of control in type 2 diabetic patients. Eur. J. Clin. Invest. 34:37–42 [Google Scholar]
  156. Monnier L, Colette C, Mas E, Michel F, Cristol JP. 156.  et al. 2010. Regulation of oxidative stress by glycaemic control: evidence for an independent inhibitory effect of insulin therapy. Diabetologia 53:562–71 [Google Scholar]
  157. Monnier L, Lapinski H, Colette C. 157.  2003. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA1c. Diabetes Care 26:881–85 [Google Scholar]
  158. Monnier L, Mas E, Ginet C, Michel F, Villon L. 158.  et al. 2006. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295:1681–87 [Google Scholar]
  159. Monnier L, Wojtusciszyn A, Colette C, Owens D. 159.  2011. The contribution of glucose variability to asymptomatic hypoglycemia in persons with type 2 diabetes. Diabetes Technol. Ther. 13:813–18 [Google Scholar]
  160. Mori Y, Ohta T, Shiozaki M, Yokoyama J, Utsunomiya K. 160.  2012. The effect of a low-carbohydrate/high-monounsaturated fatty acid liquid diet and an isoleucine-containing liquid diet on 24-h glycemic variability in diabetes patients on tube feeding: a comparison by continuous glucose monitoring. Diabetes Technol. Ther. 14:619–23 [Google Scholar]
  161. Mori Y, Ohta T, Yokoyama J, Utsunomiya K. 161.  2013. Effects of low-carbohydrate/high-monounsaturated fatty acid liquid diets on diurnal glucose variability and insulin dose in type 2 diabetes patients on tube feeding who require insulin therapy. Diabetes Technol. Ther. 15:762–67 [Google Scholar]
  162. Muggeo M, Verlato G, Bonora E, Ciani F, Moghetti P. 162.  et al. 1995. Long-term instability of fasting plasma glucose predicts mortality in elderly NIDDM patients: the Verona Diabetes Study. Diabetologia 38:672–79 [Google Scholar]
  163. Muggeo M, Verlato G, Bonora E, Zoppini G, Corbellini M, de Marco R. 163.  1997. Long-term instability of fasting plasma glucose, a novel predictor of cardiovascular mortality in elderly patients with non-insulin-dependent diabetes mellitus: the Verona Diabetes Study. Circulation 96:1750–54 [Google Scholar]
  164. Muggeo M, Zoppini G, Bonora E, Brun E, Bonadonna RC. 164.  et al. 2000. Fasting plasma glucose variability predicts 10-year survival of type 2 diabetic patients: the Verona Diabetes Study. Diabetes Care 23:45–50 [Google Scholar]
  165. Nalysnyk L, Hernandez-Medina M, Krishnarajah G. 165.  2010. Glycaemic variability and complications in patients with diabetes mellitus: evidence from a systematic review of the literature. Diabetes Obes. Metab. 12:288–98 [Google Scholar]
  166. Nappo F, Esposito K, Cioffi M, Giugliano G, Molinari AM. 166.  et al. 2002. Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: role of fat and carbohydrate meals. J. Am. Coll. Cardiol. 39:1145–50 [Google Scholar]
  167. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM. 167.  et al. 2005. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 353:2643–53 [Google Scholar]
  168. Holman RR, Haffner SM, McMurray JJ, Bethel MA. 168.  Navig. Study Group et al. 2010. Effect of nateglinide on the incidence of diabetes and cardiovascular events. N. Engl. J. Med. 362:1463–76 [Google Scholar]
  169. Finfer S, Chittock DR, Su SY, Blair D. 169.  NICE-SUGAR Study Investig. et al. 2009. Intensive versus conventional glucose control in critically ill patients. N. Engl. J. Med. 360:1283–97 [Google Scholar]
  170. Nilsson M, Stenberg M, Frid AH, Holst JJ, Björck IM. 170.  2004. Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins. Am. J. Clin. Nutr. 80:1246–53 [Google Scholar]
  171. O'Keefe JH, Gheewala NM, O'Keefe JO. 171.  2008. Dietary strategies for improving post-prandial glucose, lipids, inflammation, and cardiovascular health. J. Am. Coll. Cardiol. 51:249–55 [Google Scholar]
  172. O'Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr. 172.  1999. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N. Engl. J. Med. 340:14–22 [Google Scholar]
