1932

Abstract

Focal cortical dysplasias (FCDs) are malformations of cortical development (MCDs) that are highly associated with medication-resistant epilepsy and are the most common cause of neocortical epilepsy in children. FCDs are a heterogeneous group of developmental disorders caused by germline or somatic mutations that occur in genes regulating the PI3K/Akt/mTOR pathway—a key pathway in neuronal growth and migration. Accordingly, FCDs are characterized by abnormal cortical lamination, cell morphology (e.g., cytomegaly), and cellular polarity. In some FCD subtypes, balloon cells express proteins typically seen in neuroglial progenitor cells. Because recurrent intractable seizures are a common feature of FCDs, epileptogenic electrophysiological properties are also observed in addition to local inflammation. Here, we will summarize the current literature regarding FCDs, addressing the current classification system, histopathology, molecular genetics, electrophysiology, and transcriptome and cell signaling changes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-052016-100138
2017-01-24
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/pathol/12/1/annurev-pathol-052016-100138.html?itemId=/content/journals/10.1146/annurev-pathol-052016-100138&mimeType=html&fmt=ahah

Literature Cited

  1. Crome L. 1.  1957. Abnormal brain structure in mental deficiency. Med. World 86:3217–23 [Google Scholar]
  2. Taylor DC, Falconer MA, Bruton CJ, Corsellis JA. 2.  1971. Focal dysplasia of the cerebral cortex in epilepsy. J. Neurol. Neurosurg. Psychiatry 34:4369–87Seminal paper describing FCD. [Google Scholar]
  3. Crino PB. 3.  2011. mTOR: a pathogenic signaling pathway in developmental brain malformations. Trends Mol. Med. 17:12734–42 [Google Scholar]
  4. Krueger DA, Northrup H. 4. Int. Tuberous Scler. Complex Consens. Group. 2013. Tuberous sclerosis complex surveillance and management: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr. Neurol. 49:4255–65 [Google Scholar]
  5. Donkels C, Pfeifer D, Janz P, Huber S, Nakagawa J. 5.  et al. 2016. Whole transcriptome screening reveals myelination deficits in dysplastic human temporal neocortex. Cereb. Cortex 2016:bhv346 [Google Scholar]
  6. Muhlebner A, Groppel G, Dressler A, Reiter-Fink E, Kasprian G. 6.  et al. 2014. Epilepsy surgery in children and adolescents with malformations of cortical development—outcome and impact of the new ILAE classification on focal cortical dysplasia. Epilepsy Res 108:91652–61 [Google Scholar]
  7. Kim DW, Kim S, Park SH, Chung CK, Lee SK. 7.  2012. Comparison of MRI features and surgical outcome among the subtypes of focal cortical dysplasia. Seizure 21:10789–94 [Google Scholar]
  8. Rowland NC, Englot DJ, Cage TA, Sughrue ME, Barbaro NM, Chang EF. 8.  2012. A meta-analysis of predictors of seizure freedom in the surgical management of focal cortical dysplasia. J. Neurosurg. 116:51035–41 [Google Scholar]
  9. Palmini A, Najm I, Avanzini G, Babb T, Guerrini R. 9.  et al. 2004. Terminology and classification of the cortical dysplasias. Neurology 62:6 Suppl. 3S2–8Current ILAE classification of focal cortical dysplasia. [Google Scholar]
  10. Blumcke I, Thom M, Aronica E, Armstrong DD, Vinters HV. 10.  et al. 2011. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 52:1158–74 [Google Scholar]
