1932

Abstract

Systems pharmacology aims to holistically understand mechanisms of drug actions to support drug discovery and clinical practice. Systems pharmacology modeling (SPM) is data driven. It integrates an exponentially growing amount of data at multiple scales (genetic, molecular, cellular, organismal, and environmental). The goal of SPM is to develop mechanistic or predictive multiscale models that are interpretable and actionable. The current explosions in genomics and other omics data, as well as the tremendous advances in big data technologies, have already enabled biologists to generate novel hypotheses and gain new knowledge through computational models of genome-wide, heterogeneous, and dynamic data sets. More work is needed to interpret and predict a drug response phenotype, which is dependent on many known and unknown factors. To gain a comprehensive understanding of drug actions, SPM requires close collaborations between domain experts from diverse fields and integration of heterogeneous models from biophysics, mathematics, statistics, machine learning, and semantic webs. This creates challenges in model management, model integration, model translation, and knowledge integration. In this review, we discuss several emergent issues in SPM and potential solutions using big data technology and analytics. The concurrent development of high-throughput techniques, cloud computing, data science, and the semantic web will likely allow SPM to be findable, accessible, interoperable, reusable, reliable, interpretable, and actionable.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010716-104659
2017-01-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/57/1/annurev-pharmtox-010716-104659.html?itemId=/content/journals/10.1146/annurev-pharmtox-010716-104659&mimeType=html&fmt=ahah

Literature Cited

  1. Kenakin T, Christopoulos A. 1.  2013. Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat. Rev. Drug Discov. 12:205–16 [Google Scholar]
  2. Nussinov R, Tsai CJ, Csermely P. 2.  2011. Allo-network drugs: harnessing allostery in cellular networks. Trends Pharmacol. Sci. 32:686–93 [Google Scholar]
  3. Xie L, Kinnings SL, Bourne PE. 3.  2012. Novel computational approaches to polypharmacology as a means to define responses to individual drugs. Annu. Rev. Pharmacol. Toxicol. 52:361–79 [Google Scholar]
  4. Xie L, Evangelidis T, Xie L, Bourne PE. 4.  2011. Drug discovery using chemical systems biology: weak inhibition of multiple kinases may contribute to the anti-cancer effect of Nelfinavir. PLOS Comput. Biol. 7:e1002037 [Google Scholar]
  5. Zhao S, Iyengar R. 5.  2012. Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol. 52:505–21 [Google Scholar]
  6. Xie L, Ge X, Tan H, Xie L, Zhang YL. 6.  et al. 2014. Towards structural systems pharmacology to study complex disease and personalized medicine. PLOS Comput. Biol. 10:e1003554 [Google Scholar]
  7. Sorger PK, Allerheiligen SRB, Abernethy DR, Altman RB, Brouwer KLR. 7.  et al. 2011. Quantitative and systems pharmacology in the post-genomic era: new approaches to discovering drugs and understanding therapeutic mechanisms White Pap., QSP Workshop Group, Natl. Inst. Health Bethesda, MD: https://www.nigms.nih.gov/Training/Documents/SystemsPharmaWPSorger2011.pdf
  8. Zerhouni EA. 8.  2014. Turning the Titanic. Sci. Transl. Med. 6:221ed2 [Google Scholar]
  9. Ma'ayan A, Rouillard AD, Clark NR, Wang Z, Duan Q, Kou Y. 9.  2014. Lean Big Data integration in systems biology and systems pharmacology. Trends Pharmacol. Sci. 35:450–60 [Google Scholar]
  10. Hart T, Xie L. 10.  2015. Providing data science support for systems pharmacology and its implications to drug discovery. Expert Opin. Drug Discov. 11:241–56 [Google Scholar]
