1932

Abstract

Antibody-induced hemolytic transfusion reactions were first described over 300 years ago. Indeed, during its early evolution, transfusion medicine focused almost exclusively on issues in immunohematology to prevent such events. However, despite the best of efforts to avoid them, incompatible transfusions still occur, through both error and an inability to obtain compatible red blood cells for patients who are alloimmunized against multiple antigens. Because transfusing units of incompatible blood is potentially lethal, studies on human volunteers are not ethical. Thus, understanding of hemolytic transfusion reactions is generated through clinical cases, animal models, inference from related human pathologies, or studies using small volumes of transfused red blood cells. Over the past several decades, substantial new knowledge has been accumulated regarding the mechanisms of hemolysis, the metabolism of products of hemolysis, and the effects of both on recipient biology. Using these data sources, this article traces the historical generation of this knowledge and describes recent advances.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-012414-040318
2015-01-24
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/pathol/10/1/annurev-pathol-012414-040318.html?itemId=/content/journals/10.1146/annurev-pathol-012414-040318&mimeType=html&fmt=ahah

Literature Cited

  1. Lux A, Nimmerjahn F. 1.  2013. Of mice and men: the need for humanized mouse models to study human IgG activity in vivo. J. Clin. Immunol. 33:Suppl. 1S4–8 [Google Scholar]
  2. Petz LD, Garratty G. 2.  2004. Immune Hemolytic Anemias151–52 Philadelphia: Churchill Livingstone
  3. Martin RM, Brady JL, Lew AM. 3.  1998. The need for IgG2c specific antiserum when isotyping antibodies from C57BL/6 and NOD mice. J. Immunol. Methods 212:187–92 [Google Scholar]
  4. Morikis D, Lambris JD. 4.  2005. Structural Biology of the Complement System Boca Raton, FL: CRC
  5. Borsos T, Rapp HJ. 5.  1965. Hemolysin titration based on fixation of the activated first component of complement: evidence that one molecule of hemolysin suffices to sensitize an erythrocyte. J. Immunol. 95:559–66 [Google Scholar]
  6. Diebolder CA, Beurskens FJ, de Jong RN, Koning RI, Strumane K. 6.  et al. 2014. Complement is activated by IgG hexamers assembled at the cell surface. Science 343:1260–63 [Google Scholar]
  7. van Lookeren Campagne M, Wiesmann C, Brown EJ. 7.  2007. Macrophage complement receptors and pathogen clearance. Cell. Microbiol. 9:2095–102 [Google Scholar]
  8. Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA. 8.  et al. 2006. Generation of C5a in the absence of C3: a new complement activation pathway. Nat. Med. 12:682–87 [Google Scholar]
  9. Krisinger MJ, Goebeler V, Lu Z, Meixner SC, Myles T. 9.  et al. 2012. Thrombin generates previously unidentified C5 products that support the terminal complement activation pathway. Blood 120:1717–25 [Google Scholar]
  10. Guilliams M, Bruhns P, Saeys Y, Hammad H, Lambrecht BN. 10.  2014. The function of Fcγ receptors in dendritic cells and macrophages. Nat. Rev. Immunol. 14:94–108 [Google Scholar]
  11. van der Poel CE, Spaapen RM, van de Winkel JG, Leusen JH. 11.  2011. Functional characteristics of the high affinity IgG receptor, FcγRI. J. Immunol. 186:2699–704 [Google Scholar]
  12. Asano M, Komiyama K. 12.  2011. Polymeric immunoglobulin receptor. J. Oral Sci. 53:147–56 [Google Scholar]
  13. Shibuya A, Sakamoto N, Shimizu Y, Shibuya K, Osawa M. 13.  et al. 2000. Fcα/μ receptor mediates endocytosis of IgM-coated microbes. Nat. Immunol. 1:441–46 [Google Scholar]
  14. Kubagawa H, Oka S, Kubagawa Y, Torii I, Takayama E. 14.  et al. 2009. Identity of the elusive IgM Fc receptor (FcμR) in humans. J. Exp. Med. 206:2779–93 [Google Scholar]
  15. Honjo K, Kubagawa Y, Kubagawa H. 15.  2013. Is Toso/IgM Fc receptor (FcμR) expressed by innate immune cells?. PNAS 110:E2540–41 [Google Scholar]
  16. Lang KS, Lang PA, Meryk A, Pandyra AA, Boucher LM. 16.  et al. 2013. Involvement of Toso in activation of monocytes, macrophages, and granulocytes. PNAS 110:2593–98 [Google Scholar]
  17. Lang KS, Lang PA, Meryk A, Pandyra AA, Merches K. 17.  et al. 2013. Reply to Honjo et al.: Functional relevant expression of Toso on granulocytes. PNAS 110:E2542–43 [Google Scholar]
  18. Beum PV, Kennedy AD, Li Y, Pawluczkowycz AW, Williams ME, Taylor RP. 18.  2004. Complement activation and C3b deposition on rituximab-opsonized cells substantially blocks binding of phycoerythrin-labeled anti-mouse IgG probes to rituximab. J. Immunol. Methods 294:37–42 [Google Scholar]
  19. Zimring JC, Cadwell CM, Spitalnik SL. 19.  2009. Antigen loss from antibody-coated red blood cells. Transfus. Med. Rev. 23:189–204 [Google Scholar]
  20. Williamson LM, Poole J, Redman C, Clark N, Liew YW. 20.  et al. 1994. Transient loss of proteins carrying Kell and Lutheran red cell antigens during consecutive relapses of autoimmune thrombocytopenia. Br. J. Haematol. 87:805–12 [Google Scholar]
  21. Stowell SR, Liepkalns JS, Hendrickson JE, Girard-Pierce KR, Smith NH. 21.  et al. 2013. Antigen modulation confers protection to red blood cells from antibody through Fcγ receptor ligation. J. Immunol. 191:5013–25 [Google Scholar]
  22. Zimring JC, Hair GA, Chadwick TE, Deshpande SS, Anderson KM. 22.  et al. 2005. Nonhemolytic antibody-induced loss of erythrocyte surface antigen. Blood 106:1105–12 [Google Scholar]
  23. Girard-Pierce KR, Stowell SR, Smith NH, Arthur CM, Sullivan HC. 23.  et al. 2013. A novel role for C3 in antibody-induced red blood cell clearance and antigen modulation. Blood 122:1793–801 [Google Scholar]
  24. Nardin A, Lindorfer MA, Taylor RP. 24.  1999. How are immune complexes bound to the primate erythrocyte complement receptor transferred to acceptor phagocytic cells?. Mol. Immunol. 36:827–35 [Google Scholar]
  25. Ricklin D, Lambris JD. 25.  2013. Complement in immune and inflammatory disorders: pathophysiological mechanisms. J. Immunol. 190:3831–38 [Google Scholar]