  11. Coras R, de Boer OJ, Armstrong D, Becker A, Jacques TS. 11.  et al. 2012. Good interobserver and intraobserver agreement in the evaluation of the new ILAE classification of focal cortical dysplasias. Epilepsia 53:81341–48Describes the cellular markers that differentiate FCD I from FCD II. [Google Scholar]
  12. Orlova KA, Tsai V, Baybis M, Heuer GG, Sisodiya S. 12.  et al. 2010. Early progenitor cell marker expression distinguishes type II from type I focal cortical dysplasias. J. Neuropathol. Exp. Neurol. 69:8850–63 [Google Scholar]
  13. Santos MV, de Oliveira RS, Machado HR. 13.  2014. Approach to cortical dysplasia associated with glial and glioneuronal tumors (FCD type IIIb). Childs Nerv. Syst. 30:111869–74 [Google Scholar]
  14. Martinoni M, Marucci G, de Biase D, Rubboli G, Volpi L. 14.  et al. 2015. BRAF V600E mutation in neocortical posterior temporal epileptogenic gangliogliomas. J. Clin. Neurosci. 22:81250–53 [Google Scholar]
  15. Sarnat H, Flores-Sarnat L, Crino P, Hader W, Bello-Espinosa L. 15.  2012. Hemimegalencephaly: foetal tauopathy with mTOR hyperactivation and neuronal lipidosis. Folia Neuropathol 50:4330–45 [Google Scholar]
  16. Sarnat HB, Flores-Sarnat L. 16.  2015. Infantile tauopathies: hemimegalencephaly; tuberous sclerosis complex; focal cortical dysplasia 2; ganglioglioma. Brain Dev 37:6553–62 [Google Scholar]
  17. Lamparello P, Baybis M, Pollard J, Hol EM, Eisenstat DD. 17.  et al. 2007. Developmental lineage of cell types in cortical dysplasia with balloon cells. Brain 130:Pt. 92267–76 [Google Scholar]
  18. Hanai S, Saito T, Nakagawa E, Arai A, Otsuki T. 18.  et al. 2010. Abnormal maturation of non-dysmorphic neurons in focal cortical dysplasia: immunohistochemical considerations. Seizure 19:5274–79 [Google Scholar]
  19. Prabowo AS, Anink JJ, Lammens M, Nellist M, van den Ouweland AM. 19.  et al. 2013. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain Pathol 23:145–59First demonstration of mTOR activation of tubers during fetal development. [Google Scholar]
  20. Tsai V, Parker WE, Orlova KA, Baybis M, Chi AW. 20.  et al. 2014. Fetal brain mTOR signaling activation in tuberous sclerosis complex. Cereb. Cortex 24:2315–27 [Google Scholar]
  21. White R, Hua Y, Scheithauer B, Lynch DR, Henske EP, Crino PB. 21.  2001. Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells of cortical tubers. Ann. Neurol. 49:167–78 [Google Scholar]
  22. Calcagnotto ME, Paredes MF, Tihan T, Barbaro NM, Baraban SC. 22.  2005. Dysfunction of synaptic inhibition in epilepsy associated with focal cortical dysplasia. J. Neurosci. 25:429649–57 [Google Scholar]
  23. Kuchukhidze G, Wieselthaler-Holzl A, Drexel M, Unterberger I, Luef G. 23.  et al. 2015. Calcium-binding proteins in focal cortical dysplasia. Epilepsia 56:81207–16 [Google Scholar]
  24. Andre VM, Wu N, Yamazaki I, Nguyen ST, Fisher RS. 24.  et al. 2007. Cytomegalic interneurons: a new abnormal cell type in severe pediatric cortical dysplasia. J. Neuropathol. Exp. Neurol. 66:6491–504 [Google Scholar]
  25. Taylor JP, Sater R, French J, Baltuch G, Crino PB. 25.  2001. Transcription of intermediate filament genes is enhanced in focal cortical dysplasia. Acta Neuropathol 102:2141–48 [Google Scholar]
  26. Crino PB, Trojanowski JQ, Dichter MA, Eberwine J. 26.  1996. Embryonic neuronal markers in tuberous sclerosis: single-cell molecular pathology. PNAS 93:2414152–57 [Google Scholar]
  27. Oh HS, Lee MC, Kim HS, Lee JS, Lee JH. 27.  et al. 2008. Pathophysiologic characteristics of balloon cells in cortical dysplasia. Childs Nerv. Syst. 24:2175–83 [Google Scholar]