  173. Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S. 173.  et al. 1995. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res. Clin. Pract. 28:103–17 [Google Scholar]
  174. Paddon-Jones D, Westman E, Mattes RD, Wolfe RR, Astrup A, Westerterp-Plantenga M. 174.  2008. Protein, weight management, and satiety. Am. J. Clin. Nutr. 87:1558–61S [Google Scholar]
  175. Patrono C, Falco A, Davi G. 175.  2005. Isoprostane formation and inhibition in atherothrombosis. Curr. Opin. Pharmacol. 5:198–203 [Google Scholar]
  176. Pearce KL, Noakes M, Keogh J, Clifton PM. 176.  2008. Effect of carbohydrate distribution on postprandial glucose peaks with the use of continuous glucose monitoring in type 2 diabetes. Am. J. Clin. Nutr. 87:638–44 [Google Scholar]
  177. Petersen BL, Ward LS, Bastian ED, Jenkins AL, Campbell J, Vuksan V. 177.  2009. A whey protein supplement decreases post-prandial glycemia. Nutr. J. 8:47 [Google Scholar]
  178. Piconi L, Quagliaro L, Assaloni R, Da Ros R, Maier A. 178.  et al. 2006. Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. Diabetes Metab. Res. Rev. 22:198–203 [Google Scholar]
  179. Pratley RE, Weyer C. 179.  2001. The role of impaired early insulin secretion in the pathogenesis of type II diabetes mellitus. Diabetologia 44:929–45 [Google Scholar]
  180. Proudfoot J, Barden A, Mori TA, Burke V, Croft KD. 180.  et al. 1999. Measurement of urinary F2-isoprostanes as markers of in vivo lipid peroxidation—a comparison of enzyme immunoassay with gas chromatography/mass spectrometry. Anal. Biochem. 272:209–15 [Google Scholar]
  181. Qiao Q, Nakagami T, Tuomilehto J, Borch-Johnsen K, Balkau B. 181.  et al. 2000. Comparison of the fasting and the 2-h glucose criteria for diabetes in different Asian cohorts. Diabetologia 43:1470–75 [Google Scholar]
  182. Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A. 182.  2003. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes 52:2795–804 [Google Scholar]
  183. Raz I, Ceriello A, Wilson PW, Battioui C, Su EW. 183.  et al. 2011. Post hoc subgroup analysis of the HEART2D trial demonstrates lower cardiovascular risk in older patients targeting postprandial versus fasting/premeal glycemia. Diabetes Care 34:1511–13 [Google Scholar]
  184. Raz I, Wilson PW, Strojek K, Kowalska I, Bozikov V. 184.  et al. 2009. Effects of prandial versus fasting glycemia on cardiovascular outcomes in type 2 diabetes: the HEART2D trial. Diabetes Care 32:381–86 [Google Scholar]
  185. Riddle M, Umpierrez G, DiGenio A, Zhou R, Rosenstock J. 185.  2011. Contributions of basal and postprandial hyperglycemia over a wide range of A1C levels before and after treatment intensification in type 2 diabetes. Diabetes Care 34:2508–14 [Google Scholar]
  186. Rizzo MR, Barbieri M, Marfella R, Paolisso G. 186.  2012. Reduction of oxidative stress and inflammation by blunting daily acute glucose fluctuations in patients with type 2 diabetes: role of dipeptidyl peptidase-IV inhibition. Diabetes Care 35:2076–82 [Google Scholar]
  187. Rodbard D. 187.  2009. New and improved methods to characterize glycemic variability using continuous glucose monitoring. Diabetes Technol. Ther. 11:551–65 [Google Scholar]
  188. Rohlfing CL, Wiedmeyer HM, Little RR, England JD, Tennill A, Goldstein DE. 188.  2002. Defining the relationship between plasma glucose and HbA1c: analysis of glucose profiles and HbA1c in the Diabetes Control and Complications Trial. Diabetes Care 25:275–78 [Google Scholar]
  189. Rosenstock J, Hassman DR, Madder RD, Brazinsky SA, Farrell J. 189.  et al. 2004. Repaglinide versus nateglinide monotherapy: a randomized, multicenter study. Diabetes Care 27:1265–70 [Google Scholar]