  11. Bourne PE, Lorsch JR, Green ED. 11.  2015. Perspective: sustaining the big-data ecosystem. Nature 527:S16–17 [Google Scholar]
  12. Kinnings SL, Liu N, Buchmeier N, Tonge PJ, Xie L, Bourne PE. 12.  2009. Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. PLOS Comput. Biol. 5:e1000423 [Google Scholar]
  13. Ng C, Hauptman R, Zhang Y, Bourne PE, Xie L. 13.  2014. Anti-infectious drug repurposing using an integrated chemical genomics and structural systems biology approach. Proc. Pac. Symp. Biocomput., Kohala Coast, Hawaii, Jan. 3–7136–47
  14. Ho Sui SJ, Lo R, Fernandes AR, Caulfield MDG, Lerman JA. 14.  et al. 2012. Raloxifene attenuates Pseudomonas aeruginosa pyocyanin production and virulence. Int. J. Antimicrob. Agents 40:246–51 [Google Scholar]
  15. Bai JPF, Fontana RJ, Price ND, Sangar V. 15.  2014. Systems pharmacology modeling: an approach to improving drug safety. Biopharm. Drug Dispos. 35:1–14 [Google Scholar]
  16. Berger SI, Ma'ayan A, Iyengar R. 16.  2010. Systems pharmacology of arrhythmias. Sci. Signaling 3:ra30 [Google Scholar]
  17. Berger SI, Iyengar R. 17.  2011. Role of systems pharmacology in understanding drug adverse events. Wiley Interdiscip. Rev. Syst. Biol. Med. 3:129–35 [Google Scholar]
  18. Xie L, Li J, Xie L, Bourne PE. 18.  2009. Drug discovery using chemical systems biology: identification of the protein-ligand binding network to explain the side effects of CETP inhibitors. PLOS Comput. Biol. 5:e1000387 [Google Scholar]
  19. Zhao S, Nishimura T, Chen Y, Azeloglu EU, Gottesman O. 19.  et al. 2013. Systems pharmacology of adverse event mitigation by drug combinations. Sci. Transl. Med. 5:206ra140 [Google Scholar]
  20. Bordbar A, McCloskey D, Zielinski DC, Sonnenschein N, Jamshidi N, Palsson BO. 20.  2015. Personalized whole-cell kinetic models of metabolism for discovery in genomics and pharmacodynamics. Cell Syst 1:283–92 [Google Scholar]
  21. Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M. 21.  2007. Drug-target network. Nat. Biotechnol. 25:1119–26 [Google Scholar]
  22. Kinnings SL, Xie L, Fung K, Xie L, Bourne PE. 22.  2010. The Mycobacterium tuberculosis drugome and its polypharmacological implications. PLOS Comput. Biol. 6:e100976 [Google Scholar]
  23. Bordbar A, Monk JM, King ZA, Palsson BO. 23.  2014. Constraint-based models predict metabolic and associated cellular functions. Nat. Rev. Genet. 15:107–20 [Google Scholar]
  24. Moraru II, Schaff JC, Slepchenko BM, Blinov ML, Morgan F. 24.  et al. 2008. Virtual cell modelling and simulation software environment. IET Syst. Biol. 2:352–62 [Google Scholar]
  25. Chiu SH, Xie L. 25.  2015. Toward high-throughput predictive modeling of protein binding/unbinding kinetics. bioRxiv:10.1101/024513
  26. Garijo D, Kinnings SL, Xie L, Xie L, Zhang YL. 26.  et al. 2013. Quantifying reproducibility in computational biology: the case of the tuberculosis drugome. PLOS ONE 8:e80278 [Google Scholar]
  27. Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE. 27.  2009. Long-timescale molecular dynamics simulations of protein structure and function. Curr. Opin. Struct. Biol. 19:120–27 [Google Scholar]
  28. Deshpande N, Addess KJ, Bluhm WF, Merino-Ott JC, Townsend-Merino W. 28.  et al. 2005. The RCSB Protein Data Bank: a redesigned query system and relational database based on the mmCIF schema. Nucleic Acids Res 33:D233–37 [Google Scholar]
  29. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M. 29.  et al. 2012. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–7 [Google Scholar]
  30. Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B. 30.  et al. 2005. The Universal Protein Resource (UniProt). Nucleic Acids Res 33:D154–59 [Google Scholar]
