1932

Abstract

The mineralocorticoid aldosterone is a key regulator of water and electrolyte homeostasis. Numerous recent developments have advanced the field of mineralocorticoid pharmacology—namely, clinical trials have shown the beneficial effects of aldosterone antagonists in chronic heart failure and post–myocardial infarction treatment. Experimental studies using cell type–specific gene targeting of the mineralocorticoid receptor (MR) gene in mice have revealed the importance of extrarenal aldosterone signaling in cardiac myocytes, endothelial cells, vascular smooth cells, and macrophages. In addition, several molecular pathways involving signal transduction via the classical MR as well as the G protein–coupled receptor GPER mediate the diverse spectrum of effects of aldosterone on cells. This knowledge has initiated the development of new pharmacological ligands to specifically interfere with targets on different levels of aldosterone signaling. For example, aldosterone synthase inhibitors such as LCI699 and the novel nonsteroidal MR antagonist BAY 94-8862 have been tested in clinical trials. Interference with the interaction between MR and its coregulators seems to be a promising strategy toward the development of selective MR modulators.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010814-124302
2015-01-06
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/55/1/annurev-pharmtox-010814-124302.html?itemId=/content/journals/10.1146/annurev-pharmtox-010814-124302&mimeType=html&fmt=ahah

Literature Cited

  1. Porter GA, Bogoroch R, Edelman IS. 1.  1964. On the mechanism of action of aldosterone on sodium transport: the role of RNA synthesis. Proc. Natl. Acad. Sci. USA 52:1326–33 [Google Scholar]
  2. Funder JW. 2.  2010. Minireview: aldosterone and mineralocorticoid receptors: past, present, and future. Endocrinology 151:5098–102 [Google Scholar]
  3. Young M, Head G, Funder J. 3.  1995. Determinants of cardiac fibrosis in experimental hypermineralocorticoid states. Am. J. Physiol. 269:E657–62 [Google Scholar]
  4. Brilla CG, Pick R, Tan LB, Janicki JS, Weber KT. 4.  1990. Remodeling of the rat right and left ventricles in experimental hypertension. Circ. Res. 67:1355–64 [Google Scholar]
  5. Brilla CG, Matsubara LS, Weber KT. 5.  1993. Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism. J. Mol. Cell. Cardiol. 25:563–75 [Google Scholar]
  6. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A. 6.  et al. 1999. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N. Engl. J. Med. 341:709–17 [Google Scholar]
  7. Pitt B, Remme W, Zannad F, Neaton J, Martinez F. 7.  et al. 2003. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 348:1309–21 [Google Scholar]
  8. Ezekowitz JA, McAlister FA. 8.  2009. Aldosterone blockade and left ventricular dysfunction: a systematic review of randomized clinical trials. Eur. Heart J. 30:469–77 [Google Scholar]
  9. Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K. 9.  et al. 2011. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 364:11–21 [Google Scholar]
  10. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr. 10.  et al. 2013. 2013 ACCF/AHA guideline for the management of heart failure: executive summary. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 128:1810–52 [Google Scholar]
  11. Cleland JGF, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J. 11.  2006. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur. Heart J. 27:2338–45 [Google Scholar]
  12. Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P. 12.  et al. 2003. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved trial. Lancet 362:777–81 [Google Scholar]
  13. Edelmann F, Wachter R, Schmidt AG, Kraigher-Krainer E, Colantonio C. 13.  et al. 2013. Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: the Aldo-DHF randomized controlled trial. JAMA 309:781–91 [Google Scholar]
  14. Desai AS, Lewis EF, Li R, Solomon SD, Assmann SF. 14.  et al. 2011. Rationale and design of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist Trial: a randomized, controlled study of spironolactone in patients with symptomatic heart failure and preserved ejection fraction. Am. Heart J. 162:966–72.e10 [Google Scholar]