  28. Crino PB, Miyata H, Vinters HV. 28.  2002. Neurodevelopmental disorders as a cause of seizures: neuropathologic, genetic, and mechanistic considerations. Brain Pathol 12:2212–33 [Google Scholar]
  29. Mizuguchi M, Yamanouchi H, Becker LE, Itoh M, Takashima S. 29.  2002. Doublecortin immunoreactivity in giant cells of tuberous sclerosis and focal cortical dysplasia. Acta Neuropathol 104:4418–24 [Google Scholar]
  30. Thom M, Martinian L, Sisodiya SM, Cross JH, Williams G. 30.  et al. 2005. Mcm2 labelling of balloon cells in focal cortical dysplasia. Neuropathol. Appl. Neurobiol. 31:6580–88 [Google Scholar]
  31. Ying Z, Gonzalez-Martinez J, Tilelli C, Bingaman W, Najm I. 31.  2005. Expression of neural stem cell surface marker CD133 in balloon cells of human focal cortical dysplasia. Epilepsia 46:111716–23 [Google Scholar]
  32. Yasin SA, Latak K, Becherini F, Ganapathi A, Miller K. 32.  et al. 2010. Balloon cells in human cortical dysplasia and tuberous sclerosis: isolation of a pathological progenitor-like cell. Acta Neuropathol 120:185–96 [Google Scholar]
  33. Maldonado M, Baybis M, Newman D, Kolson DL, Chen W. 33.  et al. 2003. Expression of ICAM-1, TNF-alpha, NF kappa B, and MAP kinase in tubers of the tuberous sclerosis complex. Neurobiol. Dis. 14:2279–90 [Google Scholar]
  34. Iyer A, Prabowo A, Anink J, Spliet WG, van Rijen PC, Aronica E. 34.  2014. Cell injury and premature neurodegeneration in focal malformations of cortical development. Brain Pathol 24:11–17 [Google Scholar]
  35. Monuki ES, Walsh CA. 35.  2001. Mechanisms of cerebral cortical patterning in mice and humans. Nat. Neurosci. 4:Suppl.1199–206 [Google Scholar]
  36. Crino PB, Eberwine J. 36.  1996. Molecular characterization of the dendritic growth cone: regulated mRNA transport and local protein synthesis. Neuron 17:61173–87 [Google Scholar]
  37. Crino PB, Trojanowski JQ, Eberwine J. 37.  1997. Internexin, MAP1B, and nestin in cortical dysplasia as markers of developmental maturity. Acta Neuropathol 93:6619–27 [Google Scholar]
  38. Boer K, Lucassen PJ, Spliet WG, Vreugdenhil E, van Rijen PC. 38.  et al. 2009. Doublecortin-like (DCL) expression in focal cortical dysplasia and cortical tubers. Epilepsia 50:122629–37 [Google Scholar]
  39. Cepeda C, Andre VM, Levine MS, Salamon N, Miyata H. 39.  et al. 2006. Epileptogenesis in pediatric cortical dysplasia: the dysmature cerebral developmental hypothesis. Epilepsy Behav 9:2219–35 [Google Scholar]
  40. Crino PB, Duhaime AC, Baltuch G, White R. 40.  2001. Differential expression of glutamate and GABA-A receptor subunit mRNA in cortical dysplasia. Neurology 56:7906–13 [Google Scholar]
  41. Hammers A, Koepp MJ, Richardson MP, Labbe C, Brooks DJ. 41.  et al. 2001. Central benzodiazepine receptors in malformations of cortical development: a quantitative study. Brain 124:Pt. 81555–65 [Google Scholar]
  42. Ying Z, Najm IM. 42.  2002. Mechanisms of epileptogenicity in focal malformations caused by abnormal cortical development. Neurosurg. Clin. N. Am. 13:127–33 [Google Scholar]
  43. Sukigara S, Dai H, Nabatame S, Otsuki T, Hanai S. 43.  et al. 2014. Expression of astrocyte-related receptors in cortical dysplasia with intractable epilepsy. J. Neuropathol. Exp. Neurol. 73:8798–806 [Google Scholar]
