1932

Abstract

Aptamers are single-stranded nucleic acid molecules that bind to and inhibit proteins and are commonly produced by systematic evolution of ligands by exponential enrichment (SELEX). Aptamers undergo extensive pharmacological revision, which alters affinity, specificity, and therapeutic half-life, tailoring each drug for a specific clinical need. The first therapeutic aptamer was described 25 years ago. Thus far, one aptamer has been approved for clinical use, and numerous others are in preclinical or clinical development. This review presents a short history of aptamers and SELEX, describes their pharmacological development and optimization, and reviews potential treatment of diseases including visual disorders, thrombosis, and cancer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010716-104558
2017-01-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/57/1/annurev-pharmtox-010716-104558.html?itemId=/content/journals/10.1146/annurev-pharmtox-010716-104558&mimeType=html&fmt=ahah

Literature Cited

  1. Cullen BR, Greene WC. 1.  1989. Regulatory pathways governing HIV-1 replication. Cell 58:423–26 [Google Scholar]
  2. Marciniak RA, Garcia-Blanco MA, Sharp PA. 2.  1990. Identification and characterization of a HeLa nuclear protein that specifically binds to the trans-activation-response (TAR) element of human immunodeficiency virus. PNAS 87:3624–28 [Google Scholar]
  3. Sullenger BA, Gallardo HF, Ungers GE, Gilboa E. 3.  1990. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell 63:601–8 [Google Scholar]
  4. Sullenger BA, Gallardo HF, Ungers GE, Gilboa E. 4.  1991. Analysis of trans-acting response decoy RNA-mediated inhibition of human immunodeficiency virus type 1 transactivation. J. Virol. 65:6811–16 [Google Scholar]
  5. Ellington AD, Szostak JW. 5.  1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–22 [Google Scholar]
  6. Tuerk C, Gold L. 6.  1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–10 [Google Scholar]
  7. Ellington AD, Szostak JW. 7.  1992. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355:850–52 [Google Scholar]
  8. Doudna JA, Cech TR, Sullenger BA. 8.  1995. Selection of an RNA molecule that mimics a major autoantigenic epitope of human insulin receptor. PNAS 92:2355–59 [Google Scholar]
  9. Lee SW, Sullenger BA. 9.  1997. Isolation of a nuclease-resistant decoy RNA that can protect human acetylcholine receptors from myasthenic antibodies. Nat. Biotechnol. 15:41–45 [Google Scholar]
  10. Rusconi CP, Scardino E, Layzer J, Pitoc GA, Ortel TL. 10.  et al. 2002. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419:90–94 [Google Scholar]
  11. Rusconi CP, Yeh A, Lyerly HK, Lawson JH, Sullenger BA. 11.  2000. Blocking the initiation of coagulation by RNA aptamers to factor VIIa. Thromb. Haemost. 84:841–48 [Google Scholar]
  12. Jellinek D, Green LS, Bell C, Lynott CK, Gill N. 12.  et al. 1995. Potent 2′-amino-2′-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry 34:11363–72 [Google Scholar]
  13. Willis MC, Collins BD, Zhang T, Green LS, Sebesta DP. 13.  et al. 1998. Liposome-anchored vascular endothelial growth factor aptamers. Bioconjug. Chem. 9:573–82 [Google Scholar]
  14. Padilla R, Sousa R. 14.  2002. A Y639F/H784A T7 RNA polymerase double mutant displays superior properties for synthesizing RNAs with non-canonical NTPs. Nucleic Acids Res 30:e138 [Google Scholar]
