1932

Abstract

Alzheimer's disease/senile dementia of the Alzheimer type (AD/SDAT) is the most common neuropathologic substrate of dementia. It is characterized by synapse loss (predominantly within neocortex) as well as deposition of certain distinctive lesions (the result of protein misfolding) throughout the brain. The latter include senile plaques, composed mainly of an amyloid (Aβ) core and a neuritic component; neurofibrillary tangles, composed predominantly of hyperphosphorylated tau; and cerebral amyloid angiopathy, a microangiopathy affecting both cerebral cortical capillaries and arterioles and resulting from Aβ deposition within their walls or (in the case of capillaries) immediately adjacent brain parenchyma. In this article, I discuss the hypothesized role these lesions play in causing cerebral dysfunction, as well as CSF and neuroimaging biomarkers (for dementia) that are especially relevant as immunotherapeutic approaches are being developed to remove Aβ from the brain parenchyma. In addition, I address the role of neuropathology in characterizing the sequelae of new AD/SDAT therapies and helping to validate CSF and neuroimaging biomarkers of disease. Comorbidity of AD/SDAT and various types of cerebrovascular disease is a major theme in dementia research, especially as cognitive impairment develops in the oldest old, who are especially vulnerable to ischemic and hemorrhagic brain lesions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-020712-163927
2015-01-24
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/pathol/10/1/annurev-pathol-020712-163927.html?itemId=/content/journals/10.1146/annurev-pathol-020712-163927&mimeType=html&fmt=ahah

Literature Cited

  1. Dickson DW, Weller RO. 1.  2011. Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders. Oxford, UK: Wiley-Blackwell, 2nd. ed.
  2. Ellison D, Love S, Chimelli L, Harding BN, Lowe JS. 2.  et al. 2013. Neuropathology: A Reference Text of CNS Pathology. Edinburgh/London: Mosby, 3rd. ed.
  3. Jagust W. 3.  2013. Vulnerable neural systems and the borderland of brain aging and neurodegeneration. Neuron 77:219–34 [Google Scholar]
  4. Palop JJ, Mucke L. 4.  2010. Amyloid-β-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat. Neurosci. 13:812–18 [Google Scholar]
  5. Vinters HV, Farrell MA, Mischel PS, Anders KH. 5.  1998. Neurodegenerative diseases. Diagnostic Neuropathology453–507 New York: Marcel Dekker [Google Scholar]
  6. Thompson PM, Vinters HV. 6.  2012. Pathologic lesions in neurodegenerative diseases. Mol. Biol. Transl. Sci. 107:1–40 [Google Scholar]
  7. Nelson PT, Head E, Schmitt FA, Davis PR, Neltner JH. 7.  et al. 2011. Alzheimer's disease is not “brain aging”: neuropathological, genetic, and epidemiological human studies. Acta Neuropathol. 121:571–87 [Google Scholar]
  8. Kawas C, Gray S, Brookmeyer R, Fozard J, Zonderman A. 8.  2000. Age-specific incidence rates of Alzheimer's disease: the Baltimore Longitudinal Study of Aging. Neurology 54:2072–77 [Google Scholar]
  9. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ. 9.  et al. 1991. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology 41:479–86 [Google Scholar]
  10. Jellinger KA. 10.  2002. Alzheimer disease and cerebrovascular pathology: an update. J. Neural Transm. 109:813–36 [Google Scholar]
  11. Rahimi F, Bitan G. 11.  2012. Non-Fibrillar Amyloidogenic Protein Assemblies—Common Cytotoxins Underlying Degenerative Diseases Dordrecht, Neth.: Springer
  12. Mintun MA, LaRossa GN, Sheline YI, Dence CS, Lee SY. 12.  2006. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 67:446–52 [Google Scholar]
  13. Small GW, Kepe V, Ercoli LM, Siddarth P, Bookheimer SY. 13.  et al. 2006. PET of brain amyloid and tau in mild cognitive impairment. N. Engl. J. Med. 355:2652–63 [Google Scholar]
  14. Small GW, Komo S, La Rue A, Saxena S, Phelps ME. 14.  1996. Early detection of Alzheimer's disease by combining apolipoprotein E and neuroimaging. Ann. N.Y. Acad. Sci. 802:70–78 [Google Scholar]
  15. Vinters HV. 15.  2007. Imaging cerebral microvascular amyloid. Ann. Neurol. 62:209–12 [Google Scholar]
  16. Goedert M, Ghetti B. 16.  2007. Alois Alzheimer: his life and times. Brain Pathol. 17:57–62 [Google Scholar]
  17. Kovacs GG, Botond G, Budka H. 17.  2010. Protein coding of neurodegenerative dementias: the neuropathological basis of biomarker diagnostics. Acta Neuropathol. 119:389–408 [Google Scholar]
  18. Querfurth HW, LaFerla FM. 18.  2010. Alzheimer's disease. N. Engl. J. Med. 362:329–44 [Google Scholar]
  19. Armstrong RA, Ellis W, Hamilton RL, Mackenzie IRA, Hedreen J. 19.  et al. 2010. Neuropathological heterogeneity in frontotemporal lobar degeneration with TDP-43 proteinopathy: a quantitative study of 94 cases using principal components analysis. J. Neural Transm. 117:227–39 [Google Scholar]
  20. Bigio EH. 20.  2008. Update on recent molecular and genetic advances in frontotemporal lobar degeneration. J. Neuropathol. Exp. Neurol. 67:635–48 [Google Scholar]