  15. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS. 15.  et al. 2014. Spironolactone for heart failure with preserved ejection fraction. N. Engl. J. Med. 370:151383–92 [Google Scholar]
  16. Montalescot G, Pitt B, Lopez de Sa E, Hamm CW, Flather M. 16.  et al. 2014. Early eplerenone treatment in patients with acute ST-elevation myocardial infarction without heart failure: The Randomized Double-Blind Reminder Study. Eur. Heart J 352295–302
  17. Ogilvie RI, Piafsky KM, Ruedy J. 17.  1978. Antihypertensive responses to spironolactone in normal renin hypertension. Clin. Pharmacol. Ther. 24:525–30 [Google Scholar]
  18. Nishizaka MK, Zaman MA, Calhoun DA. 18.  2003. Efficacy of low-dose spironolactone in subjects with resistant hypertension. Am. J. Hypertens. 16:925–30 [Google Scholar]
  19. Calhoun DA, White WB. 19.  2008. Effectiveness of the selective aldosterone blocker, eplerenone, in patients with resistant hypertension. J. Am. Soc. Hypertens. 2:462–68 [Google Scholar]
  20. Ivanes F, Susen S, Mouquet F, Pigny P, Cuilleret F. 20.  et al. 2012. Aldosterone, mortality, and acute ischaemic events in coronary artery disease patients outside the setting of acute myocardial infarction or heart failure. Eur. Heart J. 33:191–202 [Google Scholar]
  21. Tomaschitz A, Pilz S, Ritz E, Meinitzer A, Boehm BO, Marz W. 21.  2010. Plasma aldosterone levels are associated with increased cardiovascular mortality: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Eur. Heart J. 31:1237–47 [Google Scholar]
  22. Wei J, Ni J, Huang D, Chen M, Yan S, Peng Y. 22.  2010. The effect of aldosterone antagonists for ventricular arrhythmia: a meta-analysis. Clin. Cardiol. 33:572–77 [Google Scholar]
  23. Swedberg K, Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ. 23.  et al. 2012. Eplerenone and atrial fibrillation in mild systolic heart failure: results from the EMPHASIS-HF (Eplerenone in Mild Patients Hospitalization And SurvIval Study in Heart Failure) study. J. Am. Coll. Cardiol. 59:1598–603 [Google Scholar]
  24. Reil JC, Hohl M, Selejan S, Lipp P, Drautz F. 24.  et al. 2012. Aldosterone promotes atrial fibrillation. Eur. Heart J. 33:2098–108 [Google Scholar]
  25. Vyssoulis GP, Karpanou EA, Tzamou VE, Kyvelou SM, Michaelidis AP. 25.  et al. 2010. Aldosterone levels and stroke incidence in essential hypertensive patients. Int. J. Cardiol. 144:171–72 [Google Scholar]
  26. Garthwaite SM, McMahon EG. 26.  2004. The evolution of aldosterone antagonists. Mol. Cell. Endocrinol. 217:27–31 [Google Scholar]
  27. Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M. 27.  et al. 2000. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science 289:119–23 [Google Scholar]
  28. Cavallari LH, Groo VL, Viana MA, Dai Y, Patel SR, Stamos TD. 28.  2010. Association of aldosterone concentration and mineralocorticoid receptor genotype with potassium response to spironolactone in patients with heart failure. Pharmacotherapy 30:1–9 [Google Scholar]
  29. Sun B, Chamarthi B, Williams JS, Krug AW, Lasky-Su J. 29.  et al. 2012. Different polymorphisms of the mineralocorticoid receptor gene are associated with either glucocorticoid or mineralocorticoid levels in hypertension. J. Clin. Endocrinol. Metab. 97:E1825–29 [Google Scholar]
  30. Albert NM, Yancy CW, Liang L, Zhao X, Hernandez AF. 30.  et al. 2009. Use of aldosterone antagonists in heart failure. JAMA 302:1658–65 [Google Scholar]
  31. Hernandez AF, Mi X, Hammill BG, Hammill SC, Heidenreich PA. 31.  et al. 2012. Associations between aldosterone antagonist therapy and risks of mortality and readmission among patients with heart failure and reduced ejection fraction. JAMA 308:2097–107 [Google Scholar]
  32. Spat A, Hunyady L. 32.  2004. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol. Rev. 84:489–539 [Google Scholar]
  33. Lymperopoulos A, Rengo G, Zincarelli C, Kim J, Soltys S, Koch WJ. 33.  2009. An adrenal β-arrestin 1–mediated signaling pathway underlies angiotensin II–induced aldosterone production in vitro and in vivo. Proc. Natl. Acad. Sci. USA 106:5825–30 [Google Scholar]
  34. Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL. 34.  et al. 1987. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 237:268–75 [Google Scholar]