  15. Beigelman L, McSwiggen JA, Draper KG, Gonzalez C, Jensen K. 15.  et al. 1995. Chemical modification of hammerhead ribozymes: catalytic activity and nuclease resistance. J. Biol. Chem. 270:25702–8 [Google Scholar]
  16. Tucker CE, Chen LS, Judkins MB, Farmer JA, Gill SC, Drolet DW. 16.  1999. Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. J. Chromatogr. B Biomed. Sci. Appl 732:203–12 [Google Scholar]
  17. White R, Rusconi C, Scardino E, Wolberg A, Lawson J. 17.  et al. 2001. Generation of species cross-reactive aptamers using “toggle” SELEX. Mol. Ther. 4:567–73 [Google Scholar]
  18. Rusconi CP, Roberts JD, Pitoc GA, Nimjee SM, White RR. 18.  et al. 2004. Antidote-mediated control of an anticoagulant aptamer in vivo. Nat. Biotechnol. 22:1423–28 [Google Scholar]
  19. Nimjee SM, Keys JR, Pitoc GA, Quick G, Rusconi CP, Sullenger BA. 19.  2006. A novel antidote-controlled anticoagulant reduces thrombin generation and inflammation and improves cardiac function in cardiopulmonary bypass surgery. Mol. Ther. 14:408–15 [Google Scholar]
  20. Morris KN, Jensen KB, Julin CM, Weil M, Gold L. 20.  1998. High affinity ligands from in vitro selection: complex targets. PNAS 95:2902–7 [Google Scholar]
  21. Layzer JM, Sullenger BA. 21.  2007. Simultaneous generation of aptamers to multiple gamma-carboxyglutamic acid proteins from a focused aptamer library using DeSELEX and convergent selection. Oligonucleotides 17:1–11 [Google Scholar]
  22. Oney S, Nimjee SM, Layzer J, Que-Gewirth N, Ginsburg D. 22.  et al. 2007. Antidote-controlled platelet inhibition targeting von Willebrand factor with aptamers. Oligonucleotides 17:265–74 [Google Scholar]
  23. Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW. 23.  et al. 2006. Aptamers evolved from live cells as effective molecular probes for cancer study. PNAS 103:11838–43 [Google Scholar]
  24. Shangguan D, Meng L, Cao ZC, Xiao Z, Fang X. 24.  et al. 2008. Identification of liver cancer-specific aptamers using whole live cells. Anal. Chem. 80:721–28 [Google Scholar]
  25. Zhao Z, Xu L, Shi X, Tan W, Fang X, Shangguan D. 25.  2009. Recognition of subtype non-small cell lung cancer by DNA aptamers selected from living cells. Analyst 134:1808–14 [Google Scholar]
  26. Mallikaratchy P, Tang Z, Kwame S, Meng L, Shangguan D, Tan W. 26.  2007. Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt's lymphoma cells. Mol. Cell. Proteom. 6:2230–38 [Google Scholar]
  27. Wu X, Zhao Z, Bai H, Fu T, Yang C. 27.  et al. 2015. DNA aptamer selected against pancreatic ductal adenocarcinoma for in vivo imaging and clinical tissue recognition. Theranostics 5:985–94 [Google Scholar]
  28. Zhang X, Zhang J, Ma Y, Pei X, Liu Q. 28.  et al. 2013. A cell-based single-stranded DNA aptamer specifically targets gastric cancer. Int. J. Biochem. Cell Biol. 46:1–8 [Google Scholar]
  29. Chen HW, Medley CD, Sefah K, Shangguan D, Tang Z. 29.  et al. 2008. Molecular recognition of small-cell lung cancer cells using aptamers. Chem. Med. Chem 3:991–1001 [Google Scholar]
  30. Mi J, Liu Y, Rabbani ZN, Yang Z, Urban JH. 30.  et al. 2010. In vivo selection of tumor-targeting RNA motifs. Nat. Chem. Biol. 6:22–24 [Google Scholar]
  31. Rohloff JC, Gelinas AD, Jarvis TC, Ochsner UA, Schneider DJ. 31.  et al. 2014. Nucleic acid ligands with protein-like side chains: modified aptamers and their use as diagnostic and therapeutic agents. Mol. Ther. Nucleic Acids 3:e201 [Google Scholar]
  32. Gold L, Ayers D, Bertino J, Bock C, Bock A. 32.  et al. 2010. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLOS ONE 5:e15004 [Google Scholar]