  21. Dickson DW, Rademakers R, Hutton ML. 21.  2007. Progressive supranuclear palsy: pathology and genetics. Brain Pathol. 17:74–82 [Google Scholar]
  22. Joachim CL, Morris JH, Selkoe DJ. 22.  1988. Clinically diagnosed Alzheimer's disease: autopsy results in 150 cases. Ann. Neurol. 24:50–56 [Google Scholar]
  23. Brun A, Englund E. 23.  1986. A white matter disorder in dementia of the Alzheimer type—a pathoanatomical study. Ann. Neurol. 19:253–62 [Google Scholar]
  24. Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H. 24.  et al. 2012. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J. Neuropathol. Exp. Neurol. 71:362–81 [Google Scholar]
  25. Braak H, Braak E. 25.  1991. Neuropathological staging of Alzheimer related changes. Acta Neuropathol. 82:239–59 [Google Scholar]
  26. Braak H, Duyckaerts C, Braak E, Piette F. 26.  1993. Neuropathological staging of Alzheimer-related changes with psychometrically assessed intellectual status. Alzheimer's Disease: Advances in Clinical and Basic Research B Corain, K Iqbal, M Nicolini, B Winblad, H Wisniewski, P Zatta 131–37 Chichester, UK: Wiley [Google Scholar]
  27. Braak H, Thal DR, Ghebremedhin E, Del Tredici K. 27.  2011. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol. 70:960–69 [Google Scholar]
  28. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. 28.  1985. Amyloid plaque core protein in Alzheimer disease and Down syndrome. PNAS 82:4245–49 [Google Scholar]
  29. Dickson DW. 29.  1997. The pathogenesis of senile plaques. J. Neuropathol. Exp. Neurol. 56:321–39 [Google Scholar]
  30. Blessed G, Tomlinson BE, Roth M. 30.  1968. The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br. J. Psychiatry 117:797–811 [Google Scholar]
  31. Berlau DJ, Kahle-Wrobleski K, Head E, Goodus M, Kim R, Kawas C. 31.  2007. Dissociation of neuropathologic findings and cognition. Case report of an apolipoprotein E ε2/ε2 genotype. Arch. Neurol. 64:1193–96 [Google Scholar]
  32. Serrano-Pozo A, Mielke ML, Muzitansky A, Gomez-Isla T, Growdon JH. 32.  et al. 2012. Stable size distribution of amyloid plaques over the course of Alzheimer disease. J. Neuropathol. Exp. Neurol. 71:694–701 [Google Scholar]
  33. Thal DR, Rub U, Orantes M, Braak H. 33.  2002. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–800 [Google Scholar]
  34. Vinters HV, Secor DL, Read SL, Frazee JG, Tomiyasu U. 34.  et al. 1994. Microvasculature in brain biopsy specimens from patients with Alzheimer's disease: an immunohistochemical and ultrastructural study. Ultrastruct. Pathol. 18:333–48 [Google Scholar]
  35. Kidd M. 35.  1963. Paired helical filaments in electron microscopy of Alzheimer's disease. Nature 197:192–93 [Google Scholar]
  36. Braak H, Braak E, Grundke-Iqbal I, Iqbal K. 36.  1986. Occurrence of neuropil threads in the senile human brain and in Alzheimer's disease: a third location of paired helical filaments outside of neurofibrillary tangles and neuritic plaques. Neurosci. Lett. 65:351–55 [Google Scholar]
  37. Braak H, Braak E. 37.  1988. Neuropil threads occur in the dendrites of tangle-bearing nerve cells. Neuropathol. Appl. Neurobiol. 14:39–44 [Google Scholar]
  38. Wisniewski K, Jervis GA, Moretz RC, Wisniewski HM. 38.  1979. Alzheimer neurofibrillary tangles in disease other than senile and presenile dementia. Ann. Neurol. 5:288–94 [Google Scholar]
  39. Mischel PS, Nguyen LP, Vinters HV. 39.  1995. Cerebral cortical dysplasia associated with pediatric epilepsy. Review of neuropathologic features and proposal for a grading system. J. Neuropathol. Exp. Neurol. 54:137–53 [Google Scholar]
  40. Duong T, DeRosa MJ, Poukens V, Vinters HV, Fisher RS. 40.  1994. Neuronal cytoskeletal abnormalities in human cerebral cortical dysplasia. Acta Neuropathol. 87:493–503 [Google Scholar]
  41. Tai HC, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT. 41.  2012. The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am. J. Pathol. 181:1426–35 [Google Scholar]
  42. Vinters HV. 42.  1987. Cerebral amyloid angiopathy. A critical review. Stroke 18:311–24 [Google Scholar]
  43. Vinters HV, Gilbert JJ. 43.  1983. Cerebral amyloid angiopathy: incidence and complications in the aging brain. II. The distribution of amyloid vascular changes. Stroke 14:924–28 [Google Scholar]
  44. Vinters HV, Wang ZZ, Secor DL. 44.  1996. Brain parenchymal and microvascular amyloid in Alzheimer's disease. Brain Pathol. 6:179–95 [Google Scholar]
  45. Ellis RJ, Olichney JM, Thal LJ, Mirra SS, Morris JC. 45.  et al. 1996. Cerebral amyloid angiopathy in the brains of patients with Alzheimer's disease. The CERAD experience, part XV. Neurology 46:1592–96 [Google Scholar]
  46. Glenner GG, Wong CW. 46.  1984. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120:885–890 [Google Scholar]
  47. Verbeek MM, de Waal RM, Vinters HV. 47.  2000. Cerebral Amyloid Angiopathy in Alzheimer's Disease and Related Disorders Dordrecht, Neth.: Kluwer Acad.