  44. Zurolo E, Iyer AM, Spliet WG, van Rijen PC, Troost D. 44.  et al. 2010. CB1 and CB2 cannabinoid receptor expression during development and in epileptogenic developmental pathologies. Neuroscience 170:128–41 [Google Scholar]
  45. Diaz-Alonso J, Aguado T, de Salas-Quiroga A, Ortega Z, Guzman M, Galve-Roperh I. 45.  2015. CB1 cannabinoid receptor–dependent activation of mTORC1/Pax6 signaling drives Tbr2 expression and basal progenitor expansion in the developing mouse cortex. Cereb. Cortex 25:92395–408 [Google Scholar]
  46. Kovacs FE, Knop T, Urbanski MJ, Freiman I, Freiman TM. 46.  et al. 2012. Exogenous and endogenous cannabinoids suppress inhibitory neurotransmission in the human neocortex. Neuropsychopharmacology 37:51104–14 [Google Scholar]
  47. Gibson HE, Edwards JG, Page RS, Van Hook MJ, Kauer JA. 47.  2008. TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons. Neuron 57:5746–59 [Google Scholar]
  48. Peters JH, McDougall SJ, Fawley JA, Smith SM, Andresen MC. 48.  2010. Primary afferent activation of thermosensitive TRPV1 triggers asynchronous glutamate release at central neurons. Neuron 65:5657–69 [Google Scholar]
  49. Xu GZ, Shu HF, Yue HY, Zheng DH, Guo W, Yang H. 49.  2015. Increased expression of TRPC5 in cortical lesions of the focal cortical dysplasia. J. Mol. Neurosci. 55:3561–69 [Google Scholar]
  50. Chen K, Zhang ZF, Liao MF, Yao WL, Wang J, Wang XR. 50.  2015. Blocking PAR2 attenuates oxaliplatin-induced neuropathic pain via TRPV1 and releases of substance P and CGRP in superficial dorsal horn of spinal cord. J. Neurol. Sci. 352:1–262–67 [Google Scholar]
  51. Aronica E, Boer K, Doorn KJ, Zurolo E, Spliet WG. 51.  et al. 2009. Expression and localization of voltage dependent potassium channel Kv4.2 in epilepsy associated focal lesions. Neurobiol. Dis. 36:181–95 [Google Scholar]
  52. Yu S, Li S, Shu H, Zhang C, He J. 52.  et al. 2012. Upregulated expression of voltage-gated sodium channel Nav1.3 in cortical lesions of patients with focal cortical dysplasia type IIb. Neuroreport 23:7407–11 [Google Scholar]
  53. Sisodiya SM, Lin WR, Squier MV, Thom M. 53.  2001. Multidrug-resistance protein 1 in focal cortical dysplasia. Lancet 357:924942–43 [Google Scholar]
  54. Sisodiya SM, Heffernan J, Squier MV. 54.  1999. Over-expression of P-glycoprotein in malformations of cortical development. Neuroreport 10:163437–41 [Google Scholar]
  55. Tishler DM, Weinberg KI, Hinton DR, Barbaro N, Annett GM, Raffel C. 55.  1995. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia 36:11–6 [Google Scholar]
  56. Medici V, Frassoni C, Tassi L, Spreafico R, Garbelli R. 56.  2011. Aquaporin 4 expression in control and epileptic human cerebral cortex. Brain Res 1367:330–39 [Google Scholar]
  57. Ulu MO, Tanriverdi T, Oz B, Biceroglu H, Isler C. 57.  et al. 2010. The expression of astroglial glutamate transporters in patients with focal cortical dysplasia: an immunohistochemical study. Acta Neurochir. Wien. 152:5845–53 [Google Scholar]
  58. Voss LJ, Jacobson G, Sleigh JW, Steyn-Ross A, Steyn-Ross M. 58.  2009. Excitatory effects of gap junction blockers on cerebral cortex seizure-like activity in rats and mice. Epilepsia 50:81971–78 [Google Scholar]
  59. Luan G, Gao Q, Zhai F, Zhou J, Liu C. 59.  et al. 2015. Adenosine kinase expression in cortical dysplasia with balloon cells: analysis of developmental lineage of cell types. J. Neuropathol. Exp. Neurol. 74:2132–47 [Google Scholar]