  35. Fraccarollo D, Berger S, Galuppo P, Kneitz S, Hein L. 35.  et al. 2011. Deletion of cardiomyocyte mineralocorticoid receptor ameliorates adverse remodeling after myocardial infarction. Circulation 123:400–8 [Google Scholar]
  36. Lother A, Berger S, Gilsbach R, Rosner S, Ecke A. 36.  et al. 2011. Ablation of mineralocorticoid receptors in myocytes but not in fibroblasts preserves cardiac function. Hypertension 57:746–54 [Google Scholar]
  37. Gass P, Kretz O, Wolfer DP, Berger S, Tronche F. 37.  et al. 2000. Genetic disruption of mineralocorticoid receptor leads to impaired neurogenesis and granule cell degeneration in the hippocampus of adult mice. EMBO Rep. 1:447–51 [Google Scholar]
  38. Stockand JD. 38.  2002. New ideas about aldosterone signaling in epithelia. Am. J. Physiol. Renal Physiol. 282:F559–76 [Google Scholar]
  39. Connell JM, Davies E. 39.  2005. The new biology of aldosterone. J. Endocrinol. 186:1–20 [Google Scholar]
  40. Berger S, Bleich M, Schmid W, Cole TJ, Peters J. 40.  et al. 1998. Mineralocorticoid receptor knockout mice: pathophysiology of Na+ metabolism. Proc. Natl. Acad. Sci. USA 95:9424–29 [Google Scholar]
  41. Bleich M, Warth R, Schmidt-Hieber M, Schulz-Baldes A, Hasselblatt P. 41.  et al. 1999. Rescue of the mineralocorticoid receptor knock-out mouse. Pflügers Arch. 438:245–54 [Google Scholar]
  42. Ronzaud C, Loffing J, Gretz N, Schutz G, Berger S. 42.  2011. Inducible renal principal cell-specific mineralocorticoid receptor gene inactivation in mice. Am. J. Physiol. Renal Physiol. 300:F756–60 [Google Scholar]
  43. Pascual-Le Tallec L, Lombès M. 43.  2005. The mineralocorticoid receptor: a journey exploring its diversity and specificity of action. Mol. Endocrinol. 19:2211–21 [Google Scholar]
  44. Odermatt A, Kratschmar DV. 44.  2012. Tissue-specific modulation of mineralocorticoid receptor function by 11β-hydroxysteroid dehydrogenases: an overview. Mol. Cell. Endocrinol. 350:168–86 [Google Scholar]
  45. Qin W, Rudolph AE, Bond BR, Rocha R, Blomme EA. 45.  et al. 2003. Transgenic model of aldosterone-driven cardiac hypertrophy and heart failure. Circ. Res. 93:69–76 [Google Scholar]
  46. Shibata S, Rinehart J, Zhang J, Moeckel G, Castaneda-Bueno M. 46.  et al. 2013. Mineralocorticoid receptor phosphorylation regulates ligand binding and renal response to volume depletion and hyperkalemia. Cell Metab. 18:660–71 [Google Scholar]
  47. Grossmann C, Ruhs S, Langenbruch L, Mildenberger S, Stratz N. 47.  et al. 2012. Nuclear shuttling precedes dimerization in mineralocorticoid receptor signaling. Chem. Biol. 19:742–51 [Google Scholar]
  48. Galigniana MD, Erlejman AG, Monte M, Gomez-Sanchez C, Piwien-Pilipuk G. 48.  2010. The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events. Mol. Cell. Biol. 30:1285–98 [Google Scholar]
  49. Hernandez-Diaz I, Giraldez T, Arnau MR, Smits VA, Jaisser F. 49.  et al. 2010. The mineralocorticoid receptor is a constitutive nuclear factor in cardiomyocytes due to hyperactive nuclear localization signals. Endocrinology 151:3888–99 [Google Scholar]
  50. Funder JW. 50.  1997. Glucocorticoid and mineralocorticoid receptors: biology and clinical relevance. Annu. Rev. Med. 48:231–40 [Google Scholar]
  51. Yang J, Young MJ. 51.  2009. The mineralocorticoid receptor and its coregulators. J. Mol. Endocrinol. 43:53–64 [Google Scholar]
  52. Hultman ML, Krasnoperova NV, Li S, Du S, Xia C. 52.  et al. 2005. The ligand-dependent interaction of mineralocorticoid receptor with coactivator and corepressor peptides suggests multiple activation mechanisms. Mol. Endocrinol. 19:1460–73 [Google Scholar]
  53. Yang J, Fuller PJ. 53.  2012. Interactions of the mineralocorticoid receptor—within and without. Mol. Cell. Endocrinol. 350:196–205 [Google Scholar]
  54. Murai-Takeda A, Shibata H, Kurihara I, Kobayashi S, Yokota K. 54.  et al. 2010. NF-YC functions as a corepressor of agonist-bound mineralocorticoid receptor. J. Biol. Chem. 285:8084–93 [Google Scholar]
  55. Tirard M, Almeida OF, Hutzler P, Melchior F, Michaelidis TM. 55.  2007. Sumoylation and proteasomal activity determine the transactivation properties of the mineralocorticoid receptor. Mol. Cell. Endocrinol. 268:20–29 [Google Scholar]
  56. Le Moëllic C, Ouvrard-Pascaud A, Capurro C, Cluzeaud F, Fay M. 56.  et al. 2004. Early nongenomic events in aldosterone action in renal collecting duct cells: PKCα activation, mineralocorticoid receptor phosphorylation, and cross-talk with the genomic response. J. Am. Soc. Nephrol. 15:1145–60 [Google Scholar]