  48. Wang Z, Natte R, Berliner JA, Van Duinen SG, Vinters HV. 48.  2000. Toxicity of Dutch (E22Q) and Flemish (A21G) mutant amyloid β proteins to human cerebral microvessel and aortic smooth muscle cells. Stroke 31:534–38 [Google Scholar]
  49. Wang ZZ, Wu DF, Vinters HV. 49.  2002. Hypoxia and reoxygenation of brain microvascular smooth muscle cells in vitro: cellular responses and expression of cerebral amyloid angiopathy–associated proteins. Acta Pathol. Microbiol. Immunol. Scand. 110:423–34 [Google Scholar]
  50. Soontornniyomkij V, Choi C, Pomakian J, Vinters HV. 50.  2010. High-definition characterization of cerebral β-amyloid angiopathy in Alzheimer's disease. Hum. Pathol. 41:1601–8 [Google Scholar]
  51. Miyakawa T, Katsuragi S, Watanabe K, Shimoji A, Ikeuchi Y. 51.  1986. Ultrastructural studies of amyloid fibrils and senile plaques in human brain. Acta Neuropathol. 70:202–8 [Google Scholar]
  52. Attems J, Yamaguchi H, Saido TC, Thal DR. 52.  2010. Capillary CAA and perivascular Aβ-deposition: two distinct features of Alzheimer's disease pathology. J. Neurol. Sci. 299:155–62 [Google Scholar]
  53. Zabel M, Schrag M, Crofton A, Tung S, Beaufond P. 53.  et al. 2013. A shift in microglial β-amyloid binding in Alzheimer's disease is associated with cerebral amyloid angiopathy. Brain Pathol. 23:390–401 [Google Scholar]
  54. Weller RO, Yow HY, Preston SD, Mazanti I, Nicoll JAR. 54.  2002. Cerebrovascular disease is a major factor in the failure of elimination of Aβ from the aging human brain: implications for therapy of Alzheimer's disease. Ann. N.Y. Acad. Sci. 977:162–68 [Google Scholar]
  55. Herzig MC, Van Nostrand WE, Jucker M. 55.  2006. Mechanism of cerebral β-amyloid angiopathy: murine and cellular models. Brain Pathol. 16:40–54 [Google Scholar]
  56. Zhang-Nunes SX, Maat-Schieman MLC, Van Duinen SG, Roos RAC, Frosch MP, Greenberg SM. 56.  2006. The cerebral β-amyloid angiopathies: hereditary and sporadic. Brain Pathol. 16:30–39 [Google Scholar]
  57. Haglund M, Passant U, Sjobeck E, Ghebremedhin E, Englund E. 57.  2006. Cerebral amyloid angiopathy and cortical microinfarcts as putative substrates of vascular dementia. Int. J. Geriatr. Psychiatry 21:681–87 [Google Scholar]
  58. Soontornniyomkij V, Lynch MD, Mermash S, Pomakian J, Badkoobehi H. 58.  et al. 2010. Cerebral microinfarcts associated with severe cerebral β-amyloid angiopathy. Brain Pathol. 20:459–67 [Google Scholar]
  59. Anders KH, Wang ZZ, Kornfeld M, Gray V, Soontornniyomkij V. 59.  et al. 1997. Giant cell arteritis in association with cerebral amyloid angiopathy: immunohistochemical and molecular studies. Hum. Pathol. 28:1237–46 [Google Scholar]
  60. Arvanitakis Z, Leurgans SE, Wang Z, Wilson RS, Bennett DA, Schneider JA. 60.  2011. Cerebral amyloid angiopathy pathology and cognitive domains in older persons. Ann. Neurol. 69:320–27 [Google Scholar]
  61. Ball MJ. 61.  1977. Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia: a quantitative study. Acta Neuropathol. 37:111–18 [Google Scholar]
  62. Ball MJ. 62.  1978. Topographic distribution of neurofibrillary tangles and granulovacuolar degeneration in hippocampal cortex of aging and demented patients: a quantitative study. Acta Neuropathol. 42:73–80 [Google Scholar]
  63. Clare R, King VG, Wirenfeldt M, Vinters HV. 63.  2010. Synapse loss in dementias. J. Neurosci. Res. 88:2083–90 [Google Scholar]
  64. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R. 64.  et al. 1991. Physical basis of cognitive alterations in Alzheimer's disease: Synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30:572–80 [Google Scholar]
  65. Davidsson P, Blennow K. 65.  1998. Neurochemical dissection of synaptic pathology in Alzheimer's disease. Int. Psychogeriatr. 10:11–23 [Google Scholar]
  66. Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA. 66.  et al. 2005. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat. Neurosci. 8:79–84 [Google Scholar]
  67. Selkoe DJ. 67.  2008. Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav. Brain Res. 192:106–13 [Google Scholar]
  68. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R. 68.  et al. 2002. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–39 [Google Scholar]
  69. Ihara M, Kalaria RN. 69.  2007. Amyloid-β and synaptic activity in mice and men. NeuroReport 18:1205–6 [Google Scholar]