  60. Boer K, Troost D, Spliet WG, van Rijen PC, Gorter JA, Aronica E. 60.  2008. Cellular distribution of vascular endothelial growth factor A (VEGFA) and B (VEGFB) and VEGF receptors 1 and 2 in focal cortical dysplasia type IIB. Acta Neuropathol 115:6683–96 [Google Scholar]
  61. Thom M, Harding BN, Lin WR, Martinian L, Cross H, Sisodiya SM. 61.  2003. Cajal-Retzius cells, inhibitory interneuronal populations and neuropeptide Y expression in focal cortical dysplasia and microdysgenesis. Acta Neuropathol 105:6561–69 [Google Scholar]
  62. Colmers WF, El Bahh B. 62.  2003. Neuropeptide Y and epilepsy. Epilepsy Curr 3:253–58 [Google Scholar]
  63. Baybis M, Yu J, Lee A, Golden JA, Weiner H. 63.  et al. 2004. mTOR cascade activation distinguishes tubers from focal cortical dysplasia. Ann. Neurol. 56:4478–87 [Google Scholar]
  64. Miyata H, Chiang AC, Vinters HV. 64.  2004. Insulin signaling pathways in cortical dysplasia and TSC-tubers: tissue microarray analysis. Ann. Neurol. 56:4510–19 [Google Scholar]
  65. Ljungberg MC, Bhattacharjee MB, Lu Y, Armstrong DL, Yoshor D. 65.  et al. 2006. Activation of mammalian target of rapamycin in cytomegalic neurons of human cortical dysplasia. Ann. Neurol. 60:4420–29 [Google Scholar]
  66. Schick V, Majores M, Engels G, Hartmann W, Elger CE. 66.  et al. 2007. Differential Pi3K-pathway activation in cortical tubers and focal cortical dysplasias with balloon cells. Brain Pathol 17:2165–73 [Google Scholar]
  67. Grabiner BC, Nardi V, Birsoy K, Possemato R, Shen K. 67.  et al. 2014. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov 4:5554–63 [Google Scholar]
  68. Rensing N, Han L, Wong M. 68.  2015. Intermittent dosing of rapamycin maintains antiepileptogenic effects in a mouse model of tuberous sclerosis complex. Epilepsia 56:71088–97 [Google Scholar]
  69. Aronica E, Boer K, Baybis M, Yu J, Crino P. 69.  2007. Co-expression of cyclin D1 and phosphorylated ribosomal S6 proteins in hemimegalencephaly. Acta Neuropathol 114:3287–93 [Google Scholar]
  70. Samadani U, Judkins AR, Akpalu A, Aronica E, Crino PB. 70.  2007. Differential cellular gene expression in ganglioglioma. Epilepsia 48:4646–53 [Google Scholar]
  71. Liu J, Reeves C, Michalak Z, Coppola A, Diehl B. 71.  et al. 2014. Evidence for mTOR pathway activation in a spectrum of epilepsy-associated pathologies. Acta Neuropathol. Commun. 2:71 [Google Scholar]
  72. Zeng LH, Rensing NR, Wong M. 72.  2009. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J. Neurosci. 29:216964–72 [Google Scholar]
  73. Hester MS, Hosford BE, Santos VR, Singh SP, Rolle IJ. 73.  et al. 2016. Impact of rapamycin on status epilepticus induced hippocampal pathology and weight gain. Exp. Neurol. 280:1–12 [Google Scholar]
  74. Hua Y, Crino PB. 74.  2003. Single cell lineage analysis in human focal cortical dysplasia. Cereb. Cortex 13:6693–99 [Google Scholar]
  75. Crino PB. 75.  2007. Focal brain malformations: a spectrum of disorders along the mTOR cascade. Novartis Found. Symp. 288:260–72Describes mutation in mTOR itself that led to FCD II. [Google Scholar]
  76. Becker AJ, Urbach H, Scheffler B, Baden T, Normann S. 76.  et al. 2002. Focal cortical dysplasia of Taylor's balloon cell type: Mutational analysis of the TSC1 gene indicates a pathogenic relationship to tuberous sclerosis. Ann. Neurol. 52:129–37 [Google Scholar]
  77. Lim JS, Kim WI, Kang HC, Kim SH, Park AH. 77.  et al. 2015. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat. Med. 21:4395–400 [Google Scholar]