  33. Adamis AP, Miller JW, Bernal MT, D'Amico DJ, Folkman J. 33.  et al. 1994. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am. J. Ophthalmol. 118:445–50 [Google Scholar]
  34. Kvanta A, Algvere PV, Berglin L, Seregard S. 34.  1996. Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Investig. Ophthalmol. Vis. Sci. 37:1929–34 [Google Scholar]
  35. Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LE. 35.  1995. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. PNAS 92:905–9 [Google Scholar]
  36. Ruckman J, Green LS, Beeson J, Waugh S, Gillette WL. 36.  et al. 1998. 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165): inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 273:20556–67 [Google Scholar]
  37. 37. Eyetech Study Group. 2002. Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina 22:143–52 [Google Scholar]
  38. 38. Eyetech Study Group. 2003. Anti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase II study results. Ophthalmology 110:979–86 [Google Scholar]
  39. Gragoudas ES, Adamis AP, Cunningham ETJ, Feinsod M, Guyer DR. 39.  2004. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 351:2805–16 [Google Scholar]
  40. Drolet DW, Green LS, Gold L, Janjic N. 40.  2016. Fit for the eye: aptamers in ocular disorders. Nucleic Acid Ther 26:127–46 [Google Scholar]
  41. Dyke CK, Steinhubl SR, Kleiman NS, Cannon RO, Aberle LG. 41.  et al. 2006. First-in-human experience of an antidote-controlled anticoagulant using RNA aptamer technology: a phase 1a pharmacodynamic evaluation of a drug-antidote pair for the controlled regulation of factor IXa activity. Circulation 114:2490–97 [Google Scholar]
  42. Chan MY, Cohen MG, Dyke CK, Myles SK, Aberle LG. 42.  et al. 2008. Phase 1b randomized study of antidote-controlled modulation of factor IXa activity in patients with stable coronary artery disease. Circulation 117:2865–74 [Google Scholar]
  43. Cohen MG, Purdy DA, Rossi JS, Grinfeld LR, Myles SK. 43.  et al. 2010. First clinical application of an actively reversible direct factor IXa inhibitor as an anticoagulation strategy in patients undergoing percutaneous coronary intervention. Circulation 122:614–22 [Google Scholar]
  44. Povsic TJ, Vavalle JP, Aberle LH, Kasprzak JD, Cohen MG. 44.  et al. 2013. A Phase 2, randomized, partially blinded, active-controlled study assessing the efficacy and safety of variable anticoagulation reversal using the REG1 system in patients with acute coronary syndromes: results of the RADAR trial. Eur. Heart J. 34:2481–89 [Google Scholar]
  45. Lincoff AM, Mehran R, Povsic TJ, Zelenkofske SL, Huang Z. 45.  et al. 2016. Effect of the REG1 anticoagulation system versus bivalirudin on outcomes after percutaneous coronary intervention (REGULATE-PCI): a randomised clinical trial. Lancet 387:349–56 [Google Scholar]
  46. Ganson NJ, Povsic TJ, Sullenger BA, Alexander JH, Zelenkofske SL. 46.  et al. 2016. Pre-existing anti–polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer. J. Allergy Clin. Immunol. 137:1610–13e7 [Google Scholar]
  47. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ. 47.  1992. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355:564–66 [Google Scholar]
  48. DeAnda A Jr., Coutre SE, Moon MR, Vial CM, Griffin LC. 48.  et al. 1994. Pilot study of the efficacy of a thrombin inhibitor for use during cardiopulmonary bypass. Ann. Thorac. Surg. 58:344–50 [Google Scholar]