  26. Daniels G. 26.  2013. Human Blood Groups West Sussex, UK: Wiley-Blackwell
  27. Reid ME, Lomas-Francis C, Olsson ML. 27.  2012. The Blood Group Antigen Facts Book Amsterdam: Elsevier
  28. Linden JV, Wagner K, Voytovich AE, Sheehan J. 28.  2000. Transfusion errors in New York State: an analysis of 10 years' experience. Transfusion 40:1207–13 [Google Scholar]
  29. Klein HG, Anstee DJ. 29.  2014. Mollison's Blood Transfusion in Clinical Medicine West Sussex, UK: Wiley-Blackwell
  30. Engelfriet CP, von dem Borne AE, Beckers D, Reynierse E, van Loghem JJ. 30.  1972. Autoimmune haemolytic anaemias. V. Studies on the resistance against complement haemolysis of the red cells of patients with chronic cold agglutinin disease. Clin. Exp. Immunol. 11:255–64 [Google Scholar]
  31. Evans RS, Turner E, Bingham M. 31.  1967. Chronic hemolytic anemia due to cold agglutinins: the mechanism of resistance of red cells to C′ hemolysis by cold agglutinins. J. Clin. Investig. 46:1461–74 [Google Scholar]
  32. Evans RS, Turner E, Bingham M, Woods R. 32.  1968. Chronic hemolytic anemia due to cold agglutinins. II. The role of C′ in red cell destruction. J. Clin. Investig. 47:691–701 [Google Scholar]
  33. Liepkalns JS, Cadwell CM, Stowell SR, Hod EA, Spitalnik SL, Zimring JC. 33.  2013. Resistance of a subset of red blood cells to clearance by antibodies in a mouse model of incompatible transfusion. Transfusion 53:1319–27 [Google Scholar]
  34. Liepkalns JS, Hod EA, Stowell SR, Cadwell CM, Spitalnik SL, Zimring JC. 34.  2012. Biphasic clearance of incompatible red blood cells through a novel mechanism requiring neither complement nor Fcγ receptors in a murine model. Transfusion 52:2631–45 [Google Scholar]
  35. Moller G. 35.  1963. Survival of mouse erythrocytes in histoincompatible recipients. Nature 199:573–75 [Google Scholar]
  36. Moller G. 36.  1964. Isoantibody-induced cellular resistance to immune haemolysis in vivo and in vitro. Nature 202:357–59 [Google Scholar]
  37. Moller G. 37.  1965. Resistance of erythrocytes to isoantibody effects in vivo and in vitro. Bibl. Haematol. 23:203–7 [Google Scholar]
  38. Burton MS, Mollison PL. 38.  1968. Effect of IgM and IgG iso-antibody on red cell clearance. Immunology 14:861–78 [Google Scholar]
  39. Chaplin H. 39.  1959. Studies on the survival of incompatible cells in patients with hypogammaglobulinemia. Blood 14:24–36 [Google Scholar]
  40. Mollison PL, Johnson CA, Prior DM. 40.  1978. Dose-dependent destruction of A1 cells by anti-A1. Vox Sang. 35:149–53 [Google Scholar]
  41. Klein HG, Anstee DJ. 41.  2014. Red cell incompatibility in vivo. See Reference 29 429–31
  42. Mollison PL, Hughes-Jones NC. 42.  1967. Clearance of Rh-positive red cells by low concentrations of Rh antibody. Immunology 12:63–73 [Google Scholar]
  43. Schwartz RS, Costea N. 43.  1966. Autoimmune hemolytic anemia: clinical correlations and biological implications. Semin. Hematol. 3:2–26 [Google Scholar]
  44. Dubarry M, Charron C, Habibi B, Bretagne Y, Lambin P. 44.  1993. Quantitation of immunoglobulin classes and subclasses of autoantibodies bound to red cells in patients with and without hemolysis. Transfusion 33:466–71 [Google Scholar]
  45. Fabijanska-Mitek J, Lopienska H, Zupanska B. 45.  1997. Gel test application for IgG subclass detection in auto-immune haemolytic anaemia. Vox Sang. 72:233–37 [Google Scholar]
  46. Sokol RJ, Hewitt S, Booker DJ, Bailey A. 46.  1990. Erythrocyte autoantibodies, subclasses of IgG and autoimmune haemolysis. Autoimmunity 6:99–104 [Google Scholar]
  47. Sokol RJ, Hewitt S, Booker DJ, Bailey A. 47.  1990. Red cell autoantibodies, multiple immunoglobulin classes, and autoimmune hemolysis. Transfusion 30:714–17 [Google Scholar]
  48. von dem Borne AE, Beckers D, van der Meulen FW, Engelfriet CP. 48.  1977. IgG4 autoantibodies against erythrocytes, without increased haemolysis: a case report. Br. J. Haematol. 37:137–44 [Google Scholar]
  49. Thomson A, Contreras M, Gorick B, Kumpel B, Chapman GE. 49.  et al. 1990. Clearance of Rh D-positive red cells with monoclonal anti-D. Lancet 336:1147–50 [Google Scholar]
  50. Wiener E, Jolliffe VM, Scott HC, Kumpel BM, Thompson KM. 50.  et al. 1988. Differences between the activities of human monoclonal IgG1 and IgG3 anti-D antibodies of the Rh blood group system in their abilities to mediate effector functions of monocytes. Immunology 65:159–63 [Google Scholar]
  51. Risitano AM. 51.  2013. Paroxysmal nocturnal hemoglobinuria and the complement system: recent insights and novel anticomplement strategies. Adv. Exp. Med. Biol. 735:155–72 [Google Scholar]
  52. Campbell-Lee SA, Liu J, Velliquette RW, Halverson GR, Shirey RS. 52.  et al. 2006. The production of red blood cell alloantibodies in mice transfused with blood from transgenic Fyb-expressing mice. Transfusion 46:1682–88 [Google Scholar]
  53. Bao W, Yu J, Heck S, Yazdanbakhsh K. 53.  2009. Regulatory T-cell status in red cell alloimmunized responder and nonresponder mice. Blood 113:5624–27 [Google Scholar]
  54. Schirmer DA, Song SC, Baliff JP, Harbers SO, Clynes RA. 54.  et al. 2007. Mouse models of IgG- and IgM-mediated hemolysis. Blood 109:3099–107 [Google Scholar]
  55. Stowell SR, Girard-Pierce KR, Smith NH, Henry KL, Arthur CM. 55.  et al. 2014. Transfusion of murine red blood cells expressing the human KEL glycoprotein induces clinically significant alloantibodies. Transfusion 54:179–89 [Google Scholar]
  56. Zimring JC, Cadwell CM, Chadwick TE, Spitalnik SL, Schirmer DA. 56.  et al. 2007. Nonhemolytic antigen loss from red blood cells requires cooperative binding of multiple antibodies recognizing different epitopes. Blood 110:2201–8 [Google Scholar]
  57. Brain MC, Pihl C, Robertson L, Brown CB. 57.  2004. Evidence for a mechanosensitive calcium influx into red cells. Blood Cells Mol. Dis. 32:349–52 [Google Scholar]