  78. Nakashima M, Saitsu H, Takei N, Tohyama J, Kato M. 78.  et al. 2015. Somatic Mutations in the MTOR gene cause focal cortical dysplasia type IIb. Ann. Neurol. 78:3375–86 [Google Scholar]
  79. D'Gama AM, Geng Y, Couto JA, Martin B, Boyle EA. 79.  et al. 2015. Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann. Neurol. 77:4720–25 [Google Scholar]
  80. Scerri T, Riseley JR, Gillies G, Pope K, Burgess R. 80.  et al. 2015. Familial cortical dysplasia type IIA caused by a germline mutation in DEPDC5. Ann. Clin. Transl. Neurol. 2:5575–80 [Google Scholar]
  81. Crino PB, Aronica E, Baltuch G, Nathanson KL. 81.  2010. Biallelic TSC gene inactivation in tuberous sclerosis complex. Neurology 74:211716–23 [Google Scholar]
  82. Moon UY, Park JY, Park R, Cho JY, Hughes LJ. 82.  et al. 2015. Impaired Reelin-Dab1 signaling contributes to neuronal migration deficits of tuberous sclerosis complex. Cell Rep 12:6965–78 [Google Scholar]
  83. Baek ST, Copeland B, Yun EJ, Kwon SK, Guemez-Gamboa A. 83.  et al. 2015. An AKT3-FOXG1-reelin network underlies defective migration in human focal malformations of cortical development. Nat. Med. 21:1445–54 [Google Scholar]
  84. Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR. 84.  et al. 2012. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488:7413647–51 [Google Scholar]
  85. Crowell B, Lee GH, Nikolaeva I, Dal Pozzo V, D'Arcangelo G. 85.  2015. Complex neurological phenotype in mutant mice lacking Tsc2 in excitatory neurons of the developing forebrain. eNeuro https://doi.org/10.1523/ENEURO.0046-15.2015
  86. Pun RY, Rolle IJ, LaSarge CL, Hosford BE, Rosen JM. 86.  et al. 2012. Excessive activation of mTOR in postnatally generated granule cells is sufficient to cause epilepsy. Neuron 75:61022–43 [Google Scholar]
  87. Roy A, Skibo J, Kalume F, Ni J, Rankin S. 87.  et al. 2015. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy. eLife https://doi.org/10.7554/eLife.12703
  88. Marsan E, Ishida S, Schramm A, Weckhuysen S, Muraca G. 88.  et al. 2016. Depdc5 knockout rat: a novel model of mTORopathy. Neurobiol. Dis. 89:180–89 [Google Scholar]
  89. Jansen LA, Mirzaa GM, Ishak GE, O'Roak BJ, Hiatt JB. 89.  et al. 2015. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain 138:Pt. 61613–28 [Google Scholar]
  90. Aronica E, Crino PB. 90.  2011. Inflammation in epilepsy: clinical observations. Epilepsia 52:Suppl. 326–32 [Google Scholar]
  91. Boer K, Spliet WG, van Rijen PC, Redeker S, Troost D, Aronica E. 91.  2006. Evidence of activated microglia in focal cortical dysplasia. J. Neuroimmunol. 173:1–2188–95 [Google Scholar]
  92. Shu HF, Zhang CQ, Yin Q, An N, Liu SY, Yang H. 92.  2010. Expression of the interleukin 6 system in cortical lesions from patients with tuberous sclerosis complex and focal cortical dysplasia type IIb. J. Neuropathol. Exp. Neurol. 69:8838–49 [Google Scholar]
  93. Iyer A, Zurolo E, Spliet WG, van Rijen PC, Baayen JC. 93.  et al. 2010. Evaluation of the innate and adaptive immunity in type I and type II focal cortical dysplasias. Epilepsia 51:91763–73 [Google Scholar]
  94. Butler T, Ichise M, Teich AF, Gerard E, Osborne J. 94.  et al. 2013. Imaging inflammation in a patient with epilepsy due to focal cortical dysplasia. J. Neuroimaging 23:1129–31 [Google Scholar]
  95. Lin YX, Lin K, Liu XX, Kang DZ, Ye ZX. 95.  et al. 2015. PI3K-AKT pathway polymerase chain reaction (PCR) array analysis of epilepsy induced by type II focal cortical dysplasia. Genet. Mol. Res. 14:39994–10000 [Google Scholar]