  49. Griffin LC, Tidmarsh GF, Bock LC, Toole JJ, Leung LL. 49.  1993. In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits. Blood 81:3271–76 [Google Scholar]
  50. Buff MC, Schafer F, Wulffen B, Muller J, Potzsch B. 50.  et al. 2010. Dependence of aptamer activity on opposed terminal extensions: improvement of light-regulation efficiency. Nucleic Acids Res 38:2111–18 [Google Scholar]
  51. Huang RH, Fremont DH, Diener JL, Schaub RG, Sadler JE. 51.  2009. A structural explanation for the antithrombotic activity of ARC1172, a DNA aptamer that binds von Willebrand factor domain A1. Structure 17:1476–84 [Google Scholar]
  52. Markus HS, McCollum C, Imray C, Goulder MA, Gilbert J, King A. 52.  2011. The von Willebrand inhibitor ARC1779 reduces cerebral embolization after carotid endarterectomy: a randomized trial. Stroke 42:2149–53 [Google Scholar]
  53. Nimjee SM, Lohrmann JD, Wang H, Snyder DJ, Cummings TJ. 53.  et al. 2012. Rapidly regulating platelet activity in vivo with an antidote controlled platelet inhibitor. Mol. Ther. 20:391–97 [Google Scholar]
  54. Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO. 54.  2009. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp. Mol. Pathol. 86:151–64 [Google Scholar]
  55. Soundararajan S, Wang L, Sridharan V, Chen W, Courtenay-Luck N. 55.  et al. 2009. Plasma membrane nucleolin is a receptor for the anticancer aptamer AS1411 in MV4-11 leukemia cells. Mol. Pharmacol. 76:984–91 [Google Scholar]
  56. Soundararajan S, Chen W, Spicer EK, Courtenay-Luck N, Fernandes DJ. 56.  2008. The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res 68:2358–65 [Google Scholar]
  57. Rosenberg JE, Bambury RM, Van Allen EM, Drabkin HA, Lara PN Jr.. 57.  et al. 2014. A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma. Investig. New Drugs 32:178–87 [Google Scholar]
  58. Hwang DW, Ko HY, Lee JH, Kang H, Ryu SH. 58.  et al. 2010. A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J. Nuclear Med. 51:98–105 [Google Scholar]
  59. Guo J, Gao X, Su L, Xia H, Gu G. 59.  et al. 2011. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32:8010–20 [Google Scholar]
  60. Trinh TL, Zhu G, Xiao X, Puszyk W, Sefah K. 60.  et al. 2015. A synthetic aptamer-drug adduct for targeted liver cancer therapy. PLOS ONE 10:e0136673 [Google Scholar]
  61. Aravind A, Jeyamohan P, Nair R, Veeranarayanan S, Nagaoka Y. 61.  et al. 2012. AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery. Biotechnol. Bioeng. 109:2920–31 [Google Scholar]
  62. Wu J, Song C, Jiang C, Shen X, Qiao Q, Hu Y. 62.  2013. Nucleolin targeting AS1411 modified protein nanoparticle for antitumor drugs delivery. Mol. Pharm. 10:3555–63 [Google Scholar]
  63. Shieh YA, Yang SJ, Wei MF, Shieh MJ. 63.  2010. Aptamer-based tumor-targeted drug delivery for photodynamic therapy. ACS Nano 4:1433–42 [Google Scholar]
  64. Yang X, Liu X, Liu Z, Pu F, Ren J, Qu X. 64.  2012. Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Adv. Mater. 24:2890–95 [Google Scholar]
  65. Kotula JW, Pratico ED, Ming X, Nakagawa O, Juliano RL, Sullenger BA. 65.  2012. Aptamer-mediated delivery of splice-switching oligonucleotides to the nuclei of cancer cells. Nucleic Acid Ther 22:187–95 [Google Scholar]
  66. Lupold SE, Hicke BJ, Lin Y, Coffey DS. 66.  2002. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62:4029–33 [Google Scholar]
  67. Dassie JP, Hernandez LI, Thomas GS, Long ME, Rockey WM. 67.  et al. 2014. Targeted inhibition of prostate cancer metastases with an RNA aptamer to prostate-specific membrane antigen. Mol. Ther. 22:1910–22 [Google Scholar]