  70. Matsuyama S, Teraoka R, Mori H, Tomiyama T. 70.  2007. Inverse correlation between amyloid precursor protein and synaptic plasticity in transgenic mice. NeuroReport 18:1083–87 [Google Scholar]
  71. Fu C, Chute DJ, Farag ES, Garakian J, Cummings JL, Vinters HV. 71.  2004. Comorbidity in dementia: an autopsy study. Arch. Pathol. Lab. Med. 128:32–38 [Google Scholar]
  72. Gearing M, Mirra SS, Hedreen JC, Sumi SM, Hansen LA, Heyman A. 72.  1995. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part X. Neuropathology confirmation of the clinical diagnosis of Alzheimer's disease. Neurology 45:461–66 [Google Scholar]
  73. Selnes OA, Vinters HV. 73.  2006. Vascular cognitive impairment. Nat. Clin. Pract. Neurol. 2:538–47 [Google Scholar]
  74. Vinters HV, Ellis WG, Zarow C, Zaias BW, Jagust WJ. 74.  et al. 2000. Neuropathologic substrates of ischemic vascular dementia. J. Neuropathol. Exp. Neurol. 59:931–45 [Google Scholar]
  75. Woodhouse A, Dickson TC, Vickers JC. 75.  2007. Vaccination strategies for Alzheimer's disease: a new hope. Drugs Aging 24:107–19 [Google Scholar]
  76. Karran E, Hardy J. 76.  2014. Antiamyloid therapy for Alzheimer's disease—are we on the right road?. N. Engl. J. Med. 370:377–78 [Google Scholar]
  77. Vinters HV, Pardridge WM, Yang J. 77.  1988. Immunohistochemical study of cerebral amyloid angiopathy: use of an antiserum to a synthetic 28-amino-acid peptide fragment of the Alzheimer's disease amyloid precursor. Hum. Pathol. 19:214–22 [Google Scholar]
  78. Vinters HV, Nishimura GS, Secor DL, Pardridge WM. 78.  1990. Immunoreactive A4 and gamma-trace peptide co-localization in amyloidotic arteriolar lesions in the brains of patients with Alzheimer's disease. Am. J. Pathol. 137:233–40 [Google Scholar]
  79. Galasko D, Hansen LA, Katzman R, Wiederholt W, Masliah E. 79.  et al. 1994. Clinical-neuropathological correlations in Alzheimer's disease and related dementias. Arch. Neurol. 51:888–95 [Google Scholar]
  80. Di Patre PL, Read SL, Cummings JL, Tomiyasu U, Vartavarian LM. 80.  et al. 1999. Progression of clinical deterioration and pathological changes in patients with Alzheimer disease evaluated at biopsy and autopsy. Arch. Neurol. 56:1254–61 [Google Scholar]
  81. Khachaturian ZS. 81.  1985. Diagnosis of Alzheimer's disease. Arch. Neurol. 42:1097–105 [Google Scholar]
  82. Newell KL, Hyman BT, Growdon JH, Hedley-Whyte ET. 82.  1999. Application of the National Institute on Aging (NIA)–Reagan Institute criteria for the neuropathological diagnosis of Alzheimer disease. J. Neuropathol. Exp. Neurol. 58:1147–55 [Google Scholar]
  83. Postupna N, Rose SE, Bird TD, Gonzalez-Cuyar LF, Sonnen JA. 83.  et al. 2012. Novel antibody capture assay for paraffin-embedded tissue detects wide-ranging amyloid beta and paired helical filament–tau accumulation in cognitively normal older adults. Brain Pathol. 22:472–84 [Google Scholar]
  84. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ. 84.  et al. 2012. National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimer's Dement. 8:1–13 [Google Scholar]
  85. Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ. 85.  et al. 2012. National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease: a practical approach. Acta Neuropathol. 123:1–11 [Google Scholar]
  86. Ritchie K, Touchon J. 86.  2000. Mild cognitive impairment: conceptual basis and current nosological status. Lancet 355:225–28 [Google Scholar]
  87. Petersen RC, Parisi JE, Dickson DW, Johnson KA, Knopman DS. 87.  et al. 2006. Neuropathologic features of amnestic mild cognitive impairment. Arch. Neurol. 63:665–72 [Google Scholar]
  88. Vinters HV. 88.  2006. Neuropathology of amnestic mild cognitive impairment. Arch. Neurol. 63:645–46 [Google Scholar]
  89. Jicha GA, Parisi JE, Dickson DW, Johnson K, Cha R. 89.  et al. 2006. Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch. Neurol. 63:674–81 [Google Scholar]
  90. Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA. 90.  2009. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann. Neurol. 66:200–8 [Google Scholar]
  91. Shepherd C, McCann H, Halliday GM. 91.  2009. Variations in the neuropathology of familial Alzheimer's disease. Acta Neuropathol. 118:37–52 [Google Scholar]
  92. Jonsson T, Atwal JK, Steinberg S, Snaedel J, Jonsson PV. 92.  et al. 2012. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. Nature 488:96–99 [Google Scholar]