  96. Weichhart T, Saemann MD. 96.  2009. The multiple facets of mTOR in immunity. Trends Immunol 30:5218–26 [Google Scholar]
  97. Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM. 97.  et al. 2013. The TSC-mTOR pathway regulates macrophage polarization. Nat. Commun. 4:2834 [Google Scholar]
  98. Chen J, Tsai V, Parker WE, Aronica E, Baybis M, Crino PB. 98.  2012. Detection of human papillomavirus in human focal cortical dysplasia type IIB. Ann. Neurol. 72:6881–92 [Google Scholar]
  99. Liu S, Lu L, Cheng X, Xu G, Yang H. 99.  2014. Viral infection and focal cortical dysplasia. Ann. Neurol. 75:4614–16 [Google Scholar]
  100. Vidone M, Alessandrini F, Marucci G, Farnedi A, de Biase D. 100.  et al. 2014. Evidence of association of human papillomavirus with prognosis worsening in glioblastoma multiforme. Neuro. Oncol. 16:2298–302 [Google Scholar]
  101. Hashida Y, Taniguchi A, Yawata T, Hosokawa S, Murakami M. 101.  et al. 2015. Prevalence of human cytomegalovirus, polyomaviruses, and oncogenic viruses in glioblastoma among Japanese subjects. Infect. Agent. Cancer 10:3Seminal paper describing the electrophysiological properties of dysplastic cortex and the underlying mechanisms thereof. [Google Scholar]
  102. Coras R, Korn K, Bien CG, Kalbhenn T, Rossler K. 102.  et al. 2015. No evidence for human papillomavirus infection in focal cortical dysplasia IIb. Ann. Neurol. 77:2312–19 [Google Scholar]
  103. Shapiro KA, McGuone D, Deshpande V, Sadow PM, Stemmer-Rachamimov A, Staley KJ. 103.  2015. Failure to detect human papillomavirus in focal cortical dysplasia type IIb. Ann. Neurol. 78:163–67 [Google Scholar]
  104. Husain RS, Ramakrishnan V. 104.  2015. Global variation of human papillomavirus genotypes and selected genes involved in cervical malignancies. Ann. Glob. Health 81:5675–83 [Google Scholar]
  105. Kloss S, Pieper T, Pannek H, Holthausen H, Tuxhorn I. 105.  2002. Epilepsy surgery in children with focal cortical dysplasia (FCD): results of long-term seizure outcome. Neuropediatrics 33:121–26 [Google Scholar]
  106. Fauser S, Huppertz HJ, Bast T, Strobl K, Pantazis G. 106.  et al. 2006. Clinical characteristics in focal cortical dysplasia: a retrospective evaluation in a series of 120 patients. Brain 129:Pt. 71907–16 [Google Scholar]
  107. Blumcke I. 107.  2009. Neuropathology of focal epilepsies: a critical review. Epilepsy Behav 15:134–39 [Google Scholar]
  108. Kerber K, Dumpelmann M, Schelter B. Van P, Korinthenberg R. 108. , Le et al. 2014. Differentiation of specific ripple patterns helps to identify epileptogenic areas for surgical procedures. Clin. Neurophysiol. 125:71339–45 [Google Scholar]
  109. Jacobs J, Levan P, Chatillon CE, Olivier A, Dubeau F, Gotman J. 109.  2009. High frequency oscillations in intracranial EEGs mark epileptogenicity rather than lesion type. Brain 132:Pt. 41022–37 [Google Scholar]
  110. Avoli M, Bernasconi A, Mattia D, Olivier A, Hwa GG. 110.  1999. Epileptiform discharges in the human dysplastic neocortex: in vitro physiology and pharmacology. Ann. Neurol. 46:6816–26 [Google Scholar]
  111. Mattia D, Olivier A, Avoli M. 111.  1995. Seizure-like discharges recorded in human dysplastic neocortex maintained in vitro. Neurology 45:71391–95 [Google Scholar]
  112. Moshel YA, Elliott R, Teutonico F, Sellin J, Carlson C. 112.  et al. 2010. Do tubers contain function? Resection of epileptogenic foci in perirolandic cortex in children with tuberous sclerosis complex. Epilepsia 51:71242–51 [Google Scholar]
