1932

Abstract

Neurofibromatosis type 1 (NF1) is a common neurogenetic disorder in which affected children and adults are predisposed to the development of benign and malignant nervous system tumors. Caused by a germline mutation in the tumor suppressor gene, individuals with NF1 are prone to optic gliomas, malignant gliomas, neurofibromas, and malignant peripheral nerve sheath tumors, as well as behavioral, cognitive, motor, bone, cardiac, and pigmentary abnormalities. Although NF1 is a classic monogenic syndrome, the clinical features of the disorder and their impact on patient morbidity are variable, even within individuals who bear the same germline gene mutation. As such, NF1 affords unique opportunities to define the factors that contribute to disease heterogeneity and to develop therapies personalized to a given individual (precision medicine). This review highlights the clinical features of NF1 and the use of genetically engineered mouse models to define the molecular and cellular pathogenesis of NF1-associated nervous system tumors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-052016-100228
2017-01-24
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/pathol/12/1/annurev-pathol-052016-100228.html?itemId=/content/journals/10.1146/annurev-pathol-052016-100228&mimeType=html&fmt=ahah

Literature Cited

  1. Lammert M, Friedman JM, Kluwe L, Mautner VF. 1.  2005. Prevalence of neurofibromatosis 1 in German children at elementary school enrollment. Arch. Dermatol. 141:71–74 [Google Scholar]
  2. 2. National Institutes of Health 1987. Neurofibromatosis. NIH Consens. Statement 6:121–19 [Google Scholar]
  3. Friedman JM. 3.  2002. Neurofibromatosis 1: clinical manifestations and diagnostic criteria. J. Child Neurol. 17:548–54 [Google Scholar]
  4. Nichols JC, Amato JE, Chung SM. 4.  2003. Characteristics of Lisch nodules in patients with neurofibromatosis type 1. J. Pediatr. Ophthalmol. Strabismus 40:293–96 [Google Scholar]
  5. Nunley KS, Gao F, Albers AC, Bayliss SJ, Gutmann DH. 5.  2009. Predictive value of cafe au lait macules at initial consultation in the diagnosis of neurofibromatosis type 1. Arch. Dermatol. 145:883–87 [Google Scholar]
  6. Shah KN. 6.  2010. The diagnostic and clinical significance of cafe-au-lait macules. Pediatr. Clin. North Am. 57:1131–53 [Google Scholar]
  7. De Schepper S, Maertens O, Callens T, Naeyaert JM, Lambert J, Messiaen L. 7.  2008. Somatic mutation analysis in NF1 cafe au lait spots reveals two NF1 hits in the melanocytes. J. Investig. Dermatol. 128:1050–53 [Google Scholar]
  8. Korf BR. 8.  1992. Diagnostic outcome in children with multiple cafe au lait spots. Pediatrics 90:924–27 [Google Scholar]
  9. Jouhilahti EM, Peltonen S, Callens T, Jokinen E, Heape AM. 9.  et al. 2011. The development of cutaneous neurofibromas. Am. J. Pathol. 178:500–5 [Google Scholar]
  10. Korf BR. 10.  1999. Plexiform neurofibromas. Am. J. Med. Genet. 89:31–37 [Google Scholar]
  11. Evans DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A. 11.  2002. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J. Med. Genet. 39:311–14 [Google Scholar]
  12. Korf BR. 12.  2000. Malignancy in neurofibromatosis type 1. Oncologist 5:477–85 [Google Scholar]
  13. Tucker T, Wolkenstein P, Revuz J, Zeller J, Friedman JM. 13.  2005. Association between benign and malignant peripheral nerve sheath tumors in NF1. Neurology 65:205–11 [Google Scholar]
  14. Ferner RE, Huson SM, Thomas N, Moss C, Willshaw H. 14.  et al. 2007. Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J. Med. Genet. 44:81–88 [Google Scholar]