  93. Arnold SE, Vega IE, Karlawish JH, Wolk DA, Nunez J. 93.  et al. 2013. Frequency and clinicopathological characterization of presenilin 1 Gly206Ala mutation in Puerto Rican Hispanics with dementia. J. Alzheimer's Dis. 33:1089–95 [Google Scholar]
  94. Holton P, Ryten M, Nalls M, Trabzuni D, Weale ME. 94.  et al. 2013. Initial assessment of the pathogenic mechanisms of the recently identified Alzheimer risk loci. Ann. Hum. Genet. 77:85–105 [Google Scholar]
  95. Neumann H, Daly MJ. 95.  2013. Variant TREM2 as risk factor for Alzheimer's disease. N. Engl. J. Med. 368:182–84 [Google Scholar]
  96. Reitz C, Mayeux R. 96.  2013. TREM2 and neurodegenerative disease. N. Engl. J. Med. 369:1564–65 [Google Scholar]
  97. Bertram L, Parrado AR, Tanzi RE. 97.  2013. Letter to the editor. N. Engl. J. Med. 369:1565 [Google Scholar]
  98. Jellinger KA, Attems J. 98.  2007. Neuropathological evaluation of mixed dementia. J. Neurol. Sci. 257:80–87 [Google Scholar]
  99. Robinson JL, Geser F, Corrada MM, Berlau DJ, Arnold SE. 99.  et al. 2011. Neocortical and hippocampal amyloid-β and tau measures associate with dementia in the oldest-old. Brain 134:3708–15 [Google Scholar]
  100. Sonnen JA, Larson EB, Haneuse S, Woltjer R, Crane PK. 100.  et al. 2009. Neuropathology in the Adult Changes in Thought study: a review. J. Alzheimer's Dis. 18:703–11 [Google Scholar]
  101. Schneider JA, Aggarwal NT, Barnes L, Boyle P, Bennett DA. 101.  2009. The neuropathology of older persons with and without dementia from community versus clinic cohorts. J. Alzheimer's Dis. 18:691–701 [Google Scholar]
  102. Schneider JA, Bennett DA. 102.  2010. Where vascular meets neurodegenerative disease. Stroke 41:Suppl. 1S144–46 [Google Scholar]
  103. Hachinski V, Iadecola C, Petersen RC, Breteler MM, Nyenhuis D. 103.  et al. 2006. National Institute of Neurological Disorders and Stroke–Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke 37:2220–41 [Google Scholar]
  104. Jack CR Jr. 104.  2011. Alliance for Aging Research AD Biomarkers Work Group: structural MRI. Neurobiol. Aging 32:S48–57 [Google Scholar]
  105. Jagust W. 105.  2013. Biomarkers and brain connectivity. JAMA Neurol. 70:1233–34 [Google Scholar]
  106. Schott JM, Fox NC, Frost C, Scahill RI, Janssen JC. 106.  et al. 2003. Assessing the onset of structural change in familial Alzheimer's disease. Ann. Neurol. 53:181–88 [Google Scholar]
  107. Chan D, Fox NC, Jenkins R, Scahill RI, Crum WR. 107.  et al. 2001. Rates of global and regional cerebral atrophy in AD and frontotemporal dementia. Neurology 57:1756–63 [Google Scholar]
  108. Erten-Lyons D, Dodge HH, Woltjer R, Silbert LC, Howleson DB. 108.  et al. 2013. Neuropathologic basis of age-associated brain atrophy. JAMA Neurol. 70:616–22 [Google Scholar]
  109. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G. 109.  et al. 2004. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann. Neurol. 55:306–19 [Google Scholar]
  110. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ. 110.  et al. 2012. The Alzheimer's disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimer's Dement. 9:e111–94 [Google Scholar]
  111. Wirth M, Madison CM, Rabinovici GD, Oh H, Landau SM, Jagust WJ. 111.  2013. Alzheimer's disease neurodegenerative biomarkers are associated with decreased cognitive function but not β-amyloid in cognitively normal older individuals. J. Neurosci. 33:5553–63 [Google Scholar]
  112. Wolk DA, Price JC, Madeira C, Saxton JA, Snitz BE. 112.  et al. 2012. Amyloid imaging in dementias with atypical presentation. Alzheimer's Dement. 8:389–98 [Google Scholar]
  113. Sanchez-Juan P, Ghosh PM, Hagen J, Gesierich B, Henry M. 113.  et al. 2014. Practical utility of amyloid and FDG-PET in an academic dementia center. Neurology 82:230–38 [Google Scholar]
  114. Reiman EM, Jagust WJ. 114.  2012. Brain imaging in the study of Alzheimer's disease. NeuroImage 61:505–16 [Google Scholar]
  115. Oh H, Madison C, Villeneuve S, Markley C, Jagust WJ. 115.  2014. Association of gray matter atrophy with age, β-amyloid, and cognition in aging. Cereb. Cortex 24:1609–18 [Google Scholar]
  116. Ikonomovic MD, Abrahamson EE, Price JC, Hamilton RL, Mathis CA. 116.  et al. 2012. Early AD pathology in a [C-11]PiB-negative case: a PiB-amyloid imaging, biochemical and immunohistochemical study. Acta Neuropathol. 123:433–47 [Google Scholar]
  117. Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC. 117.  et al. 2008. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease. Brain 131:1630–45 [Google Scholar]