  68. Chu TC, Marks JW III, Lavery LA, Faulkner S, Rosenblum MG. 68.  et al. 2006. Aptamer:toxin conjugates that specifically target prostate tumor cells. Cancer Res 66:5989–92 [Google Scholar]
  69. Bagalkot V, Farokhzad OC, Langer R, Jon S. 69.  2006. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew. Chem. 45:8149–52 [Google Scholar]
  70. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW. 70.  et al. 2007. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7:3065–70 [Google Scholar]
  71. Wang AZ, Bagalkot V, Vasilliou CC, Gu F, Alexis F. 71.  et al. 2008. Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. Chem. Med. Chem 3:1311–15 [Google Scholar]
  72. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S. 72.  et al. 2006. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. PNAS 103:6315–20 [Google Scholar]
  73. McNamara JO II, Andrechek ER, Wang Y, Viles KD, Rempel RE. 73.  et al. 2006. Cell type–specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 24:1005–15 [Google Scholar]
  74. Dassie JP, Liu XY, Thomas GS, Whitaker RM, Thiel KW. 74.  et al. 2009. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat. Biotechnol. 27:839–46 [Google Scholar]
  75. McNamara JO II, Kolonias D, Pastor F, Mittler RS, Chen L. 75.  et al. 2008. Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J. Clin. Investig. 118:376–86 [Google Scholar]
  76. Mahlknecht G, Maron R, Mancini M, Schechter B, Sela M, Yarden Y. 76.  2013. Aptamer to ErbB-2/HER2 enhances degradation of the target and inhibits tumorigenic growth. PNAS 110:8170–75 [Google Scholar]
  77. Mahlknecht G, Maron R, Schechter B, Yarden Y, Sela M. 77.  2015. Multimerization of ERBB2/HER2 specific aptamer leads to improved receptor binding. Biochem. Biophys. Res. Commun. 465:218–24 [Google Scholar]
  78. Thiel KW, Hernandez LI, Dassie JP, Thiel WH, Liu X. 78.  et al. 2012. Delivery of chemo-sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers. Nucleic Acids Res 40:6319–37 [Google Scholar]
  79. Li N, Larson T, Nguyen HH, Sokolov KV, Ellington AD. 79.  2010. Directed evolution of gold nanoparticle delivery to cells. Chem. Commun. 46:392–94 [Google Scholar]
  80. Li N, Nguyen HH, Byrom M, Ellington AD. 80.  2011. Inhibition of cell proliferation by an anti-EGFR aptamer. PLOS ONE 6:e20299 [Google Scholar]
  81. Ray P, Cheek MA, Sharaf ML, Li N, Ellington AD. 81.  et al. 2012. Aptamer-mediated delivery of chemotherapy to pancreatic cancer cells. Nucleic Acid Ther 22:295–305 [Google Scholar]
  82. Cerchia L, Esposito CL, Camorani S, Rienzo A, Stasio L. 82.  et al. 2012. Targeting Axl with an high-affinity inhibitory aptamer. Mol. Ther. 20:2291–303 [Google Scholar]
  83. Esposito CL, Cerchia L, Catuogno S, De Vita G, Dassie JP. 83.  et al. 2014. Multifunctional aptamer-miRNA conjugates for targeted cancer therapy. Mol. Ther. 22:1151–63 [Google Scholar]
  84. Brayman M, Thathiah A, Carson DD. 84.  2004. MUC1: a multifunctional cell surface component of reproductive tissue epithelia. Reprod. Biol. Endocrinol. 2:4 [Google Scholar]
  85. Gendler SJ. 85.  2001. MUC1, the renaissance molecule. J. Mammary Gland Biol. Neoplasia 6:339–53 [Google Scholar]
  86. Ferreira CS, Cheung MC, Missailidis S, Bisland S, Gariepy J. 86.  2009. Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res 37:866–76 [Google Scholar]
  87. Perkins AC, Missailidis S. 87.  2007. Radiolabelled aptamers for tumour imaging and therapy. Q. J. Nuclear Med. Mol. Imaging 51:292–96 [Google Scholar]