  15. Guillamo JS, Creange A, Kalifa C, Grill J, Rodriguez D. 15.  et al. 2003. Prognostic factors of CNS tumours in Neurofibromatosis 1 (NF1): a retrospective study of 104 patients. Brain J. Neurol. 126:152–60 [Google Scholar]
  16. Listernick R, Louis DN, Packer RJ, Gutmann DH. 16.  1997. Optic pathway gliomas in children with neurofibromatosis 1: consensus statement from the NF1 Optic Pathway Glioma Task Force. Ann. Neurol. 41:143–49 [Google Scholar]
  17. Listernick R, Ferner RE, Liu GT, Gutmann DH. 17.  2007. Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann. Neurol. 61:189–98 [Google Scholar]
  18. Sharif S, Ferner R, Birch JM, Gillespie JE, Gattamaneni HR. 18.  et al. 2006. Second primary tumors in neurofibromatosis 1 patients treated for optic glioma: substantial risks after radiotherapy. J. Clin. Oncol. 24:2570–75 [Google Scholar]
  19. Pollack IF, Shultz B, Mulvihill JJ. 19.  1996. The management of brainstem gliomas in patients with neurofibromatosis 1. Neurology 46:1652–60 [Google Scholar]
  20. Matsui I, Tanimura M, Kobayashi N, Sawada T, Nagahara N, Akatsuka J. 20.  1993. Neurofibromatosis type 1 and childhood cancer. Cancer 72:2746–54 [Google Scholar]
  21. Stiller CA, Chessells JM, Fitchett M. 21.  1994. Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br. J. Cancer 70:969–72 [Google Scholar]
  22. Sharif S, Moran A, Huson SM, Iddenden R, Shenton A. 22.  et al. 2007. Women with neurofibromatosis 1 are at a moderately increased risk of developing breast cancer and should be considered for early screening. J. Med. Genet. 44:481–84 [Google Scholar]
  23. Vlenterie M, Flucke U, Hofbauer LC, Timmers HJ, Gastmeier J. 23.  et al. 2013. Pheochromocytoma and gastrointestinal stromal tumors in patients with neurofibromatosis type I. Am. J. Med. 126:174–80 [Google Scholar]
  24. Hyman SL, Shores A, North KN. 24.  2005. The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology 65:1037–44 [Google Scholar]
  25. Garg S, Plasschaert E, Descheemaeker MJ, Huson S, Borghgraef M. 25.  et al. 2015. Autism spectrum disorder profile in neurofibromatosis type I. J. Autism Dev. Disord. 45:1649–57 [Google Scholar]
  26. Constantino JN, Zhang Y, Holzhauer K, Sant S, Long K. 26.  et al. 2015. Distribution and within-family specificity of quantitative autistic traits in patients with neurofibromatosis type I. J. Pediatr. 167:621–26 [Google Scholar]
  27. Morris SM, Acosta MT, Garg S, Green J, Huson S. 27.  et al. 2016. Disease burden and symptom structure of autism in neurofibromatosis type 1: a study of the International NF1-Autism Consortium Team (INFACT). JAMA Psychiatry 731276–84
  28. Wu X, Estwick SA, Chen S, Yu M, Ming W. 28.  et al. 2006. Neurofibromin plays a critical role in modulating osteoblast differentiation of mesenchymal stem/progenitor cells. Hum. Mol. Genet. 15:2837–45 [Google Scholar]
  29. Friedrich RE, Stelljes C, Hagel C, Giese M, Scheuer HA. 29.  2010. Dysplasia of the orbit and adjacent bone associated with plexiform neurofibroma and ocular disease in 42 NF-1 patients. Anticancer Res 30:1751–64 [Google Scholar]
  30. Crawford AH, Schorry EK. 30.  1999. Neurofibromatosis in children: the role of the orthopaedist. J. Am. Acad. Orthop. Surg. 7:217–30 [Google Scholar]
  31. Lin AE, Birch PH, Korf BR, Tenconi R, Niimura M. 31.  et al. 2000. Cardiovascular malformations and other cardiovascular abnormalities in neurofibromatosis 1. Am. J. Med. Genet. 95:108–17 [Google Scholar]
  32. Friedman JM, Arbiser J, Epstein JA, Gutmann DH, Huot SJ. 32.  et al. 2002. Cardiovascular disease in neurofibromatosis 1: report of the NF1 Cardiovascular Task Force. Genet. Med. 4:105–11 [Google Scholar]