  58. Brain MC, Prevost JM, Pihl CE, Brown CB. 58.  2002. Glycophorin A–mediated haemolysis of normal human erythrocytes: evidence for antigen aggregation in the pathogenesis of immune haemolysis. Br. J. Haematol. 118:899–908 [Google Scholar]
  59. Brain MC, Ruether B, Valentine K, Brown C, ter Keurs H. 59.  2010. Life-threatening hemolytic anemia due to an autoanti-Pr cold agglutinin: evidence that glycophorin A antibodies may induce lipid bilayer exposure and cation permeability independent of agglutination. Transfusion 50:292–301 [Google Scholar]
  60. Attanasio P, Shumilina E, Hermle T, Kiedaisch V, Lang PA. 60.  et al. 2007. Stimulation of eryptosis by anti-A IgG antibodies. Cell. Physiol. Biochem. 20:591–600 [Google Scholar]
  61. Baudino L, Fossati-Jimack L, Chevalley C, Martinez-Soria E, Shulman MJ, Izui S. 61.  2007. IgM and IgA anti-erythrocyte autoantibodies induce anemia in a mouse model through multivalency-dependent hemagglutination but not through complement activation. Blood 109:5355–62 [Google Scholar]
  62. Chadebech P, Michel M, Janvier D, Yamada K, Copie-Bergman C. 62.  et al. 2010. IgA-mediated human autoimmune hemolytic anemia as a result of hemagglutination in the spleen, but independent of complement activation and FcαRI. Blood 116:4141–47 [Google Scholar]
  63. Vitale B, Kaplan M, Rosenfield RE, Kochwa S. 63.  1967. Immune mechanisms for destruction of erythrocytes in vivo. I. The effect of IgG rabbit antibodies on rat erythrocytes. Transfusion 7:249–60 [Google Scholar]
  64. Rowe AW. 64.  1994. Primates: models for red cell transfusion studies—cryopreservation and survival of transfused red cells in primates. J. Med. Primatol. 23:415–25 [Google Scholar]
  65. Socha WW. 65.  1980. Blood groups of apes and monkeys: current status and practical applications. Lab. Anim. Sci. 30:698–702 [Google Scholar]
  66. Schreiber AD, Frank MM. 66.  1972. Role of antibody and complement in the immune clearance and destruction of erythrocytes. I. In vivo effects of IgG and IgM complement-fixing sites. J. Clin. Investig. 51:575–82 [Google Scholar]
  67. Schreiber AD, Frank MM. 67.  1972. Role of antibody and complement in the immune clearance and destruction of erythrocytes. II. Molecular nature of IgG and IgM complement-fixing sites and effects of their interaction with serum. J. Clin. Investig. 51:583–89 [Google Scholar]
  68. Robertson OH. 68.  1917. The effects of experimental plethora on blood production. J. Exp. Med. 26:221–37 [Google Scholar]
  69. Rous P, Robertson OH. 69.  1918. Free antigen and antibody circulating together in large amounts (hemagglutinin and agglutinogen in the blood of transfused rabbits). J. Exp. Med. 27:509–17 [Google Scholar]
  70. Ness PM, Shirey RS, Weinstein MH, King KE. 70.  2001. An animal model for delayed hemolytic transfusion reactions. Transfus. Med. Rev. 15:305–17 [Google Scholar]
  71. Kellner A, Hedal EF. 71.  1953. Experimental erythroblastosis fetalis in rabbits. II. The passage of blood group antigens and their specific isoantibodies across the placenta. J. Exp. Med. 97:51–60 [Google Scholar]
  72. Kellner A, Hedal EF. 72.  1953. Experimental erythroblastosis fetalis in rabbits. I. Characterization of a pair of allelic blood group factors and their specific immune isoantibodies. J. Exp. Med. 97:33–49 [Google Scholar]
  73. Lalich JJ. 73.  1947. The influence of injections of homologous hemoglobin on the kidneys of normal and dehydrated animals. J. Exp. Med. 86:153–58 [Google Scholar]
  74. Lalich JJ. 74.  1948. The influence of available fluid on the production of experimental hemoglobinuric nephrosis in rabbits. J. Exp. Med. 87:157–62 [Google Scholar]
  75. Auer L, Bell K, Coates S. 75.  1982. Blood transfusion reactions in the cat. J. Am. Vet. Med. Assoc. 180:729–30 [Google Scholar]
  76. Eyquem A, Podliachouk L, Millot P. 76.  1962. Blood groups in chimpanzees, horses, sheep, pigs, and other mammals. Ann. N.Y. Acad. Sci. 97:320–28 [Google Scholar]
  77. Giger U, Bucheler J. 77.  1991. Transfusion of type-A and type-B blood to cats. J. Am. Vet. Med. Assoc. 198:411–18 [Google Scholar]
  78. Holmes R. 78.  1950. Blood groups in cats. J. Physiol. 111:Suppl.61P [Google Scholar]
  79. Giger U, Akol KG. 79.  1990. Acute hemolytic transfusion reaction in an Abyssinian cat with blood type B. J. Vet. Intern. Med. 4:315–16 [Google Scholar]
  80. Weinstein NM, Blais MC, Harris K, Oakley DA, Aronson LR, Giger U. 80.  2007. A newly recognized blood group in domestic shorthair cats: the Mik red cell antigen. J. Vet. Intern. Med. 21:287–92 [Google Scholar]
  81. Andrews GA, Chavey PS, Smith JE, Rich L. 81.  1992. N-Glycolylneuraminic acid and N-acetylneuraminic acid define feline blood group A and B antigens. Blood 79:2485–91 [Google Scholar]
  82. Bighignoli B, Niini T, Grahn RA, Pedersen NC, Millon LV. 82.  et al. 2007. Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) mutations associated with the domestic cat AB blood group. BMC Genet. 8:27 [Google Scholar]
  83. Casal ML, Jezyk PF, Giger U. 83.  1996. Transfer of colostral antibodies from queens to their kittens. Am. J. Vet. Res. 57:1653–58 [Google Scholar]
  84. Griot-Wenk ME, Callan MB, Casal ML, Chisholm-Chait A, Spitalnik SL. 84.  et al. 1996. Blood type AB in the feline AB blood group system. Am. J. Vet. Res. 57:1438–42 [Google Scholar]
  85. Tasker S, Barker EN, Day MJ, Helps CR. 85.  2014. Feline blood genotyping versus phenotyping, and detection of non-AB blood type incompatibilities in UK cats. J. Small Anim. Pract. 55:185–89 [Google Scholar]
  86. Bunting S, Castro S, Salmon JA, Moncada S. 86.  1983. The effect of cyclo-oxygenase and thromboxane synthetase inhibitors on shock induced by injection of heterologous blood in cats. Thromb. Res. 30:609–17 [Google Scholar]
  87. Korbut R, Ocetkiewicz A, Gryglewski RJ. 87.  1978. The influence of hydrocortisone and indomethacin on the release of prostaglandin-like substances during circulatory shock in cats, which was induced by an intravenous administration of rabbit blood. Pharmacol. Res. Commun. 10:371–85 [Google Scholar]