  88. Da Pieve C, Perkins AC, Missailidis S. 88.  2009. Anti-MUC1 aptamers: radiolabelling with 99mTc and biodistribution in MCF-7 tumour-bearing mice. Nuclear Med. Biol 36:703–10 [Google Scholar]
  89. Borbas KE, Ferreira CS, Perkins A, Bruce JI, Missailidis S. 89.  2007. Design and synthesis of mono- and multimeric targeted radiopharmaceuticals based on novel cyclen ligands coupled to anti-MUC1 aptamers for the diagnostic imaging and targeted radiotherapy of cancer. Bioconjug. Chem. 18:1205–12 [Google Scholar]
  90. Wang L, Liu B, Yin H, Wei J, Qian X, Yu L. 90.  2007. Selection of DNA aptamer that specific binding human carcinoembryonic antigen in vitro. J. Nanjing Med. Univ 21:277–81 [Google Scholar]
  91. Hashemi Tabar GR, Smith LC. 91.  2010. DNA aptamers selected as molecular probes for diagnosis of cancereous cells. World Appl. Sci. J. 8:16–21 [Google Scholar]
  92. Lee YJ, Han SR, Kim NY, Lee SH, Jeong JS, Lee SW. 92.  2012. An RNA aptamer that binds carcinoembryonic antigen inhibits hepatic metastasis of colon cancer cells in mice. Gastroenterology 143:155–65 e8 [Google Scholar]
  93. Huang YF, Shangguan D, Liu H, Phillips JA, Zhang X. 93.  et al. 2009. Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells. Chem. Biochem. 10:862–68 [Google Scholar]
  94. Luo YL, Shiao YS, Huang YF. 94.  2011. Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano 5:7796–804 [Google Scholar]
  95. Wang J, Zhu G, You M, Song E, Shukoor MI. 95.  et al. 2012. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 6:5070–77 [Google Scholar]
  96. Rossow KL, Janknecht R. 96.  2003. Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300. Oncogene 22:151–56 [Google Scholar]
  97. Shin S, Rossow KL, Grande JP, Janknecht R. 97.  2007. Involvement of RNA helicases p68 and p72 in colon cancer. Cancer Res 67:7572–78 [Google Scholar]
  98. Santulli-Marotto S, Nair SK, Rusconi C, Sullenger B, Gilboa E. 98.  2003. Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Cancer Res 63:7483–89 [Google Scholar]
  99. Dollins CM, Nair S, Boczkowski D, Lee J, Layzer JM. 99.  et al. 2008. Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. Chem. Biol. 15:675–82 [Google Scholar]
  100. Pratico ED, Sullenger BA, Nair SK. 100.  2013. Identification and characterization of an agonistic aptamer against the T cell costimulatory receptor, OX40. Nucleic Acid Ther 23:35–43 [Google Scholar]
  101. Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y. 101.  et al. 1995. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376:70–74 [Google Scholar]
  102. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR. 102.  et al. 1999. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–98 [Google Scholar]
  103. White RR, Shan S, Rusconi CP, Shetty G, Dewhirst MW. 103.  et al. 2003. Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2. PNAS 100:5028–33 [Google Scholar]
  104. Sarraf-Yazdi S, Mi J, Moeller BJ, Niu X, White RR. 104.  et al. 2008. Inhibition of in vivo tumor angiogenesis and growth via systemic delivery of an angiopoietin 2-specific RNA aptamer. J. Surg. Res. 146:16–23 [Google Scholar]
  105. Herbst RS, Hong D, Chap L, Kurzrock R, Jackson E. 105.  et al. 2009. Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. J. Clin. Oncol. 27:3557–65 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010716-104558
Loading
/content/journals/10.1146/annurev-pharmtox-010716-104558
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error