  33. Bollag G, Clapp DW, Shih S, Adler F, Zhang YY. 33.  et al. 1996. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat. Genet. 12:144–48 [Google Scholar]
  34. Kaul A, Toonen JA, Cimino PJ, Gianino SM, Gutmann DH. 34.  2015. Akt- or MEK-mediated mTOR inhibition suppresses Nf1 optic glioma growth. Neuro-Oncology 17:843–53 [Google Scholar]
  35. Anastasaki C, Gutmann DH. 35.  2014. Neuronal NF1/RAS regulation of cyclic AMP requires atypical PKC activation. Hum. Mol. Genet. 23:6712–21 [Google Scholar]
  36. Liao CP, Pradhan S, Chen Z, Patel AJ, Booker RC, Le LQ. 36.  2016. The role of the nerve microenvironment for neurofibroma development. Oncotarget In press
  37. Le LQ, Shipman T, Burns DK, Parada LF. 37.  2009. Cell of origin and microenvironment contribution for NF1-associated dermal neurofibromas. Cell Stem Cell 4:453–63 [Google Scholar]
  38. Zhu Y, Romero MI, Ghosh P, Ye Z, Charnay P. 38.  et al. 2001. Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev 15:859–76 [Google Scholar]
  39. Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF. 39.  2002. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296:920–22 [Google Scholar]
  40. Le LQ, Liu C, Shipman T, Chen Z, Suter U, Parada LF. 40.  2011. Susceptible stages in Schwann cells for NF1-associated plexiform neurofibroma development. Cancer Res 71:4686–95 [Google Scholar]
  41. Chen Z, Liu C, Patel AJ, Liao CP, Wang Y, Le LQ. 41.  2014. Cells of origin in the embryonic nerve roots for NF1-associated plexiform neurofibroma. Cancer Cell 26:695–706 [Google Scholar]
  42. Wu J, Williams JP, Rizvi TA, Kordich JJ, Witte D. 42.  et al. 2008. Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell 13:105–16 [Google Scholar]
  43. Yang FC, Ingram DA, Chen S, Zhu Y, Yuan J. 43.  et al. 2008. Nf1-dependent tumors require a microenvironment containing Nf1+/− and c-kit-dependent bone marrow. Cell 135:437–48 [Google Scholar]
  44. Prada CE, Jousma E, Rizvi TA, Wu J, Dunn RS. 44.  et al. 2013. Neurofibroma-associated macrophages play roles in tumor growth and response to pharmacological inhibition. Acta Neuropathol. 125:159–68 [Google Scholar]
  45. Yang FC, Chen S, Clegg T, Li X, Morgan T. 45.  et al. 2006. Nf1+/− mast cells induce neurofibroma like phenotypes through secreted TGF-β signaling. Hum. Mol. Genet. 15:2421–37 [Google Scholar]
  46. Ferguson MJ, Rhodes SD, Jiang L, Li X, Yuan J. 46.  et al. 2016. Preclinical evidence for the use of sunitinib malate in the treatment of plexiform neurofibromas. Pediatr. Blood Cancer 63:206–13 [Google Scholar]
  47. Robertson KA, Nalepa G, Yang FC, Bowers DC, Ho CY. 47.  et al. 2012. Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: a phase 2 trial. Lancet Oncol. 13:1218–24 [Google Scholar]
  48. Cichowski K, Shih TS, Schmitt E, Santiago S, Reilly K. 48.  et al. 1999. Mouse models of tumor development in neurofibromatosis type 1. Science 286:2172–76 [Google Scholar]
  49. Vogel KS, Klesse LJ, Velasco-Miguel S, Meyers K, Rushing EJ, Parada LF. 49.  1999. Mouse tumor model for neurofibromatosis type 1. Science 286:2176–79 [Google Scholar]
  50. DeClue JE, Heffelfinger S, Benvenuto G, Ling B, Li S. 50.  et al. 2000. Epidermal growth factor receptor expression in neurofibromatosis type 1-related tumors and NF1 animal models. J. Clin. Investig. 105:1233–41 [Google Scholar]
  51. Keng VW, Rahrmann EP, Watson AL, Tschida BR, Moertel CL. 51.  et al. 2012. PTEN and NF1 inactivation in Schwann cells produces a severe phenotype in the peripheral nervous system that promotes the development and malignant progression of peripheral nerve sheath tumors. Cancer Res. 72:3405–13 [Google Scholar]