  31. Chindelevitch L, Trigg J, Regev A, Berger B. 31.  2014. An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models. Nat. Commun. 5:4893 [Google Scholar]
  32. Daniels NM, Gallant A, Peng J, Cowen LJ, Baym M, Berger B. 32.  2013. Compressive genomics for protein databases. Bioinformatics 29:i283–90 [Google Scholar]
  33. Loh PR, Baym M, Berger B. 33.  2012. Compressive genomics. Nat. Biotechnol. 30:627–30 [Google Scholar]
  34. Yu YW, Daniels NM, Danko DC, Berger B. 34.  2015. Entropy-scaling search of massive biological data. Cell Syst 1:130–40 [Google Scholar]
  35. Feltus FA, Breen JR III, Deng J, Izard RS, Konger CA. 35.  et al. 2015. The widening gulf between genomics data generation and consumption: a practical guide to big data transfer technology. Bioinform. Biol. Insights 2015:Suppl. 19–19 [Google Scholar]
  36. Drager A, Palsson BO. 36.  2014. Improving collaboration by standardization efforts in systems biology. Front. Bioeng. Biotechnol. 2:61 [Google Scholar]
  37. Steffensen JL, Dufault-Thompson K, Zhang Y. 37.  2016. PSAMM: a Portable System for the Analysis of Metabolic Models. PLOS Comput. Biol. 12:e1004732 [Google Scholar]
  38. Taylor CF, Field D, Sansone SA, Aerts J, Apweiler R. 38.  et al. 2008. Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat. Biotechnol. 26:889–96 [Google Scholar]
  39. Le Novère N, Finney A, Hucka M, Bhalla US, Campagne F. 39.  et al. 2005. Minimum information requested in the annotation of biochemical models (MIRIAM). Nat. Biotechnol. 23:1509–15 [Google Scholar]
  40. Juty N, Le Novère N, Laibe C. 40.  2012. Identifiers.org and MIRIAM Registry: community resources to provide persistent identification. Nucleic Acids Res 40:D580–86 [Google Scholar]
  41. Laibe C, Le Novère N. 41.  2007. MIRIAM Resources: tools to generate and resolve robust cross-references in Systems Biology. BMC Syst. Biol. 1:58 [Google Scholar]
  42. Swat MJ, Moodie S, Wimalaratne SM, Kristensen NR, Lavielle M. 42.  et al. 2015. Pharmacometrics Markup Language (PharmML): opening new perspectives for model exchange in drug development. CPT Pharmacomet. Syst. Pharmacol. 4:316–19 [Google Scholar]
  43. Goecks J, Nekrutenko A, Taylor J. 43.  2010. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11:R86 [Google Scholar]
  44. Torreno O, Krieger MT, Heinzlreiter P, Trelles O. 44.  2015. Pairwise genome comparison workflow in the cloud using Galaxy. Procedia Comput. Sci. 51:2864–68 [Google Scholar]
  45. Ebrahim A, Almaas E, Bauer E, Bordbar A, Burgard AP. 45.  et al. 2015. Do genome-scale models need exact solvers or clearer standards?. Mol. Syst. Biol. 11:831 [Google Scholar]
  46. Chindelevitch L, Trigg J, Regev A, Berger B. 46.  2015. Reply to “Do genome-scale models need exact solvers or clearer standards?. Mol. Syst. Biol. 11:830 [Google Scholar]
  47. Chang RL, Xie L, Xie L, Bourne PE, Palsson B. 47.  2010. Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLOS Comput. Biol. 6:e1000938 [Google Scholar]
  48. Chang RL, Xie L, Bourne PE, Palsson BO. 48.  2013. Antibacterial mechanisms identified through structural systems pharmacology. BMC Syst. Biol. 7:102 [Google Scholar]
  49. Jerby L, Ruppin E. 49.  2012. Predicting drug targets and biomarkers of cancer via genome-scale metabolic modeling. Clin. Cancer Res. 18:5572–84 [Google Scholar]
  50. Waltemath D, Adams R, Beard DA, Bergmann FT, Bhalla US. 50.  et al. 2011. Minimum Information About a Simulation Experiment (MIASE). PLOS Comput. Biol. 7:e1001122 [Google Scholar]
  51. Warmuth MK, Liao J, Rätsch G, Mathieson M, Putta S, Lemmen C. 51.  2003. Active learning with support vector machines in the drug discovery process. J. Chem. Inf. Comput. Sci. 43:667–73 [Google Scholar]