  88. Blais MC, Berman L, Oakley DA, Giger U. 88.  2007. Canine Dal blood type: a red cell antigen lacking in some Dalmatians. J. Vet. Intern. Med. 21:281–86 [Google Scholar]
  89. Callan MB, Jones LT, Giger U. 89.  1995. Hemolytic transfusion reactions in a dog with an alloantibody to a common antigen. J. Vet. Intern. Med. 9:277–79 [Google Scholar]
  90. Giger U, Gelens CJ, Callan MB, Oakley DA. 90.  1995. An acute hemolytic transfusion reaction caused by dog erythrocyte antigen 1.1 incompatibility in a previously sensitized dog. J. Am. Vet. Med. Assoc. 9:1358–62 [Google Scholar]
  91. Hohenhaus AE. 91.  2004. Importance of blood groups and blood group antibodies in companion animals. Transfus. Med. Rev. 18:117–26 [Google Scholar]
  92. Melzer KJ, Wardrop KJ, Hale AS, Wong VM. 92.  2003. A hemolytic transfusion reaction due to DEA 4 alloantibodies in a dog. J. Vet. Intern. Med. 17:931–33 [Google Scholar]
  93. Patterson J, Rousseau A, Kessler RJ, Giger U. 93.  2011. In vitro lysis and acute transfusion reactions with hemolysis caused by inappropriate storage of canine red blood cell products. J. Vet. Intern. Med. 25:927–33 [Google Scholar]
  94. Christian RM, Stewart WB, Yuile CL, Ervin DM, Young LE. 94.  1951. Limitation of hemolysis in experimental transfusion reactions related to depletion of complement and isoantibody in the recipient: observations on dogs given successive transfusions of incompatible red cells tagged with radioactive iron. Blood 6:142–50 [Google Scholar]
  95. Ottenberg R, Kaliski DJ, Friedman SS. 95.  1913. Experimental agglutinative and hemolytic transfusions. J. Med. Res. 28:141–63 [Google Scholar]
  96. Swisher SN, Young LE. 96.  1961. The blood grouping systems of dogs. Physiol. Rev. 41:495–520 [Google Scholar]
  97. Young LE, Ervin DM, Yuile CL. 97.  1949. Hemolytic reactions produced in dogs by transfusion of incompatible dog blood and plasma. Serologic and hematologic aspects. Blood 4:1218–31 [Google Scholar]
  98. Yuile CL, Van Zandt TF, Ervin DM, Young LE. 98.  1949. Hemolytic reactions produced in dogs by transfusion of incompatible dog blood and plasma. II. Renal aspects following whole blood transfusions. Blood 4:1232–39 [Google Scholar]
  99. Conn HL Jr, Wilds L, Helwig J, Ibach P. 99.  1954. A study of the renal circulation, tubular function and morphology, and urinary volume and composition in dogs following mercury poisoning and transfusion of human blood. J. Clin. Investig. 33:732–41 [Google Scholar]
  100. Hardaway RM, McKay DG. 100.  1959. Changes in the dog kidney produced by incompatible blood transfusion. AMA Arch. Surg. 78:565–73 [Google Scholar]
  101. Hardaway RM, McKay DG, Wahle GH, Tartock DE, Edelstein R. 101.  1956. Pathologic study of intravascular coagulation following incompatible blood transfusion in dogs. I. Intravenous injection of incompatible blood. Am. J. Surg. 91:24–31 [Google Scholar]
  102. McKay DG, Hardaway RM, Wahle GH, Hall RM, Burns R. 102.  1956. Pathologic study of intravascular coagulation following incompatible blood transfusion in dogs. II. Intra-aortic injection of incompatible blood. Am. J. Surg. 91:32–40 [Google Scholar]
  103. Callan MB, Patel RT, Rux AH, Bandyopadhyay S, Sireci AN. 103.  et al. 2013. Transfusion of 28-day-old leucoreduced or non-leucoreduced stored red blood cells induces an inflammatory response in healthy dogs. Vox Sang. 105:319–27 [Google Scholar]
  104. Cortes-Puch I, Wang D, Sun J, Solomon SB, Remy KE. 104.  et al. 2014. Washing older blood units before transfusion reduces plasma iron and improves outcomes in experimental canine pneumonia. Blood 123:1403–11 [Google Scholar]
  105. Solomon SB, Wang D, Sun J, Kanias T, Feng J. 105.  et al. 2013. Mortality increases after massive exchange transfusion with older stored blood in canines with experimental pneumonia. Blood 121:1663–72 [Google Scholar]
  106. Wang D, Cortes-Puch I, Sun J, Solomon SB, Kanias T. 106.  et al. 2014. Transfusion of older stored blood worsens outcomes in canines depending on the presence and severity of pneumonia. Transfusion 54:1712–24 [Google Scholar]
  107. Landsteiner K, Wiener AS. 107.  1941. Studies on an agglutinogen (Rh) in human blood reacting with anti-Rhesus sera and with human iso-antibodies. J. Exp. Med. 74:309–20 [Google Scholar]
  108. Lopas H, Birndorf NI, Robboy SJ. 108.  1971. Experimental transfusion reactions and disseminated intravascular coagulation produced by incompatible plasma in monkeys. Transfusion 11:196–203 [Google Scholar]
  109. Roth GJ, Poskitt TR, Bobrow JC, Fortwengler HP. 109.  1974. Renal fibrin deposition associated with iso-immune haemolysis in monkeys: observation by light, electron and immunofluorescence microscopy. Br. J. Haematol. 28:419–31 [Google Scholar]
  110. Lopas H, Birndorf NI, Bell CE, Robboy SJ, Fortwengler HP, Biddison WE. 110.  1972. Experimental transfusion reactions in monkeys: haemolytic, coagulant and renal effects of transfused isoimmune IgG and IgM. Br. J. Haematol. 23:765–76 [Google Scholar]
  111. Birndorf NI, Lopas H, Robboy SJ. 111.  1971. Disseminated intravascular coagulation and renal failure: production in the monkey with autologous red blood cell stroma. Lab. Investig. 25:314–19 [Google Scholar]
  112. Birndorf NI, Lopas H. 112.  1970. Effects of red cell stroma-free hemoglobin solution on renal function in monkeys. J. Appl. Physiol. 29:573–78 [Google Scholar]
  113. Lopas H, Birndorf NI, Bell CE, Robboy SJ, Colman RW. 113.  1973. Immune hemolytic transfusion reactions in monkeys: activation of the kallikrein system. Am. J. Physiol. 225:372–79 [Google Scholar]
  114. Spector JI, Lang JE, Crosby WH. 114.  1975. Coagulation changes in baboons during acute experimental hemoglobinemia and dextran infusion. Am. J. Pathol. 78:469–76 [Google Scholar]
  115. Frank MM, Hamburger MI, Lawley TJ, Kimberly RP, Plotz PH. 115.  1979. Defective reticuloendothelial system Fc-receptor function in systemic lupus erythematosus. N. Engl. J. Med. 300:518–23 [Google Scholar]