  52. Jessen WJ, Miller SJ, Jousma E, Wu J, Rizvi TA. 52.  et al. 2013. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J. Clin. Investig. 123:340–47 [Google Scholar]
  53. Watson AL, Anderson LK, Greeley AD, Keng VW, Rahrmann EP. 53.  et al. 2014. Co-targeting the MAPK and PI3K/AKT/mTOR pathways in two genetically engineered mouse models of Schwann cell tumors reduces tumor grade and multiplicity. Oncotarget 5:1502–14 [Google Scholar]
  54. Johansson G, Mahller YY, Collins MH, Kim MO, Nobukuni T. 54.  et al. 2008. Effective in vivo targeting of the mammalian target of rapamycin pathway in malignant peripheral nerve sheath tumors. Mol. Cancer Ther. 7:1237–45 [Google Scholar]
  55. Banerjee S, Byrd JN, Gianino SM, Harpstrite SE, Rodriguez FJ. 55.  et al. 2010. The neurofibromatosis type 1 tumor suppressor controls cell growth by regulating signal transducer and activator of transcription-3 activity in vitro and in vivo. Cancer Res. 70:1356–66 [Google Scholar]
  56. Patel AV, Eaves D, Jessen WJ, Rizvi TA, Ecsedy JA. 56.  et al. 2012. Ras-driven transcriptome analysis identifies aurora kinase A as a potential malignant peripheral nerve sheath tumor therapeutic target. Clin. Cancer Res. 18:5020–30 [Google Scholar]
  57. Mo W, Chen J, Patel A, Zhang L, Chau V. 57.  et al. 2013. CXCR4/CXCL12 mediate autocrine cell-cycle progression in NF1-associated malignant peripheral nerve sheath tumors. Cell 152:1077–90 [Google Scholar]
  58. Zhu Y, Harada T, Liu L, Lush ME, Guignard F. 58.  et al. 2005. Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation. Development 132:5577–88 [Google Scholar]
  59. Bajenaru ML, Hernandez MR, Perry A, Zhu Y, Parada LF. 59.  et al. 2003. Optic nerve glioma in mice requires astrocyte Nf1 gene inactivation and Nf1 brain heterozygosity. Cancer Res 63:8573–77 [Google Scholar]
  60. Hegedus B, Dasgupta B, Shin JE, Emnett RJ, Hart-Mahon EK. 60.  et al. 2007. Neurofibromatosis-1 regulates neuronal and glial cell differentiation from neuroglial progenitors in vivo by both cAMP- and Ras-dependent mechanisms. Cell Stem Cell 1:443–57 [Google Scholar]
  61. Solga AC, Gianino SM, Gutmann DH. 61.  2014. NG2-cells are not the cell of origin for murine neurofibromatosis-1 (Nf1) optic glioma. Oncogene 33:289–99 [Google Scholar]
  62. Lee DY, Gianino SM, Gutmann DH. 62.  2012. Innate neural stem cell heterogeneity determines the patterning of glioma formation in children. Cancer Cell 22:131–38 [Google Scholar]
  63. Lee DY, Yeh TH, Emnett RJ, White CR, Gutmann DH. 63.  2010. Neurofibromatosis-1 regulates neuroglial progenitor proliferation and glial differentiation in a brain region-specific manner. Genes Dev. 24:2317–29 [Google Scholar]
  64. Hegedus B, Banerjee D, Yeh TH, Rothermich S, Perry A. 64.  et al. 2008. Preclinical cancer therapy in a mouse model of neurofibromatosis-1 optic glioma. Cancer Res. 68:1520–28 [Google Scholar]
  65. Kaul A, Chen YH, Emnett RJ, Dahiya S, Gutmann DH. 65.  2012. Pediatric glioma-associated KIAA1549:BRAF expression regulates neuroglial cell growth in a cell type-specific and mTOR-dependent manner. Genes Dev. 26:2561–66 [Google Scholar]
  66. Chen YH, McGowan LD, Cimino PJ, Dahiya S, Leonard JR. 66.  et al. 2015. Mouse low-grade gliomas contain cancer stem cells with unique molecular and functional properties. Cell Rep. 10:1899–912 [Google Scholar]