  52. Wang C, Hu G, Wang K, Brylinski M, Xie L, Kurgan L. 52.  2015. PDID: database of molecular-level putative protein–drug interactions in the structural human proteome. Bioinformatics 32:579–86 [Google Scholar]
  53. King ZA, Lu J, Drager A, Miller P, Federowicz S. 53.  et al. 2016. BiGG Models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res 44:D515–22 [Google Scholar]
  54. Harnisch L, Matthews I, Chard J, Karlsson MO. 54.  2013. Drug and disease model resources: a consortium to create standards and tools to enhance model-based drug development. CPT Pharmacomet. Syst. Pharmacol. 2:e34 [Google Scholar]
  55. Derry JM, Mangravite LM, Suver C, Furia MD, Henderson D. 55.  et al. 2012. Developing predictive molecular maps of human disease through community-based modeling. Nat. Genet. 44:127–30 [Google Scholar]
  56. Breiman L. 56.  1996. Stacked regressions. Mach. Learn. 24:49–64 [Google Scholar]
  57. Capriotti E, Altman RB, Bromberg Y. 57.  2013. Collective judgment predicts disease-associated single nucleotide variants. BMC Genom 14:Suppl. 3S2 [Google Scholar]
  58. Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY. 58.  2011. Multimodal deep learning. Proc. 28th Int. Conf. Mach. Learn. (ICML-11)689–96
  59. Costello JC, Heiser LM, Georgii E, Gonen M, Menden MP. 59.  et al. 2014. A community effort to assess and improve drug sensitivity prediction algorithms. Nat. Biotechnol. 32:1202–12 [Google Scholar]
  60. Gonen M. 60.  2012. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 28:2304–10 [Google Scholar]
  61. Ng S, Collisson EA, Sokolov A, Goldstein T, Gonzalez-Perez A. 61.  et al. 2012. PARADIGM-SHIFT predicts the function of mutations in multiple cancers using pathway impact analysis. Bioinformatics 28:i640–46 [Google Scholar]
  62. Rosenbaum L, Dorr A, Bauer MR, Boeckler FM, Zell A. 62.  2013. Inferring multi-target QSAR models with taxonomy-based multi-task learning. J. Cheminformatics 5:33 [Google Scholar]
  63. Panda B, Herbach JS, Basu S, Bayardo RJ. 63.  2009. PLANET: massively parallel learning of tree ensembles with MapReduce. Proc. VLDB '09, Aug. 24–28, Lyon, Fr.1426–37
  64. Palit I, Reddy CK. 64.  2012. Scalable and parallel boosting with MapReduce. Knowl. Data Eng. IEEE Trans. 24:1904–16 [Google Scholar]
  65. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR. 65.  et al. 2016. Schizophrenia risk from complex variation of complement component 4. Nature 530:177–83 [Google Scholar]
  66. McGranahan N, Swanton C. 66.  2015. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27:15–26 [Google Scholar]
  67. Tsimring LS. 67.  2014. Noise in biology. Rep. Prog. Phys. 77:026601 [Google Scholar]
  68. Long PM, Servedio RA. 68.  2010. Random classification noise defeats all convex potential boosters. Mach. Learn. 78:287–304 [Google Scholar]
  69. Papakonstantinou PA, Xu J, Cao Z. 69.  2014. Bagging by design (on the suboptimality of bagging). Proc. Twenty-Eighth AAAI Conf. Artif. Intell.2041–47
  70. Kumar V, Minz S. 70.  2015. Multi-view ensemble learning: an optimal feature set partitioning for high-dimensional data classification. Knowledge Inf. Syst. 2015:1–59 [Google Scholar]
  71. Aamodt A, Plaza E. 71.  1994. Case-based reasoning: foundational issues, methodological variations, and system approaches. Artif. Intell. Commun. 7:39–59 [Google Scholar]
  72. Epstein SL, Yun X, Xie L. 72.  2012. Multi-agent, multi-case-based reasoning. Case-Based Reasoning Research and Development: International Conference on Case-Based Reasoning 2012 B Diáz-Agudo, I Watson 74–88 Berlin: Springer [Google Scholar]
  73. Kononenko I, Štrumbelj E, Bosnic Z, Pevec D, Kukar M, Robnik-Šikonja M. 73.  2013. Explanation and reliability of individual predictions. Informatica 37:41–48 [Google Scholar]