  190. Saeed A, Jones SA, Nuttall FQ, Gannon MC. 190.  2002. A fasting-induced decrease in plasma glucose concentration does not affect the insulin response to ingested protein in people with type 2 diabetes. Metabolism 51:1027–33 [Google Scholar]
  191. Salehi A, Gunnerud U, Muhammed SJ, Ostman E, Holst JJ. 191.  et al. 2012. The insulinogenic effect of whey protein is partially mediated by a direct effect of amino acids and GIP on β-cells. Nutr. Metab. (Lond.) 9:48 [Google Scholar]
  192. Sartore G, Chilelli NC, Burlina S, Di Stefano P, Piarulli F. 192.  et al. 2012. The importance of HbA1c and glucose variability in patients with type 1 and type 2 diabetes: outcome of continuous glucose monitoring (CGM). Acta Diabetol. 49:Suppl. 1S153–60 [Google Scholar]
  193. Schlichtkrull J, Munck O, Jersild M. 193.  1965. The M-valve, an index of blood-sugar control in diabetics. Acta Med. Scand. 177:95–102 [Google Scholar]
  194. Scognamiglio R, Negut C, De Kreutzenberg SV, Tiengo A, Avogaro A. 194.  2006. Effects of different insulin regimes on postprandial myocardial perfusion defects in type 2 diabetic patients. Diabetes Care 29:95–100 [Google Scholar]
  195. Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL. 195.  et al. 2004. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann. Intern. Med. 141:421–31 [Google Scholar]
  196. Service FJ. 196.  1990. Correlation between glycemia and glycated hemoglobin. Compr. Ther. 16:33–40 [Google Scholar]
  197. Service FJ, Molnar GD, Rosevear JW, Ackerman E, Gatewood LC, Taylor WF. 197.  1970. Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes 19:644–55 [Google Scholar]
  198. Service FJ, O'Brien PC. 198.  2001. The relation of glycaemia to the risk of development and progression of retinopathy in the Diabetic Control and Complications Trial. Diabetologia 44:1215–20 [Google Scholar]
  199. Service FJ, O'Brien PC. 199.  2007. Influence of glycemic variables on hemoglobin A1c. Endocr. Pract. 13:350–54 [Google Scholar]
  200. Service FJ, O'Brien PC, Rizza RA. 200.  1987. Measurements of glucose control. Diabetes Care 10:225–37 [Google Scholar]
  201. Sheard NF, Clark NG, Brand-Miller JC, Franz MJ, Pi-Sunyer FX. 201.  et al. 2004. Dietary carbohydrate (amount and type) in the prevention and management of diabetes: a statement by the American Diabetes Association. Diabetes Care 27:2266–71 [Google Scholar]
  202. Shichiri M, Kishikawa H, Ohkubo Y, Wake N. 202.  2000. Long-term results of the Kumamoto Study on optimal diabetes control in type 2 diabetic patients. Diabetes Care 23:Suppl. 2B21–29 [Google Scholar]
  203. Shiraiwa T, Kaneto H, Miyatsuka T, Kato K, Yamamoto K. 203.  et al. 2005. Postprandial hyperglycemia is a better predictor of the progression of diabetic retinopathy than HbA1c in Japanese type 2 diabetic patients. Diabetes Care 28:2806–7 [Google Scholar]
  204. Siegelaar SE, Barwari T, Kulik W, Hoekstra JB, DeVries JH. 204.  2011. No relevant relationship between glucose variability and oxidative stress in well-regulated type 2 diabetes patients. J. Diabetes Sci. Technol. 5:86–92 [Google Scholar]
  205. Siegelaar SE, Holleman F, Hoekstra JB, DeVries JH. 205.  2010. Glucose variability; does it matter?. Endocr. Rev. 31:171–82 [Google Scholar]
  206. Siegelaar SE, Kerr L, Jacober SJ, Devries JH. 206.  2011. A decrease in glucose variability does not reduce cardiovascular event rates in type 2 diabetic patients after acute myocardial infarction: a reanalysis of the HEART2D study. Diabetes Care 34:855–57 [Google Scholar]
  207. Siegelaar SE, Kilpatrick ES, Rigby AS, Atkin SL, Hoekstra JB, Devries JH. 207.  2009. Glucose variability does not contribute to the development of peripheral and autonomic neuropathy in type 1 diabetes: data from the DCCT. Diabetologia 52:2229–32 [Google Scholar]