  67. Daginakatte GC, Gutmann DH. 67.  2007. Neurofibromatosis-1 (Nf1) heterozygous brain microglia elaborate paracrine factors that promote Nf1-deficient astrocyte and glioma growth.. Hum. Mol. Genet. 16:1098–112 [Google Scholar]
  68. Pong WW, Higer SB, Gianino SM, Emnett RJ, Gutmann DH. 68.  2013. Reduced microglial CX3CR1 expression delays neurofibromatosis-1 glioma formation. Ann. Neurol. 73:303–8 [Google Scholar]
  69. Daginakatte GC, Gianino SM, Zhao NW, Parsadanian AS, Gutmann DH. 69.  2008. Increased c-Jun-NH2-kinase signaling in neurofibromatosis-1 heterozygous microglia drives microglia activation and promotes optic glioma proliferation. Cancer Res. 68:10358–66 [Google Scholar]
  70. Solga AC, Pong WW, Kim KY, Cimino PJ, Toonen JA. 70.  et al. 2015. RNA sequencing of tumor-associated microglia reveals Ccl5 as a stromal chemokine critical for neurofibromatosis-1 glioma growth. Neoplasia 17:776–88 [Google Scholar]
  71. Warrington NM, Woerner BM, Daginakatte GC, Dasgupta B, Perry A. 71.  et al. 2007. Spatiotemporal differences in CXCL12 expression and cyclic AMP underlie the unique pattern of optic glioma growth in neurofibromatosis type 1. Cancer Res. 67:8588–95 [Google Scholar]
  72. Simmons GW, Pong WW, Emnett RJ, White CR, Gianino SM. 72.  et al. 2011. Neurofibromatosis-1 heterozygosity increases microglia in a spatially and temporally restricted pattern relevant to mouse optic glioma formation and growth. J. Neuropathol. Exp. Neurol. 70:51–62 [Google Scholar]
  73. Warrington NM, Gianino SM, Jackson E, Goldhoff P, Garbow JR. 73.  et al. 2010. Cyclic AMP suppression is sufficient to induce gliomagenesis in a mouse model of neurofibromatosis-1. Cancer Res. 70:5717–27 [Google Scholar]
  74. Kaul A, Toonen JA, Gianino SM, Gutmann DH. 74.  2015. The impact of coexisting genetic mutations on murine optic glioma biology. Neuro-Oncology 17:670–77 [Google Scholar]
  75. Diggs-Andrews KA, Brown JA, Gianino SM, Rubin JB, Wozniak DF, Gutmann DH. 75.  2014. Sex is a major determinant of neuronal dysfunction in neurofibromatosis type 1. Ann. Neurol. 75:309–16 [Google Scholar]
  76. Hegedus B, Hughes FW, Garbow JR, Gianino S, Banerjee D. 76.  et al. 2009. Optic nerve dysfunction in a mouse model of neurofibromatosis-1 optic glioma. J. Neuropathol. Exp. Neurol. 68:542–51 [Google Scholar]
  77. Brown JA, Gianino SM, Gutmann DH. 77.  2010. Defective cAMP generation underlies the sensitivity of CNS neurons to neurofibromatosis-1 heterozygosity. J. Neurosci. 30:5579–89 [Google Scholar]
  78. Diggs-Andrews KA, Brown JA, Gianino SM, D'Agostino McGowan L, Rubin JB. 78.  et al. 2014. Gender as a disease modifier in neurofibromatosis type 1 optic pathway glioma–reply. Ann. Neurol. 75:800–1 [Google Scholar]
  79. Fisher MJ, Loguidice M, Gutmann DH, Listernick R, Ferner RE. 79.  et al. 2014. Gender as a disease modifier in neurofibromatosis type 1 optic pathway glioma. Ann. Neurol. 75:799–800 [Google Scholar]
  80. Silva AJ, Frankland PW, Marowitz Z, Friedman E, Laszlo GS. 80.  et al. 1997. A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nat. Genet. 15:281–84 [Google Scholar]
  81. Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J. 81.  et al. 2002. Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415:526–30 [Google Scholar]
  82. Cui Y, Costa RM, Murphy GG, Elgersma Y, Zhu Y. 82.  et al. 2008. Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell 135:549–60 [Google Scholar]
  83. Omrani A, van der Vaart T, Mientjes E, van Woerden GM, Hojjati MR. 83.  et al. 2015. HCN channels are a novel therapeutic target for cognitive dysfunction in Neurofibromatosis type 1. Mol. Psychiatry 20:1311–21 [Google Scholar]