  116. Lawley TJ, Hall RP, Fauci AS, Katz SI, Hamburger MI, Frank MM. 116.  1981. Defective Fc-receptor functions associated with the HLA-B8/DRw3 haplotype: studies in patients with dermatitis herpetiformis and normal subjects. N. Engl. J. Med. 304:185–92 [Google Scholar]
  117. Williams BD, O'Sullivan MM, Ratanachaiyavong S. 117.  1985. Reticuloendothelial Fc function in normal individuals and its relationship to the HLA antigen DR3. Clin. Exp. Immunol. 60:532–38 [Google Scholar]
  118. Kumpel BM, de Haas M, Koene HR, van de Winkel JG, Goodrick MJ. 118.  2003. Clearance of red cells by monoclonal IgG3 anti-D in vivo is affected by the VF polymorphism of Fcγ RIIIa (CD16). Clin. Exp. Immunol. 132:81–86 [Google Scholar]
  119. Miescher S, Spycher MO, Amstutz H, de Haas M, Kleijer M. 119.  et al. 2004. A single recombinant anti-RhD IgG prevents RhD immunization: association of RhD-positive red blood cell clearance rate with polymorphisms in the FcγRIIA and FcγIIIA genes. Blood 103:4028–35 [Google Scholar]
  120. Andersen CBF, Torvund-Jensen M, Nielsen MJ, de Oliveira CLP, Hersleth HP. 120.  et al. 2012. Structure of the haptoglobin-hemoglobin complex. Nature 489:456–59 [Google Scholar]
  121. Laurell CB, Nyman M. 121.  1957. Studies on the serum haptoglobin level in hemoglobinemia and its influence on renal excretion of hemoglobin. Blood 12:493–506 [Google Scholar]
  122. Peacock AC, Pastewka JV, Reed RA, Ness AT. 122.  1970. Haptoglobin-hemoglobin interaction. Stoichiometry. Biochemistry 9:2275–79 [Google Scholar]
  123. Boretti FS, Buehler PW, D'Agnillo F, Kluge K, Glaus T. 123.  et al. 2009. Sequestration of extracellular hemoglobin within a haptoglobin complex decreases its hypertensive and oxidative effects in dogs and guinea pigs. J. Clin. Investig. 19:2271–80 [Google Scholar]
  124. Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ. 124.  et al. 2001. Identification of the haemoglobin scavenger receptor. Nature 409:198–201 [Google Scholar]
  125. Buechler C, Ritter M, Orso E, Langmann T, Klucken J, Schmitz G. 125.  2000. Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. J. Leukoc. Biol. 67:97–103 [Google Scholar]
  126. Sadrzadeh SMH, Bozorgmehr J. 126.  2004. Haptoglobin phenotypes in health and disorders. Am. J. Clin. Pathol. 121:Suppl. 1S97–104 [Google Scholar]
  127. Asleh R, Marsh S, Shilkrut M, Binah O, Guetta J. 127.  et al. 2003. Genetically determined heterogeneity in hemoglobin scavenging and susceptibility to diabetic cardiovascular disease. Circ. Res. 92:1193–200 [Google Scholar]
  128. Gabay C, Kushner I. 128.  1999. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340:448–54 [Google Scholar]
  129. Lim YK, Jenner A, Ali AB, Wang Y, Hsu SI. 129.  et al. 2000. Haptoglobin reduces renal oxidative DNA and tissue damage during phenylhydrazine-induced hemolysis. Kidney Int. 58:1033–44 [Google Scholar]
  130. Koda Y, Watanabe Y, Soejima M, Shimada E, Nishimura M. 130.  et al. 2000. Simple PCR detection of haptoglobin gene deletion in anhaptoglobinemic patients with antihaptoglobin antibody that causes anaphylactic transfusion reactions. Blood 95:1138–43 [Google Scholar]
  131. Lipiski M, Deuel JW, Baek JH, Engelsberger WR, Buehler PW, Schaer DJ. 131.  2013. Human Hp1-1 and Hp2-2 phenotype-specific haptoglobin therapeutics are both effective in vitro and in guinea pigs to attenuate hemoglobin toxicity. Antioxid. Redox Signal. 19:1619–33 [Google Scholar]
  132. Schaer DJ, Buehler PW, Alayash AI, Belcher JD, Vercellotti GM. 132.  2013. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 121:1276–84 [Google Scholar]
  133. Etzerodt A, Kjolby M, Nielsen MJ, Maniecki M, Svendsen P, Moestrup SK. 133.  2013. Plasma clearance of hemoglobin and haptoglobin in mice and effect of CD163 gene targeting disruption. Antioxid. Redox Signal. 18:2254–63 [Google Scholar]
  134. Schaer DJ, Boretti FS, Schoedon G, Schaffner A. 134.  2002. Induction of the CD163-dependent haemoglobin uptake by macrophages as a novel anti-inflammatory action of glucocorticoids. Br. J. Haematol. 119:239–43 [Google Scholar]
  135. Schaer CA, Vallelian F, Imhof A, Schoedon G, Schaer DJ. 135.  2007. Heme carrier protein (HCP-1) spatially interacts with the CD163 hemoglobin uptake pathway and is a target of inflammatory macrophage activation. J. Leukoc. Biol. 83:25–33 [Google Scholar]
  136. Vallelian F, Schaer CA, Kaempfer T, Gehrig P, Duerst E. 136.  et al. 2010. Glucocorticoid treatment skews human monocyte differentiation into a hemoglobin-clearance phenotype with enhanced heme-iron recycling and antioxidant capacity. Blood 116:5347–56 [Google Scholar]
  137. Schaer DJ, Schaer CA, Buehler PW, Boykins RA, Schoedon G. 137.  et al. 2006. CD163 is the macrophage scavenger receptor for native and chemically modified hemoglobins in the absence of haptoglobin. Blood 107:373–80 [Google Scholar]
  138. Subramanian K, Du R, Tan NS, Ho B, Ding JL. 138.  2013. CD163 and IgG codefend against cytotoxic hemoglobin via autocrine and paracrine mechanisms. J. Immunol. 190:5267–78 [Google Scholar]
  139. Sulahian TH, Pioli PA, Wardwell K, Guyre PM. 139.  2004. Cross-linking of FcγR triggers shedding of the hemoglobin-haptoglobin scavenger receptor CD163. J. Leukoc. Biol. 76:271–77 [Google Scholar]
  140. Du R, Winarsih I, Ho B, Ding JL. 140.  2012. Lipid-free apolipoprotein A-I exerts an antioxidative role against cell-free hemoglobin. Am. J. Clin. Exp. Immunol. 1:33–48 [Google Scholar]
  141. Belcher JD, Beckman JD, Balla G, Balla J, Vercellotti G. 141.  2010. Heme degradation and vascular injury. Antioxid. Redox Signal. 12:233–48 [Google Scholar]
  142. Fagoonee S, Gburek J, Hirsch E, Marro S, Moestrup SK. 142.  et al. 2005. Plasma protein haptoglobin modulates renal iron loading. Am. J. Pathol. 166:973–83 [Google Scholar]
  143. Lin T, Kwak YH, Sammy F, He P, Thundivalappil S. 143.  et al. 2010. Synergistic inflammation is induced by blood degradation products with microbial Toll-like receptor agonists and is blocked by hemopexin. J. Infect. Dis. 202:624–32 [Google Scholar]