  74. Kukar M. 74.  2012. Transductive reliability estimation for individual classifications. Machine Learning and Data Mining: Reliable Knowledge Discovery ed. H Dai, JN Liu, E Smirnov 3–27 Cham, Switz: Springer [Google Scholar]
  75. Stahl F, Bramer M. 75.  2014. Random Prism: a noise‐tolerant alternative to Random Forests. Expert Syst 31:411–20 [Google Scholar]
  76. Vidovic MM-C, Görnitz N, Müller K-R, Rätsch G, Kloft M. 76.  2015. Opening the black box: revealing interpretable sequence motifs in kernel-based learning algorithms. Lecture Notes in Computer Science 9285 Machine Learning and Knowledge Discovery in Databases A Appice, PP Rodrigues, VS Costa, J Gama, A Jorge, C Soares 137–53 Cham, Switz.: Springer [Google Scholar]
  77. Antezana E, Mironov V, Kuiper M. 77.  2013. The emergence of semantic systems biology. N. Biotechnol. 30:286–90 [Google Scholar]
  78. Panahiazar M, Taslimitehrani V, Jadhav A, Pathak J. 78.  2014. Empowering personalized medicine with big data and semantic web technology: promises, challenges, and use cases. Proc. Big Data, 2014 IEEE Int. Conf.790–95
  79. Antezana E, Blonde W, Egana M, Rutherford A, Stevens R. 79.  et al. 2009. BioGateway: a semantic systems biology tool for the life sciences. BMC Bioinform 10:Suppl. 10S11 [Google Scholar]
  80. Merrill E, Corlosquet S, Ciccarese P, Clark T, Das S. 80.  2014. Semantic Web repositories for genomics data using the eXframe platform. J. Biomed. Semantics 5:1 [Google Scholar]
  81. Callahan A, Cruz-Toledo J, Ansell P, Dumontier M. 81.  2013. Bio2RDF release 2: improved coverage, interoperability and provenance of life science linked data. Lecture Notes in Computer Science, Vol. 7882 The Semantic Web: Semantics and Big Data P Cimiano, O Corcho, V Presutti, L Hollink, S Rudolph 200–12 Cham, Switz.: Springer [Google Scholar]
  82. Davis AP, Murphy CG, Johnson R, Lay JM, Lennon-Hopkins K. 82.  et al. 2013. The Comparative Toxicogenomics Database: update 2013. Nucleic Acids Res 41:D1104–14 [Google Scholar]
  83. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S. 83.  et al. 2008. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36:D901–6 [Google Scholar]
  84. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. 84.  2005. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33:D514–17 [Google Scholar]
  85. Thorn CF, Klein TE, Altman RB. 85.  2005. PharmGKB: the pharmacogenetics and pharmacogenomics knowledge base. Methods Mol. Biol. 311:179–91 [Google Scholar]
  86. Robles M, Fernández-Breis JT, Maldonado JA, Moner D, Martínez-Costa C. 86.  et al. 2010. ResearchEHR: use of semantic web technologies and archetypes for the description of EHRs. Stud. Health Technol. Inform. 155:129 [Google Scholar]
  87. Tao C, Pathak J, Welch SR, Bouamrane M-M, Huff SM, Chute CG. 87.  2011. Toward semantic web based knowledge representation and extraction from electronic health records. Proc. Int. Workshop Manag. Interoperability Complex. Health Syst.75–78
  88. Lozano-Rubí R, Pastor X, Lozano E. 88.  2014. OWLing clinical data repositories with the ontology web language. JMIR Med. Inform 2:e14 [Google Scholar]
  89. Pathak J, Kiefer RC, Bielinski SJ, Chute CG. 89.  2012. Applying semantic web technologies for phenome-wide scan using an electronic health record linked Biobank. J. Biomed. Semantics 3:10 [Google Scholar]
  90. Rader DJ, Hovingh GK. 90.  2014. HDL and cardiovascular disease. Lancet 384:618–25 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010716-104659
Loading
/content/journals/10.1146/annurev-pharmtox-010716-104659
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error