  208. Siegelaar SE, Kulik W, van Lenthe H, Mukherjee R, Hoekstra JB, Devries JH. 208.  2009. A randomized clinical trial comparing the effect of basal insulin and inhaled mealtime insulin on glucose variability and oxidative stress. Diabetes Obes. Metab. 11:709–14 [Google Scholar]
  209. Sircar D, Subbaiah PV. 209.  2007. Isoprostane measurement in plasma and urine by liquid chromatography–mass spectrometry with one-step sample preparation. Clin. Chem. 53:251–58 [Google Scholar]
  210. Soonthornpun S, Rattarasarn C, Leelawattana R, Setasuban W. 210.  1999. Postprandial plasma glucose: a good index of glycemic control in type 2 diabetic patients having near-normal fasting glucose levels. Diabetes Res. Clin. Pract. 46:23–27 [Google Scholar]
  211. Sorkin JD, Muller DC, Fleg JL, Andres R. 211.  2005. The relation of fasting and 2-h postchallenge plasma glucose concentrations to mortality: data from the Baltimore Longitudinal Study of Aging with a critical review of the literature. Diabetes Care 28:2626–32 [Google Scholar]
  212. Standl E, Schnell O, Ceriello A. 212.  2011. Postprandial hyperglycemia and glycemic variability: Should we care?. Diabetes Care 34:Suppl. 2S120–27 [Google Scholar]
  213. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE. 213.  et al. 2000. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321:405–12 [Google Scholar]
  214. Su G, Mi S, Tao H, Li Z, Yang H. 214.  et al. 2011. Association of glycemic variability and the presence and severity of coronary artery disease in patients with type 2 diabetes. Cardiovasc. Diabetol. 10:19 [Google Scholar]
  215. Su G, Mi SH, Tao H, Li Z, Yang HX. 215.  et al. 2013. Impact of admission glycemic variability, glucose, and glycosylated hemoglobin on major adverse cardiac events after acute myocardial infarction. Diabetes Care 36:1026–32 [Google Scholar]
  216. Sugawara A, Kawai K, Motohashi S, Saito K, Kodama S. 216.  et al. 2012. HbA1c variability and the development of microalbuminuria in type 2 diabetes: Tsukuba Kawai Diabetes Registry 2. Diabetologia 55:2128–31 [Google Scholar]
  217. Tahara Y, Shima K. 217.  1993. The response of GHb to stepwise plasma glucose change over time in diabetic patients. Diabetes Care 16:1313–14 [Google Scholar]
  218. Takao T, Ide T, Yanagisawa H, Kikuchi M, Kawazu S, Matsuyama Y. 218.  2010. The effect of fasting plasma glucose variability on the risk of retinopathy in type 2 diabetic patients: retrospective long-term follow-up. Diabetes Res. Clin. Pract. 89:296–302 [Google Scholar]
  219. Tay J, Luscombe-Marsh ND, Thompson CH, Noakes M, Buckley JD. 219.  et al. 2014. A very low carbohydrate, low saturated fat diet for type 2 diabetes management: a randomized trial. Diabetes Care 37:2909–18 [Google Scholar]
  220. Temelkova-Kurktschiev TS, Koehler C, Henkel E, Leonhardt W, Fuecker K, Hanefeld M. 220.  2000. Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level. Diabetes Care 23:1830–34 [Google Scholar]
  221. 221. The DECODE study group on behalf of Eur. on Diabetes Epidemiol. Group 1999. Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. Lancet 354:617–21 [Google Scholar]
  222. 222. The Diabetes Control Complicat. Trial Res. Group 1993. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329:977–86 [Google Scholar]
  223. 223. The Diabetes Control Complicat. Trial Res. Group 1995. The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes 44:968–83 [Google Scholar]
  224. Tominaga M, Eguchi H, Manaka H, Igarashi K, Kato T, Sekikawa A. 224.  1999. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care 22:920–24 [Google Scholar]
  225. Trovati M, Burzacca S, Mularoni E, Massucco P, Cavalot F. 225.  et al. 1991. Occurrence of low blood glucose concentrations during the afternoon in type 2 (non-insulin-dependent) diabetic patients on oral hypoglycaemic agents: importance of blood glucose monitoring. Diabetologia 34:662–67 [Google Scholar]