  113. Marusic P, Najm IM, Ying Z, Prayson R, Rona S. 113.  et al. 2002. Focal cortical dysplasias in eloquent cortex: functional characteristics and correlation with MRI and histopathologic changes. Epilepsia 43:127–32Describes the pathological GABA currents that underlie epileptogenecity within FCD lesions. [Google Scholar]
  114. Janszky J, Ebner A, Kruse B, Mertens M, Jokeit H. 114.  et al. 2003. Functional organization of the brain with malformations of cortical development. Ann. Neurol. 53:6759–67 [Google Scholar]
  115. Cepeda C, Hurst RS, Flores-Hernandez J, Hernandez-Echeagaray E, Klapstein GJ. 115.  et al. 2003. Morphological and electrophysiological characterization of abnormal cell types in pediatric cortical dysplasia. J. Neurosci. Res. 72:4472–86 [Google Scholar]
  116. Williams MR, DeSpenza T Jr., Li M, Gulledge AT, Luikart BW. 116.  2015. Hyperactivity of newborn Pten knock-out neurons results from increased excitatory synaptic drive. J. Neurosci. 35:3943–59 [Google Scholar]
  117. Bateup HS, Denefrio CL, Johnson CA, Saulnier JL, Sabatini BL. 117.  2013. Temporal dynamics of a homeostatic pathway controlling neural network activity. Front. Mol. Neurosci. 6:28 [Google Scholar]
  118. Schwartzkroin PA, Wenzel HJ. 118.  2012. Are developmental dysplastic lesions epileptogenic?. Epilepsia 53:Suppl. 135–44 [Google Scholar]
  119. Cepeda C, Andre VM, Hauptman JS, Yamazaki I, Huynh MN. 119.  et al. 2012. Enhanced GABAergic network and receptor function in pediatric cortical dysplasia Type IIB compared with tuberous sclerosis complex. Neurobiol. Dis. 45:1310–21 [Google Scholar]
  120. Khazipov R. 120.  2016. GABAergic synchronization in epilepsy. Cold Spring Harb. Perspect. Med. 6:2a022764 [Google Scholar]
  121. Barker-Haliski M, White HS. 121.  2015. Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring Harb. Perspect. Med. 5:8a022863 [Google Scholar]
  122. Ganguly K, Schinder AF, Wong ST, Poo M. 122.  2001. GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell 105:4521–32 [Google Scholar]
  123. Talos DM, Kwiatkowski DJ, Cordero K, Black PM, Jensen FE. 123.  2008. Cell-specific alterations of glutamate receptor expression in tuberous sclerosis complex cortical tubers. Ann. Neurol. 63:4454–65 [Google Scholar]
  124. Talos DM, Sun H, Kosaras B, Joseph A, Folkerth RD. 124.  et al. 2012. Altered inhibition in tuberous sclerosis and type IIb cortical dysplasia. Ann. Neurol. 71:4539–51 [Google Scholar]
  125. Andre VM, Cepeda C, Vinters HV, Huynh M, Mathern GW, Levine MS. 125.  2010. Interneurons, GABAA currents, and subunit composition of the GABAA receptor in type I and type II cortical dysplasia. Epilepsia 51:Suppl. 3166–70 [Google Scholar]
  126. Cepeda C, Chen JY, Wu JY, Fisher RS, Vinters HV. 126.  et al. 2014. Pacemaker GABA synaptic activity may contribute to network synchronization in pediatric cortical dysplasia. Neurobiol. Dis. 62:208–17 [Google Scholar]
  127. 127.  Deleted in proof
  128. Gonzalez-Martinez JA, Ying Z, Prayson R, Bingaman W, Najm I. 128.  2011. Glutamate clearance mechanisms in resected cortical dysplasia. J. Neurosurg. 114:41195–202 [Google Scholar]
/content/journals/10.1146/annurev-pathol-052016-100138
Loading
/content/journals/10.1146/annurev-pathol-052016-100138
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error