  144. Lee SK, Ding JL. 144.  2013. A perspective on the role of extracellular hemoglobin on the innate immune system. DNA Cell Biol. 32:36–40 [Google Scholar]
  145. Yang H, Wang H, Bernik TR, Ivanova S, Wang H. 145.  et al. 2002. Globin attenuated the innate immune response to endotoxin. Shock 17:485–90 [Google Scholar]
  146. Su D, Roth RI, Yoshida M, Levin J. 146.  1997. Hemoglobin increases mortality from bacterial endotoxin. Infect. Immun. 65:1258–66 [Google Scholar]
  147. Lin T, Sammy F, Yang H, Thundivalappil S, Hellman J. 147.  et al. 2012. Identification of hemopexin as an anti-inflammatory factor that inhibits synergy of hemoglobin with HMGB1 in sterile and infectious inflammation. J. Immunol. 189:2017–22 [Google Scholar]
  148. Reiter CD, Wang X, Tanus-Santos JE, Hogg N, Cannon RO. 148.  et al. 2002. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat. Med. 8:1383–89 [Google Scholar]
  149. Bogdan C. 149.  2001. Nitric oxide and the immune response. Nat. Immunol. 2:907–16 [Google Scholar]
  150. Bunn HF, Jandl JH. 150.  1968. Exchange of heme among hemoglobins and between hemoglobin and albumin. J. Biol. Chem. 243:465–75 [Google Scholar]
  151. Jeney V, Balla J, Yachie A, Varga Z, Vercellotti GM. 151.  et al. 2002. Pro-oxidant and cytotoxic effects of circulating heme. Blood 100:879–87 [Google Scholar]
  152. Kovtunovych G, Eckhaus MA, Ghosh MC, Ollivierre-Wilson H, Rouault TA. 152.  2010. Dysfunction of the heme recycling system in heme oxygenase 1–deficient mice: effects on macrophage viability and tissue iron distribution. Blood 116:6054–62 [Google Scholar]
  153. Ferreira A, Balla J, Jeney V, Balla G, Soares MP. 153.  2008. A central role for free heme in the pathogenesis of severe malaria: the missing link?. J. Mol. Med. 86:1097–111 [Google Scholar]
  154. Belcher JD, Young M, Chen C, Nguyen J, Burhop K. 154.  et al. 2013. MP4CO, a pegylated hemoglobin saturated with carbon monoxide, is a modulator of HO-1, inflammation, and vaso-occlusion in transgenic sickle mice. Blood 122:27257–64 [Google Scholar]
  155. Muller-Eberhard U, Javid J, Liem HH, Hanstein A, Hanna M. 155.  1968. Plasma concentrations of hemopexin, haptoglobin and heme in patients with various hemolytic diseases. Blood 32:811–15 [Google Scholar]
  156. Tolosano E, Altruda F. 156.  2002. Hemopexin: structure, function, and regulation. DNA Cell Biol. 21:297–306 [Google Scholar]
  157. Cunnington AJ, de Souza JB, Walther M, Riley EM. 157.  2011. Malaria impairs resistance to Salmonella through heme- and heme oxygenase–dependent dysfunctional granulocyte mobilization. Nat. Med. 18:120–27 [Google Scholar]
  158. Graca-Souza AV, Arruda MAB, de Freitas MS, Barja-Fidalgo C, Oliveira PL. 158.  2002. Neutrophil activation by heme: implications for inflammatory processes. Blood 99:4160–65 [Google Scholar]
  159. Porto BN, Alves LS, Fernandez PL, Dutra TP, Figueiredo RT. 159.  et al. 2007. Heme induces neutrophil migration and reactive oxygen species generation through signaling pathways characteristic of chemotactic receptors. J. Biol. Chem. 282:24430–36 [Google Scholar]
  160. Wagener FADTG, Eggert A, Boerman OC, Oyen WJG, Verhofstad A. 160.  et al. 2001. Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase. Blood 98:1802–11 [Google Scholar]
  161. Hao K, Hanawa H, Ding L, Ota Y, Yoshida K. 161.  et al. 2011. Free heme is a danger signal inducing expression of proinflammatory proteins in cultured cells derived from normal rat hearts. Mol. Immunol. 481191–202
  162. Fernandez PL, Dutra FF, Alves L, Figueiredo RT, Mourao-Sa D. 162.  et al. 2010. Heme amplifies the innate immune response to microbial molecules through spleen tyrosine kinase (Syk)-dependent reactive oxygen species generation. J. Biol. Chem. 285:32844–51 [Google Scholar]
  163. Figueiredo RT, Fernandez PL, Mourao-Sa DS, Porto BN, Dutra FF. 163.  et al. 2007. Characterization of heme as activator of Toll-like receptor 4. J. Biol. Chem. 282:20221–29 [Google Scholar]
  164. Fortes GB, Alves LS, de Oliveira R, Dutra FF, Rodrigues D. 164.  et al. 2012. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood 119:2368–75 [Google Scholar]
  165. Piazza M, Damore G, Costa B, Gioannini TL, Weiss JP, Peri F. 165.  2011. Hemin and a metabolic derivative coprohemin modulate the TLR4 pathway differently through different molecular targets. Innate Immun. 17:293–301 [Google Scholar]
  166. Larsen R, Gozzelino R, Jeney V, Tokaji L, Bozza FA. 166.  et al. 2010. A central role for free heme in the pathogenesis of severe sepsis. Sci. Transl. Med. 2:51ra71 [Google Scholar]
  167. Tolosano E, Hirsch E, Patrucco E, Camaschella C, Navone R. 167.  et al. 1999. Defective recovery and severe renal damage after acute hemolysis in hemopexin-deficient mice. Blood 94:3906–14 [Google Scholar]
  168. D'Alessandro A, Amici GM, Vaglio S, Zolla L. 168.  2011. Time-course investigation of SAGM-stored leukocyte-filtered red bood cell concentrates: from metabolism to proteomics. Haematologica 97:107–15 [Google Scholar]
  169. Gevi F, D'Alessandro A, Rinalducci S, Zolla L. 169.  2012. Alterations of red blood cell metabolome during cold liquid storage of erythrocyte concentrates in CPD-SAGM. J. Proteomics 76:168–80 [Google Scholar]
  170. Pasini EM. 170.  2006. In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood 108:791–801 [Google Scholar]
  171. Fens MH, van Wijk R, Andringa G, van Rooijen KL, Dijstelbloem HM. 171.  et al. 2012. A role for activated endothelial cells in red blood cell clearance: implications for vasopathology. Haematologica 97:500–8 [Google Scholar]
  172. Ishihara T, Matsumoto N, Adachi H, Takahashi M, Nakamura H. 172.  et al. 1979. Erythrophagocytosis by the sinus endothelial cell of the spleen in haemolytic anaemias. Virchows Arch. A 382:261–69 [Google Scholar]
  173. Greenberg S, Chang P, Wang DC, Xavier R, Seed B. 173.  1996. Clustered syk tyrosine kinase domains trigger phagocytosis. PNAS 93:1103–7 [Google Scholar]