  118. Clark CM, Pontecorvo MJ, Beach TG, Bedell BJ, Coleman RE. 118.  et al. 2012. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol. 11:669–78 [Google Scholar]
  119. Lo RY, Jagust WJ. 119. Alzheimer's Dis. Neuroimaging Initiat 2013. Effect of cognitive reserve markers on Alzheimer pathologic progression. Alzheimer Dis. Assoc. Disord. 27:343–50 [Google Scholar]
  120. Irwin DJ, Trojanowski JQ, Grossman M. 120.  2013. Cerebrospinal fluid biomarkers for differentiation of frontotemporal lobar degeneration from Alzheimer's disease. Front. Aging Neurosci. 5:6 [Google Scholar]
  121. Ghidoni R, Benussi L, Paterlini A, Albertini V, Binetti G, Emanuele E. 121.  2011. Cerebrospinal fluid biomarkers for Alzheimer's disease: the present and future. Neurodegener. Dis. 8:413–20 [Google Scholar]
  122. Landau SM, Lu M, Joshi AD, Pontecorvo M, Mintun MA. 122.  et al. 2013. Comparing positron emission tomography imaging and cerebrospinal fluid measurements of β-amyloid. Ann. Neurol. 74:826–36 [Google Scholar]
  123. Graff-Radford NR, Crook JE, Lucas J, Boeve BF, Knopman DS. 123.  et al. 2007. Association of low plasma Aβ42/Aβ40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Arch. Neurol. 64:354–62 [Google Scholar]
  124. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A. 124.  et al. 2007. Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nat. Med. 13:1359–62 [Google Scholar]
  125. Sunderland T, Hampel H, Takeda M, Putnam KT, Cohen RM. 125.  2006. Biomarkers in the diagnosis of Alzheimer's disease: Are we ready?. J. Geriatr. Psychiatry Neurol. 19:172–79 [Google Scholar]
  126. Freeman SH, Raju S, Hyman BT, Frosch MP, Irizarry MC. 126.  2007. Plasma Aβ levels do not reflect brain Aβ levels. J. Neuropathol. Exp. Neurol. 66:264–71 [Google Scholar]
  127. Nicoll JAR, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO. 127.  2003. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nat. Med. 9:448–52 [Google Scholar]
  128. Ferrer I, Rovira MB, Guerra MLS, Rey MJ, Costa-Jussa F. 128.  2004. Neuropathology and pathogenesis of encephalitis following amyloid-β immunization in Alzheimer's disease. Brain Pathol. 14:11–20 [Google Scholar]
  129. Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V. 129.  et al. 2008. Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–23 [Google Scholar]
  130. Nicoll JAR, Barton E, Boche D, Neal JW, Ferrer I. 130.  et al. 2006. Aβ species removal after Aβ42 immunization. J. Neuropathol. Exp. Neurol. 65:1040–48 [Google Scholar]
  131. Boche D, Denham N, Holmes C, Nicoll JAR. 131.  2010. Neuropathology after active Aβ42 immunotherapy: implications for Alzheimer's disease pathogenesis. Acta Neuropathol. 120:369–84 [Google Scholar]
  132. Boche D, Zotova E, Weller RO, Love S, Neal JW. 132.  et al. 2008. Consequence of Aβ immunization on the vasculature of human Alzheimer's disease brain. Brain 131:3299–310 [Google Scholar]
  133. Maarouf CL, Daugs ID, Kokjohn TA, Kalback WM, Patton RL. 133.  et al. 2010. The biochemical aftermath of anti-amyloid immunotherapy. Mol. Neurodegener. 5:39 [Google Scholar]
  134. Zotova E, Bharambe V, Cheaveau M, Morgan W, Holmes C. 134.  et al. 2013. Inflammatory components in human Alzheimer's disease and after active amyloid-β42 immunization. Brain 136:2677–96 [Google Scholar]
  135. Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B. 135.  et al. 2014. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease. N. Engl. J. Med. 370:311–21 [Google Scholar]
  136. Salloway S, Sperling R, Fox NC, Blennow K, Klunk W. 136.  et al. 2014. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. N. Engl. J. Med. 370:322–33 [Google Scholar]
  137. Klyubin I, Walsh DM, Lemere CA, Cullen WK, Shankar GM. 137.  et al. 2005. Amyloid β protein immunotherapy neutralizes Aβ oligomers that disrupt synaptic plasticity in vivo. Nat. Med. 11:556–61 [Google Scholar]
  138. Miners JS, Barua N, Kehoe PG, Gill S, Love S. 138.  2011. Aβ-degrading enzymes: potential for treatment of Alzheimer disease. J. Neuropathol. Exp. Neurol. 70:944–59 [Google Scholar]
  139. Hulette C, Nochlin D, McKeel D, Morris JC, Mirra SS. 139.  et al. 1997. Clinical-neuropathologic findings in multi-infarct dementia: a report of six autopsied cases. Neurology 48:668–72 [Google Scholar]
  140. Jellinger KA. 140.  2007. The enigma of vascular cognitive disorder and vascular dementia. Acta Neuropathol. 113:349–88 [Google Scholar]