  226. Tsujino D, Nishimura R, Taki K, Miyashita Y, Morimoto A, Tajima N. 226.  2009. Daily glucose profiles in Japanese people with normal glucose tolerance as assessed by continuous glucose monitoring. Diabetes Technol. Ther. 11:457–60 [Google Scholar]
  227. 227. UK Prospect. Diabetes Study Group 1998. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352:837–53 [Google Scholar]
  228. Waden J, Forsblom C, Thorn LM, Gordin D, Saraheimo M. 228.  et al. 2009. A1C variability predicts incident cardiovascular events, microalbuminuria, and overt diabetic nephropathy in patients with type 1 diabetes. Diabetes 58:2649–55 [Google Scholar]
  229. Wang X, Zhao X, Dorje T, Yan H, Qian J, Ge J. 229.  2014. Glycemic variability predicts cardiovascular complications in acute myocardial infarction patients with type 2 diabetes mellitus. Int. J. Cardiol. 172:498–500 [Google Scholar]
  230. Wentholt IM, Kulik W, Michels RP, Hoekstra JB, DeVries JH. 230.  2008. Glucose fluctuations and activation of oxidative stress in patients with type 1 diabetes. Diabetologia 51:183–90 [Google Scholar]
  231. Wilson PW, D'Agostino RB, Sullivan L, Parise H, Kannel WB. 231.  2002. Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch. Intern. Med. 162:1867–72 [Google Scholar]
  232. Wintergerst KA, Buckingham B, Gandrud L, Wong BJ, Kache S, Wilson DM. 232.  2006. Association of hypoglycemia, hyperglycemia, and glucose variability with morbidity and death in the pediatric intensive care unit. Pediatrics 118:173–79 [Google Scholar]
  233. Woerle HJ, Neumann C, Zschau S, Tenner S, Irsigler A. 233.  et al. 2007. Impact of fasting and postprandial glycemia on overall glycemic control in type 2 diabetes. Importance of postprandial glycemia to achieve target HbA1c levels. Diabetes Res. Clin. Pract. 77:280–85 [Google Scholar]
  234. Wojcicki JM. 234.  1995. “J”-index. A new proposition of the assessment of current glucose control in diabetic patients. Horm. Metab. Res. 27:41–42 [Google Scholar]
  235. Wolever TM, Jenkins DJ. 235.  1986. The use of the glycemic index in predicting the blood glucose response to mixed meals. Am. J. Clin. Nutr. 43:167–72 [Google Scholar]
  236. Wolever TM, Mehling C. 236.  2003. Long-term effect of varying the source or amount of dietary carbohydrate on postprandial plasma glucose, insulin, triacylglycerol, and free fatty acid concentrations in subjects with impaired glucose tolerance. Am. J. Clin. Nutr. 77:612–21 [Google Scholar]
  237. Wong VW, McLean M, Boyages SC, Cheung NW. 237.  2004. C-reactive protein levels following acute myocardial infarction: effect of insulin infusion and tight glycemic control. Diabetes Care 27:2971–73 [Google Scholar]
  238. Woo V, Shestakova MV, Orskov C, Ceriello A. 238.  2008. Targets and tactics: the relative importance of HbA, fasting and postprandial plasma glucose levels to glycaemic control in type 2 diabetes. Int. J. Clin. Pract. 62:1935–42 [Google Scholar]
  239. Yokoyama H, Kannno S, Ishimura I, Node K. 239.  2007. Miglitol increases the adiponectin level and decreases urinary albumin excretion in patients with type 2 diabetes mellitus. Metabolism 56:1458–63 [Google Scholar]
  240. Zoppini G, Verlato G, Targher G, Bonora E, Trombetta M, Muggeo M. 240.  2008. Variability of body weight, pulse pressure and glycaemia strongly predict total mortality in elderly type 2 diabetic patients. The Verona Diabetes Study. Diabetes Metab. Res. Rev. 24:624–28 [Google Scholar]
  241. Zoppini G, Verlato G, Targher G, Casati S, Gusson E. 241.  et al. 2009. Is fasting glucose variability a risk factor for retinopathy in people with type 2 diabetes?. Nutr. Metab. Cardiovasc. Dis. 19:334–39 [Google Scholar]
/content/journals/10.1146/annurev-nutr-121214-104422
Loading
/content/journals/10.1146/annurev-nutr-121214-104422
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error