  84. Omrani A, van Woerden GM, Elgersma Y. 84.  2015. Neurofibromin regulates HCN activity in parvalbumin-positive interneurons. Mol. Psychiatry 20:1263 [Google Scholar]
  85. Diggs-Andrews KA, Tokuda K, Izumi Y, Zorumski CF, Wozniak DF, Gutmann DH. 85.  2013. Dopamine deficiency underlies learning deficits in neurofibromatosis-1 mice. Ann. Neurol. 73:309–15 [Google Scholar]
  86. Brown JA, Emnett RJ, White CR, Yuede CM, Conyers SB. 86.  et al. 2010. Reduced striatal dopamine underlies the attention system dysfunction in neurofibromatosis-1 mutant mice. Hum. Mol. Genet. 19:4515–28 [Google Scholar]
  87. Molosh AI, Johnson PL, Spence JP, Arendt D, Federici LM. 87.  et al. 2014. Social learning and amygdala disruptions in Nf1 mice are rescued by blocking p21-activated kinase. Nat. Neurosci. 17:1583–90 [Google Scholar]
  88. van der Vaart T, Plasschaert E, Rietman AB, Renard M, Oostenbrink R. 89.  et al. 2013. Simvastatin for cognitive deficits and behavioural problems in patients with neurofibromatosis type 1 (NF1-SIMCODA): a randomised, placebo-controlled trial. Lancet Neurol 12:1076–83 [Google Scholar]
  89. Lion-Francois L, Gueyffier F, Mercier C, Gerard D, Herbillon V. 90.  et al. 2014. The effect of methylphenidate on neurofibromatosis type 1: a randomised, double-blind, placebo-controlled, crossover trial. Orphanet J. Rare Dis. 9:142 [Google Scholar]
  90. Krab LC, de Goede-Bolder A, Aarsen FK, Pluijm SM, Bouman MJ. 91.  et al. 2008. Effect of simvastatin on cognitive functioning in children with neurofibromatosis type 1: a randomized controlled trial. JAMA 300:287–94 [Google Scholar]
  91. Li W, Cui Y, Kushner SA, Brown RA, Jentsch JD. 88.  et al. 2005. The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr. Biol. 15:1961–67 [Google Scholar]
  92. Li H, Liu Y, Zhang Q, Jing Y, Chen S. 92.  et al. 2009. Ras dependent paracrine secretion of osteopontin by Nf1+/− osteoblasts promote osteoclast activation in a neurofibromatosis type I murine model. Pediatr. Res. 65:613–18 [Google Scholar]
  93. El Khassawna T, Toben D, Kolanczyk M, Schmidt-Bleek K, Koennecke I. 93.  et al. 2012. Deterioration of fracture healing in the mouse model of NF1 long bone dysplasia. Bone 51:651–60 [Google Scholar]
  94. Schindeler A, Birke O, Yu NY, Morse A, Ruys A. 94.  et al. 2011. Distal tibial fracture repair in a neurofibromatosis type 1–deficient mouse treated with recombinant bone morphogenetic protein and a bisphosphonate. J. Bone Joint Surg. Br. 93:1134–39 [Google Scholar]
  95. Wang W, Nyman JS, Ono K, Stevenson DA, Yang X, Elefteriou F. 95.  2011. Mice lacking Nf1 in osteochondroprogenitor cells display skeletal dysplasia similar to patients with neurofibromatosis type I. Hum. Mol. Genet. 20:3910–24 [Google Scholar]
  96. Sharma R, Wu X, Rhodes SD, Chen S, He Y. 96.  et al. 2013. Hyperactive Ras/MAPK signaling is critical for tibial nonunion fracture in neurofibromin-deficient mice. Hum. Mol. Genet. 22:4818–28 [Google Scholar]
  97. de la Croix Ndong J, Makowski AJ, Uppuganti S, Vignaux G, Ono K. 97.  et al. 2014. Asfotase-α improves bone growth, mineralization and strength in mouse models of neurofibromatosis type-1. Nat. Med. 20:904–10 [Google Scholar]
  98. Schindeler A, Ramachandran M, Godfrey C, Morse A, McDonald M. 98.  et al. 2008. Modeling bone morphogenetic protein and bisphosphonate combination therapy in wild-type and Nf1 haploinsufficient mice. J. Orthop. Res. 26:65–74 [Google Scholar]
  99. Brannan CI, Perkins AS, Vogel KS, Ratner N, Nordlund ML. 99.  et al. 1994. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev. 8:1019–29 [Google Scholar]