  141. Jellinger KA. 141.  2008. The pathology of “vascular dementia”: a critical update. J. Alzheimer's Dis. 14:107–23 [Google Scholar]
  142. Knopman DS. 142.  2007. Cerebrovascular disease and dementia. Br. J. Radiol. 80:S121–27 [Google Scholar]
  143. Chui HC, Zarow C, Mack WJ, Ellis WG, Zheng L. 143.  et al. 2006. Cognitive impact of subcortical vascular and Alzheimer's disease pathology. Ann. Neurol. 60:677–87 [Google Scholar]
  144. Gorelick PB, Scuteri A, Black SE, DeCarli C, Greenberg SM. 144.  et al. 2011. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42:2672–713 [Google Scholar]
  145. Iadecola C. 145.  2010. The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol. 120:287–96 [Google Scholar]
  146. Jellinger KA, Attems J. 146.  2010. Prevalence of dementia disorders in the oldest-old: an autopsy study. Acta Neuropathol. 119:421–33 [Google Scholar]
  147. Langa KM, Foster NL, Larson EB. 147.  2004. Mixed dementia: emerging concepts and therapeutic implications. JAMA 292:2901–8 [Google Scholar]
  148. Kovari E, Herrmann FR, Hof PR, Bouras C. 148.  2013. The relationship between cerebral amyloid angiopathy and cortical microinfarcts in brain aging and Alzheimer's disease. Neuropathol. Appl. Neurobiol. 39:498–509 [Google Scholar]
  149. Thal DR, Ghebremedhin E, Orantes M, Wiestler OD. 149.  2003. Vascular pathology in Alzheimer disease: correlation of cerebral amyloid angiopathy and arteriosclerosis/lipohyalinosis with cognitive decline. J. Neuropathol. Exp. Neurol. 62:1287–301 [Google Scholar]
  150. Thal DR, Grinberg LT, Attems J. 150.  2012. Vascular dementia: Different forms of vessel disorders contribute to the development of dementia in the elderly brain. Exp. Gerontol. 47:816–24 [Google Scholar]
  151. Arvanitakis Z, Leurgans SE, Barnes LL, Bennett DA, Schneider JA. 151.  2011. Microinfarct pathology, dementia, and cognitive systems. Stroke 42:722–27 [Google Scholar]
  152. Longstreth WT, Sonnen JA, Koepsell TD, Kukull WA, Larson EB, Montine TJ. 152.  2009. Associations between microinfarcts and other macroscopic vascular findings on neuropathologic examination in 2 databases. Alzheimer's Dis. Assoc. Disord. 23:291–94 [Google Scholar]
  153. Dickson DW, Davies P, Bevona C, Van Hoeven KH, Factor SM. 153.  et al. 1994. Hippocampal sclerosis: a common pathological feature of dementia in very old (≥80 years of age) humans. Acta Neuropathol. 88:212–21 [Google Scholar]
  154. Rauramaa T, Pikkarainen M, Englund E, Ince PG, Jellinger K. 154.  et al. 2011. Cardiovascular diseases and hippocampal infarcts. Hippocampus 21:281–87 [Google Scholar]
  155. Zarow C, Sitzer TE, Chui HC. 155.  Understanding hippocampal sclerosis in the elderly: epidemiology, characterization, and diagnostic issues. Curr. Neurol. Neurosci. Rep. 8:363–70 [Google Scholar]
  156. Amador-Ortiz C, Ahmed Z, Zehr C, Dickson DW. 156.  2007. Hippocampal sclerosis dementia differs from hippocampal sclerosis in frontal lobe degeneration. Acta Neuropathol. 113:245–52 [Google Scholar]
  157. Zarow C, Vinters HV, Ellis WG, Weiner MW, Mungas D. 157.  et al. 2005. Correlates of hippocampal neuron number in Alzheimer's disease and ischemic vascular dementia. Ann. Neurol. 57:896–903 [Google Scholar]
  158. Ball MJ, Fisman M, Hachinski V, Blume W, Fox A. 158.  et al. 1985. A new definition of Alzheimer's disease: a hippocampal dementia. Lancet 325:14–16 [Google Scholar]
  159. Deane R, Zlokovic BV. 159.  2007. Role of the blood-brain barrier in the pathogenesis of Alzheimer's disease. Curr. Alzheimer Res. 4:191–97 [Google Scholar]
  160. Zlokovic BV. 160.  2005. Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci. 28:202–8 [Google Scholar]
  161. Jeynes B, Provias J. 161.  2011. The case for blood-brain barrier dysfunction in the pathogenesis of Alzheimer's disease. J. Neurosci. Res. 89:22–28 [Google Scholar]
  162. Stewart PA, Hayakawa K, Akers MA, Vinters HV. 162.  1992. A morphometric study of the blood-brain barrier in Alzheimer's disease. Lab. Investig. 67:734–42 [Google Scholar]
  163. Beach TG, Wilson JR, Sue LI, Newell A, Poston M. 163.  et al. 2007. Circle of Willis atherosclerosis: association with Alzheimer's disease, neuritic plaques and neurofibrillary tangles. Acta Neuropathol. 113:13–21 [Google Scholar]
  164. Honig LS, Kukull W, Mayeux R. 164.  2005. Atherosclerosis and AD: analysis of data from the US National Alzheimer's Coordinating Center. Neurology 64:494–500 [Google Scholar]