  174. Jordan MB, van Rooijen N, Izui S, Kappler J, Marrack P. 174.  2002. Liposomal clodronate as a novel agent for treating autoimmune hemolytic anemia in a mouse model. Blood 101:594–601 [Google Scholar]
  175. Cambos M, Scorza T. 175.  2011. Robust erythrophagocytosis leads to macrophage apoptosis via a hemin-mediated redox imbalance: role in hemolytic disorders. J. Leukoc. Biol. 89:159–71 [Google Scholar]
  176. Kondo H, Saito K, Grasso JP, Aisen P. 176.  1988. Iron metabolism in the erythrophagocytosing Kupffer cell. Hepatology 8:2–8 [Google Scholar]
  177. Capon SM, Goldfinger D. 177.  1995. Acute hemolytic transfusion reaction, a paradigm of the systemic inflammatory response: new insights into pathophysiology and treatment. Transfusion 35:513–20 [Google Scholar]
  178. Davenport RD. 178.  1996. Cytokines as intercellular signals in hemolytic transfusion reactions. Neurosignals 5:240–45 [Google Scholar]
  179. Udani M, Rao N, Telen MJ. 179.  1997. Leukocyte phenotypic changes in an in vitro model of ABO hemolytic transfusion reaction. Transfusion 37:904–9 [Google Scholar]
  180. Davenport RD, Burdick M, Moore SA, Kunkel SL. 180.  1993. Cytokine production in IgG-mediated red cell incompatibility. Transfusion 33:19–24 [Google Scholar]
  181. Davenport RD, Burdick M, Strieter RM, Kunkel SL. 181.  1994. Monocyte chemoattractant protein production in red cell incompatibility. Transfusion 34:16–19 [Google Scholar]
  182. Davenport RD, Strieter RM, Kunkel SL. 182.  1991. Red cell ABO incompatibility and production of tumour necrosis factor-alpha. Br. J. Haematol. 78:540–44 [Google Scholar]
  183. Davenport RD, Strieter RM, Standiford TJ, Kunkel SL. 183.  1990. Interleukin-8 production in red blood cell incompatibility. Blood 76:2439–42 [Google Scholar]
  184. Hoffman M. 184.  1991. Antibody-coated erythrocytes induce secretion of tumor necrosis factor by human monocytes: a mechanism for the production of fever by incompatible transfusions. Vox Sang. 60:184–87 [Google Scholar]
  185. Coopamah MD, Freedman J, Semple JW. 185.  2003. Anti-D initially stimulates an Fc-dependent leukocyte oxidative burst and subsequently suppresses erythrophagocytosis via interleukin-1 receptor antagonist. Blood 102:2862–67 [Google Scholar]
  186. Butler J, Parker D, Pillai R, Shale DJ, Rocker GM. 186.  1991. Systemic release of neutrophil elastase and tumor necrosis factor alpha following ABO incompatible blood transfusion. Br. J. Haematol. 79:525–26 [Google Scholar]
  187. Okamoto T, Hashimoto M, Samejima H, Mori A, Wakabayashi M. 187.  et al. 2004. Mechanisms responsible for delayed and immediate hemolytic transfusion reactions in a patient with anti-E + Jkb + Dib and anti-HLA alloantibodies. Immunopharmacol. Immunotoxicol. 26:645–52 [Google Scholar]
  188. von Zabern I, Ehlers M, Grunwald U, Mauermann K, Greinacher A. 188.  1998. Release of mediators of systemic inflammatory response syndrome in the course of a severe delayed hemolytic transfusion reaction caused by anti-D. Transfusion 38:459–68 [Google Scholar]
  189. Worel N, Kalhs P, Keil F, Prinz E, Moser K. 189.  et al. 2003. ABO mismatch increases transplant-related morbidity and mortality in patients given nonmyeloablative allogeneic HPC transplantation. Transfusion 43:1153–61 [Google Scholar]
  190. Gaines AR. 190.  2000. Acute onset hemoglobinemia and/or hemoglobinuria and sequelae following Rho(D) immune globulin intravenous administration in immune thrombocytopenic purpura patients. Blood 95:2523–29 [Google Scholar]
  191. Scaradavou A, Woo B, Woloski BMR, Cunningham-Rundles S, Ettinger LJ. 191.  et al. 1997. Intravenous anti-D treatment of immune thrombocytopenic purpura: experience in 272 patients. Blood 89:2689–700 [Google Scholar]
  192. Cooper N, Heddle NM, de Haas M, Reid ME, Lesser ML. 192.  et al. 2004. Intravenous (IV) anti-D and IV immunoglobulin achieve acute platelet increases by different mechanisms: modulation of cytokine and platelet responses to IV anti-D by FcγRIIa and FcγRIIIa polymorphisms. Br. J. Haematol. 124:511–18 [Google Scholar]
  193. Semple JW, Allen D, Rutherford M, Woloski M, David M. 193.  et al. 2002. Anti-D (WinRho SD) treatment of children with chronic autoimmune thrombocytopenic purpura stimulates transient cytokine/chemokine production. Am. J. Hematol. 69:225–27 [Google Scholar]
  194. Hod EA, Cadwell CM, Liepkalns JS, Zimring JC, Sokol SA. 194.  et al. 2008. Cytokine storm in a mouse model of IgG-mediated hemolytic transfusion reactions. Blood 112:891–94 [Google Scholar]
  195. Diamond WJ, Brown FL, Bitterman P, Klein HG, Davey RJ, Winslow RM. 195.  1980. Delayed hemolytic transfusion reaction presenting as sickle-cell crisis. Ann. Intern. Med. 93:231–34 [Google Scholar]
  196. Kaul DK, Hebbel RP. 196.  2000. Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice. J. Clin. Investig. 106:411–20 [Google Scholar]
  197. Turhan A, Weiss LA, Mohandas N, Coller BS, Frenette PS. 197.  2002. Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. PNAS 99:3047–51 [Google Scholar]
  198. Jang JE, Hod EA, Spitalnik SL, Frenette PS. 198.  2011. CXCL1 and its receptor, CXCR2, mediate murine sickle cell vaso-occlusion during hemolytic transfusion reactions. J. Clin. Investig. 121:1397–401 [Google Scholar]
  199. Gonçalves MS, Queiroz IL, Cardoso SA, Zanetti A, Strapazoni AC. 199.  et al. 2001. Interleukin 8 as a vaso-occlusive marker in Brazilian patients with sickle cell disease. Braz. J. Med. Biol. Res. 34:1309–13 [Google Scholar]
  200. Freeman BD, Buchman TG. 200.  2000. Gene in a haystack: tumor necrosis factor polymorphisms and outcome in sepsis. Crit. Care Med. 28:3090–91 [Google Scholar]
  201. Knight JC, Udalova I, Hill AVS, Greenwood BM, Peshu N. 201.  et al. 1999. A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria. Nat. Genet. 22:145–50 [Google Scholar]
  202. Darabi K, Dzik S. 202.  2005. Hyperhemolysis syndrome in anemia of chronic disease. Transfusion 45:1930–33 [Google Scholar]