  100. Gitler AD, Zhu Y, Ismat FA, Lu MM, Yamauchi Y. 100.  et al. 2003. Nf1 has an essential role in endothelial cells. Nat. Genet. 33:75–79 [Google Scholar]
  101. Xu J, Ismat FA, Wang T, Yang J, Epstein JA. 101.  2007. NF1 regulates a Ras-dependent vascular smooth muscle proliferative injury response. Circulation 116:2148–56 [Google Scholar]
  102. Bessler WK, Kim G, Hudson FZ, Mund JA, Mali R. 102.  et al. 2016. Nf1+/− monocytes/macrophages induce neointima formation via CCR2 activation. Hum. Mol. Genet. 25:1129–39 [Google Scholar]
  103. Yzaguirre AD, Padmanabhan A, de Groh ED, Engleka KA, Li J. 103.  et al. 2015. Loss of neurofibromin Ras-GAP activity enhances the formation of cardiac blood islands in murine embryos. eLife 4e07780
  104. Stansfield BK, Bessler WK, Mali R, Mund JA, Downing BD. 104.  et al. 2014. Ras-Mek-Erk signaling regulates Nf1 heterozygous neointima formation. Am. J. Pathol. 184:79–85 [Google Scholar]
  105. Chang T, Krisman K, Theobald EH, Xu J, Akutagawa J. 105.  et al. 2013. Sustained MEK inhibition abrogates myeloproliferative disease in Nf1 mutant mice. J. Clin. Investig. 123:335–39 [Google Scholar]
  106. Gitler AD, Kong Y, Choi JK, Zhu Y, Pear WS, Epstein JA. 106.  2004. Tie2-Cre-induced inactivation of a conditional mutant Nf1 allele in mouse results in a myeloproliferative disorder that models juvenile myelomonocytic leukemia. Pediatr. Res. 55:581–84 [Google Scholar]
  107. Tischler AS, Shih TS, Williams BO, Jacks T. 107.  1995. Characterization of pheochromocytomas in a mouse strain with a targeted disruptive mutation of the neurofibromatosis gene Nf1. Endocr. Pathol. 6:323–35 [Google Scholar]
  108. Reilly KM, Loisel DA, Bronson RT, McLaughlin ME, Jacks T. 108.  2000. Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat. Genet. 26:109–13 [Google Scholar]
  109. Zhu Y, Guignard F, Zhao D, Liu L, Burns DK. 109.  et al. 2005. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8:119–30 [Google Scholar]
  110. Lauchle JO, Kim D, Le DT, Akagi K, Crone M. 110.  et al. 2009. Response and resistance to MEK inhibition in leukaemias initiated by hyperactive Ras. Nature 461:411–14 [Google Scholar]
  111. Alcantara Llaguno S, Chen J, Kwon CH, Jackson EL, Li Y. 111.  et al. 2009. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15:45–56 [Google Scholar]
  112. Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S. 112.  et al. 2011. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146:209–21 [Google Scholar]
  113. Kwon CH, Zhao D, Chen J, Alcantara S, Li Y. 113.  et al. 2008. Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res. 68:3286–94 [Google Scholar]
  114. Amlin-Van Schaick J, Kim S, Broman KW, Reilly KM. 114.  2012. Scram1 is a modifier of spinal cord resistance for astrocytoma on mouse Chr 5. Mamm. Genome 23:277–85 [Google Scholar]
  115. Reilly KM, Tuskan RG, Christy E, Loisel DA, Ledger J. 115.  et al. 2004. Susceptibility to astrocytoma in mice mutant for Nf1 and Trp53 is linked to chromosome 11 and subject to epigenetic effects. PNAS 101:13008–13 [Google Scholar]
  116. Walrath JC, Fox K, Truffer E, Gregory Alvord W, Quinones OA, Reilly KM. 116.  2009. Chr 19A/J modifies tumor resistance in a sex- and parent-of-origin-specific manner. Mamm. Genome 20:214–23 [Google Scholar]
  117. De Raedt T, Beert E, Pasmant E, Luscan A, Brems H. 117.  et al. 2014. PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature 514:247–51 [Google Scholar]
  118. Abadin SS, Zoellner NL, Schaeffer M, Porcelli B, Gutmann DH, Johnson KJ. 118.  2015. Racial/ethnic differences in pediatric brain tumor diagnoses in patients with neurofibromatosis type 1. J. Pediatr. 167:613–20 [Google Scholar]