  165. Luoto TM, Haikonen S, Haapasalo H, Goebeler S, Huhtala H. 165.  et al. 2009. Large vessel atherosclerosis is not in direct association with neuropathological lesions of Alzheimer's disease. Eur. Neurol. 62:93–98 [Google Scholar]
  166. Yarchoan M, Xie SX, Kling MA, Toledo JB, Wolk DA. 166.  et al. 2012. Cerebrovascular atherosclerosis correlates with Alzheimer pathology in neurodegenerative dementias. Brain 135:3749–56 [Google Scholar]
  167. Dolan H, Crain B, Troncoso J, Resnick SM, Zonderman AB, O'Brien RJ. 167.  2010. Atherosclerosis, dementia, and Alzheimer disease in the Baltimore Longitudinal Study of Aging cohort. Ann. Neurol. 68:231–40 [Google Scholar]
  168. Chui HC, Zheng L, Reed BR, Vinters HV, Mack WJ. 168.  2012. Vascular risk factors and Alzheimer's disease: Are these risk factors for plaques and tangles or for concomitant vascular pathology that increases the likelihood of dementia? An evidence-based review. Alzheimer's Res. Ther. 4:1 [Google Scholar]
  169. Zheng L, Vinters HV, Mack WJ, Zarow C, Ellis WG, Chui HC. 169.  2013. Cerebral atherosclerosis is associated with cystic infarcts and microinfarcts but not Alzheimer pathologic changes. Stroke 44:2835–41 [Google Scholar]
  170. Rockenstein E, Crews L, Masliah E. 170.  2007. Transgenic animal models of neurodegenerative diseases and their application to treatment development. Adv. Drug Deliv. Rev. 59:1093–102 [Google Scholar]
  171. Schellenberg GD, Montine TJ. 171.  2012. The genetics and neuropathology of Alzheimer's disease. Acta Neuropathol. 124:305–23 [Google Scholar]
  172. Huang Y, Mucke L. 172.  2012. Alzheimer mechanisms and therapeutic strategies. Cell 148:1204–22 [Google Scholar]
  173. Ball MJ, Lukiw WJ, Kammerman EM, Hill JM. 173.  2013. Intracerebral propagation of Alzheimer's disease: strengthening evidence of a herpes simplex virus etiology. Alzheimer's Dement. 9:169–75 [Google Scholar]
  174. Aguzzi A, Rajendran L. 174.  2009. The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64:783–90 [Google Scholar]
  175. Stohr J, Watts JC, Mensinger ZL, Oehler A, Grillo SK. 175.  et al. 2012. Purified and synthetic Alzheimer's amyloid beta (Aβ) prions. PNAS 109:11025–30 [Google Scholar]
  176. Hamaguchi T, Eisele YS, Varvel NH, Lamb BT, Walker LC, Jucker M. 176.  2012. The presence of Aβ seeds, and not age per se, is critical to the initiation of Aβ deposition in the brain. Acta Neuropathol. 123:31–37 [Google Scholar]
  177. Harris JA, Devidze N, Verret L, Ho K, Halabisky B. 177.  et al. 2010. Transsynaptic progression of amyloid-β-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron 68:428–41 [Google Scholar]
  178. Braak H, Del Tredici K. 178.  2011. Alzheimer's pathogenesis: Is there neuron-to-neuron propagation. Acta Neuropathol. 121:589–95 [Google Scholar]
  179. Clavaguera F, Bolmont T, Crowther A, Abramowski D, Frank S. 179.  et al. 2009. Transmission and spread of tauopathy in transgenic mouse brain. Nat. Cell Biol. 11:909–14 [Google Scholar]
  180. Castellani RJ, Perry G. 180.  2014. The complexities of the pathology-pathogenesis relationship in Alzheimer disease. Biochem. Pharmacol. 88:671–76 [Google Scholar]
  181. Nunomura A, Perry G, Aliev G, Hirai K, Takeda A. 181.  et al. 2001. Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol. 60:759–67 [Google Scholar]
  182. Kovacs GG, Budka H. 182.  2010. Current concepts of neuropathological diagnostics in practice: neurodegenerative diseases. Clin. Neuropathol. 29:271–88 [Google Scholar]
  183. Kumar-Singh S, Van Broeckhoven C. 183.  2007. Frontotemporal lobar degeneration: current concepts in the light of recent advances. Brain Pathol. 17:104–13 [Google Scholar]
  184. McKeith IG, Dickson DW, Lowe J, Emre M, O'Brien JT. 184.  et al. 2005. Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium. Neurology 65:1863–72 [Google Scholar]
  185. Wilson RS, Leurgans SE, Boyle PA, Schneider JA, Bennett DA. 185.  2010. Neurodegenerative basis of age-related cognitive decline. Neurology 75:1070–78 [Google Scholar]
  186. van Swieten J, Spillantini MG. 186.  2007. Hereditary frontotemporal dementia caused by Tau gene mutations. Brain Pathol. 17:63–73 [Google Scholar]
/content/journals/10.1146/annurev-pathol-020712-163927
Loading
/content/journals/10.1146/annurev-pathol-020712-163927
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error