  203. Chadebech P, Habibi A, Nzouakou R, Bachir D, Meunier-Costes N. 203.  et al. 2009. Delayed hemolytic transfusion reaction in sickle cell disease patients: evidence of an emerging syndrome with suicidal red blood cell death. Transfusion 49:1785–92 [Google Scholar]
  204. Hod EA, Sokol SA, Zimring JC, Spitalnik SL. 204.  2009. Hypothesis: Hemolytic transfusion reactions represent an alternative type of anaphylaxis. Int. J. Clin. Exp. Pathol. 2:71–82 [Google Scholar]
  205. Atkinson JP, Schreiber AD, Frank MM. 205.  1973. Effects of corticosteroids and splenectomy on the immune clearance and destruction of erythrocytes. J. Clin. Investig. 52:1509–17 [Google Scholar]
  206. Ganick DJ, Segel GB, Chamberlain J, Hirsch L, Klemperer MR. 206.  1977. The effects of splenectomy and glucocorticoids on survival and hepatic uptake of damaged red cells in the mouse. Am. J. Hematol. 2:365–73 [Google Scholar]
  207. Cannon RO, Schechter AN, Panza JA, Ognibene FP, Pease-Fye ME. 207.  et al. 2001. Effects of inhaled nitric oxide on regional blood flow are consistent with intravascular nitric oxide delivery. J. Clin. Investig. 108:279–87 [Google Scholar]
  208. Rassaf T, Preik M, Kleinbongard P, Lauer T, Heiß C. 208.  et al. 2002. Evidence for in vivo transport of bioactive nitric oxide in human plasma. J. Clin. Investig. 109:1241–48 [Google Scholar]
  209. Wheeler MA, Smith SD, Saito N, Foster J, Harris E, Weiss RM. 209.  1997. Effect of long-term oral l-arginine on the nitric oxide synthase pathway in the urine from patients with interstitial cystitis. J. Urol. 158:2045–50 [Google Scholar]
  210. Ryter SW. 210.  2006. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol. Rev. 86:583–650 [Google Scholar]
  211. Boutaud O, Moore KP, Reeder BJ, Harry D, Howie AJ. 211.  et al. 2010. Acetaminophen inhibits hemoprotein-catalyzed lipid peroxidation and attenuates rhabdomyolysis-induced renal failure. PNAS 107:2699–704 [Google Scholar]
  212. Atkinson C, Song H, Lu B, Qiao F, Burns TA. 212.  et al. 2005. Targeted complement inhibition by C3d recognition ameliorates tissue injury without apparent increase in susceptibility to infection. J. Clin. Investig. 115:2444–53 [Google Scholar]
  213. Mauriello CT, Pallera HK, Sharp JA, Woltmann J, Jon L. 213.  et al. 2012. A novel peptide inhibitor of classical and lectin complement activation including ABO incompatibility. Mol. Immunol. 53:132–39 [Google Scholar]
  214. Röth A, Hüttmann A, Rother RP, Dührsen U, Philipp T. 214.  2009. Long-term efficacy of the complement inhibitor eculizumab in cold agglutinin disease. Blood 113:3885–86 [Google Scholar]
  215. Weisman HF, Bartow T, Leppo MK, Marsh HC, Carson GR. 215.  et al. 1990. Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science 249:146–51 [Google Scholar]
  216. Yazdanbakhsh K, Kang S, Tamasauskas D, Sung D, Scaradavou A. 216.  2003. Complement receptor 1 inhibitors for prevention of immune-mediated red cell destruction: potential use in transfusion therapy. Blood 101:5046–52 [Google Scholar]
  217. van Rooijen N, Sanders A, van den Berg TK. 217.  1996. Apoptosis of macrophages induced by liposome-mediated intracellular delivery of clodronate and propamidine. J. Immunol. Methods 193:93–99 [Google Scholar]
  218. Messner RP, Meryhew NL, DeMaster EO. 218.  1994. Selective, prolonged alteration of complement-mediated immune clearance after acute exposure of mice to ethanol. Clin. Immunol. Immunopathol. 70:73–80 [Google Scholar]
  219. Schopf RE, Trompeter M, Bork K, Morsches B. 219.  1985. Effects of ethanol and acetaldehyde on phagocytic functions. Arch. Dermatol. Res. 277:131–37 [Google Scholar]
  220. Froh M, Thurman RG, Wheeler MD. 220.  2002. Molecular evidence for a glycine-gated chloride channel in macrophages and leukocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 283:856–63 [Google Scholar]
  221. Schemmer P, Bradford BU, Rose ML, Bunzendahl H, Raleigh JA. 221.  et al. 1999. Intravenous glycine improves survival in rat liver transplantation. Am. J. Physiol. Gastrointest. Liver Physiol. 276:924–32 [Google Scholar]
  222. Spittler A, Winkler S, Gotzinger P, Oehler R, Willheim M. 222.  et al. 1995. Influence of glutamine on the phenotype and function of human monocytes. Blood 86:1564–69 [Google Scholar]
  223. Wallace C, Keast D. 223.  1992. Glutamine and macrophage function. Metabolism 41:1016–20 [Google Scholar]
  224. Clarkson SB, Kimberly RP, Valinsky JE, Witmer MD, Bussel JB. 224.  et al. 1986. Blockade of clearance of immune complexes by an anti-Fcγ receptor monoclonal antibody. J. Exp. Med. 164:474–89 [Google Scholar]
  225. Unkeless JC. 225.  1979. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J. Exp. Med. 150:580–96 [Google Scholar]
  226. Cox D, Chang P, Zhang Q, Reddy PG, Bokoch GM, Greenberg S. 226.  1997. Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J. Exp. Med. 186:1487–94 [Google Scholar]
  227. Pottier Y, Pierard I, Barclay A, Masson PL, Coutelier JP. 227.  1996. The mode of action of treatment by IgG of haemolytic anaemia induced by an anti-erythrocyte monoclonal antibody. Clin. Exp. Immunol. 106:103–7 [Google Scholar]
  228. Ulloa L, Ochani M, Yang H, Tanovic M, Halperin D. 228.  et al. 2002. Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. PNAS 99:12351–56 [Google Scholar]
  229. Yang R, Gallo DJ, Baust JJ, Uchiyama T, Watkins SK. 229.  et al. 2002. Ethyl pyruvate modulates inflammatory gene expression in mice subjected to hemorrhagic shock. Am. J. Physiol. Gastrointest. Liver Physiol. 283:212–21 [Google Scholar]
  230. Wooley PH, Whalen JD, Chapman DL, Berger AE, Richard KA. 230.  et al. 1993. The effect of an interleukin-1 receptor antagonist protein on type II collagen–induced arthritis and antigen-induced arthritis in mice. Arthritis Rheumatol. 36:1305–14 [Google Scholar]
/content/journals/10.1146/annurev-pathol-012414-040318
Loading
/content/journals/10.1146/annurev-pathol-012414-040318
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error