  119. Robertson JT, Gunter BC, Somes GW. 119.  2002. Racial differences in the incidence of gliomas: a retrospective study from Memphis, Tennessee. Br. J. Neurosurg. 16:562–66 [Google Scholar]
  120. Warrington NM, Sun T, Luo J, McKinstry RC, Parkin PC. 120.  et al. 2015. The cyclic AMP pathway is a sex-specific modifier of glioma risk in type I neurofibromatosis patients. Cancer Res. 75:16–21 [Google Scholar]
  121. Rojnueangnit K, Xie J, Gomes A, Sharp A, Callens T. 121.  et al. 2015. High incidence of Noonan syndrome features including short stature and pulmonic stenosis in patients carrying NF1 missense mutations affecting p.Arg1809: genotype-phenotype correlation. Hum. Mutat. 36:1052–63 [Google Scholar]
  122. Upadhyaya M, Huson SM, Davies M, Thomas N, Chuzhanova N. 122.  et al. 2007. An absence of cutaneous neurofibromas associated with a 3-bp inframe deletion in exon 17 of the NF1 gene (c.2970–2972 delAAT): evidence of a clinically significant NF1 genotype-phenotype correlation. Am. J. Hum. Genet. 80:140–51 [Google Scholar]
  123. Rojnueangnit K, Xie J, Gomes A, Sharp A, Callens T. 123.  et al. 2015. High incidence of Noonan syndrome features including short stature and pulmonic stenosis in patients carrying NF1 missense mutations affecting p.Arg1809: genotype-phenotype correlation. Hum. Mutat 36:111052–63 [Google Scholar]
  124. Bolcekova A, Nemethova M, Zatkova A, Hlinkova K, Pozgayova S. 124.  et al. 2013. Clustering of mutations in the 5′ tertile of the NF1 gene in Slovakia patients with optic pathway glioma. Neoplasma 60:655–65 [Google Scholar]
  125. Sharif S, Upadhyaya M, Ferner R, Majounie E, Shenton A. 125.  et al. 2011. A molecular analysis of individuals with neurofibromatosis type 1 (NF1) and optic pathway gliomas (OPGs), and an assessment of genotype-phenotype correlations. J. Med. Genet. 48:256–60 [Google Scholar]
  126. Hutter S, Piro RM, Waszak SM, Kehrer-Sawatzki H, Friedrich RE. 126.  et al. 2016. No correlation between NF1 mutation position and risk of optic pathway glioma in 77 unrelated NF1 patients. Hum. Genet. 135:469–75 [Google Scholar]
  127. Anastasaki C, Woo AS, Messiaen LM, Gutmann DH. 127.  2015. Elucidating the impact of neurofibromatosis-1 germline mutations on neurofibromin function and dopamine-based learning. Hum. Mol. Genet. 24:3518–28 [Google Scholar]
  128. Toonen JA, Anastasaki C, Smithson LJ, Gianino SM, Li K. 128.  et al. 2016. NF1 germline mutation differentially dictates optic glioma formation and growth in neurofibromatosis-1. Hum. Mol. Genet. 25:1703–13 [Google Scholar]
  129. Gutmann DH. 129.  2014. Eliminating barriers to personalized medicine: learning from neurofibromatosis type 1. Neurology 83:463–71 [Google Scholar]
  130. Vogel KS, Brannan CI, Jenkins NA, Copeland NG, Parada LF. 130.  1995. Loss of neurofibromin results in neurotrophin-independent survival of embryonic sensory and sympathetic neurons. Cell 82:733–42 [Google Scholar]
  131. Chen YH, Gianino SM, Gutmann DH. 131.  2015. Neurofibromatosis-1 regulation of neural stem cell proliferation and multilineage differentiation operates through distinct RAS effector pathways. Genes Dev. 29:1677–82 [Google Scholar]
  132. Smithson LJ, Anastasaki C, Chen R, Toonen JA, Williams SB, Gutmann DH. 132.  2016. Contextual signaling in cancer. Semin. Cell Dev. Biol. 58118–26
/content/journals/10.1146/annurev-pathol-052016-100228
Loading
/content/journals/10.1146/annurev-pathol-052016-100228
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error