  57. Galigniana MD. 57.  1998. Native rat kidney mineralocorticoid receptor is a phosphoprotein whose transformation to a DNA-binding form is induced by phosphatases. Biochem. J. 333:Pt. 3555–63 [Google Scholar]
  58. Lee HA, Lee DY, Cho HM, Kim SY, Iwasaki Y, Kim IK. 58.  2013. Histone deacetylase inhibition attenuates transcriptional activity of mineralocorticoid receptor through its acetylation and prevents development of hypertension. Circ. Res. 112:1004–12 [Google Scholar]
  59. Meinel S, Ruhs S, Schumann K, Stratz N, Trenkmann K. 59.  et al. 2013. Mineralocorticoid receptor interaction with SP1 generates a new response element for pathophysiologically relevant gene expression. Nucleic Acids Res. 41:8045–60 [Google Scholar]
  60. Faresse N, Vitagliano JJ, Staub O. 60.  2012. Differential ubiquitylation of the mineralocorticoid receptor is regulated by phosphorylation. FASEB J. 26:4373–82 [Google Scholar]
  61. Wendler A, Baldi E, Harvey BJ, Nadal A, Norman A, Wehling M. 61.  2010. Position paper: Rapid responses to steroids: current status and future prospects. Eur. J. Endocrinol. 162:825–30 [Google Scholar]
  62. Grossmann C, Benesic A, Krug AW, Freudinger R, Mildenberger S. 62.  et al. 2005. Human mineralocorticoid receptor expression renders cells responsive for nongenotropic aldosterone actions. Mol. Endocrinol. 19:1697–710 [Google Scholar]
  63. Feldman RD. 63.  2014. Aldosterone and blood pressure regulation: recent milestones on the long and winding road from electrocortin to KCNJ5, GPER, and beyond. Hypertension 63:19–21 [Google Scholar]
  64. Eisen C, Meyer C, Christ M, Theisen K, Wehling M. 64.  1994. Novel membrane receptors for aldosterone in human lymphocytes: a 50 kDa protein on SDS-PAGE. Cell Mol. Biol. (Noisy-le-Grand) 40:351–58 [Google Scholar]
  65. Gros R, Ding Q, Sklar LA, Prossnitz EE, Arterburn JB. 65.  et al. 2011. GPR30 expression is required for the mineralocorticoid receptor–independent rapid vascular effects of aldosterone. Hypertension 57:442–51 [Google Scholar]
  66. Hasbi A, O'Dowd BF, George SR. 66.  2005. A G protein–coupled receptor for estrogen: the end of the search?. Mol. Interv. 5:158–61 [Google Scholar]
  67. Carmeci C, Thompson DA, Ring HZ, Francke U, Weigel RJ. 67.  1997. Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer. Genomics 45:607–17 [Google Scholar]
  68. Takada Y, Kato C, Kondo S, Korenaga R, Ando J. 68.  1997. Cloning of cDNAs encoding G protein–coupled receptor expressed in human endothelial cells exposed to fluid shear stress. Biochem. Biophys. Res. Commun. 240:737–41 [Google Scholar]
  69. Filardo EJ. 69.  2002. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer. J. Steroid Biochem. Mol. Biol. 80:231–38 [Google Scholar]
  70. Filardo EJ, Quinn JA, Frackelton AR Jr, Bland KI. 70.  2002. Estrogen action via the G protein–coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor–to–MAPK signaling axis. Mol. Endocrinol. 16:70–84 [Google Scholar]
  71. Prossnitz ER, Arterburn JB, Smith HO, Oprea TI, Sklar LA, Hathaway HJ. 71.  2008. Estrogen signaling through the transmembrane G protein–coupled receptor GPR30. Annu. Rev. Physiol. 70:165–90 [Google Scholar]
  72. Prossnitz ER, Barton M. 72.  2011. The G-protein-coupled estrogen receptor GPER in health and disease. Nat. Rev. Endocrinol. 7:715–26 [Google Scholar]
  73. Prossnitz ER, Barton M. 73.  2014. Estrogen biology: new insights into GPER function and clinical opportunities. Mol. Cell. Endocrinol. 389:71–83 [Google Scholar]
  74. Bologa CG, Revankar CM, Young SM, Edwards BS, Arterburn JB. 74.  et al. 2006. Virtual and biomolecular screening converge on a selective agonist for GPR30. Nat. Chem. Biol. 2:207–12 [Google Scholar]
  75. Dennis MK, Burai R, Ramesh C, Petrie WK, Alcon SN. 75.  et al. 2009. In vivo effects of a GPR30 antagonist. Nat. Chem. Biol. 5:421–27 [Google Scholar]
  76. Dennis MK, Field AS, Burai R, Ramesh C, Petrie WK. 76.  et al. 2011. Identification of a GPER/GPR30 antagonist with improved estrogen receptor counterselectivity. J. Steroid Biochem. Mol. Biol. 127:358–66 [Google Scholar]
  77. Ding Q, Gros R, Limbird LE, Chorazyczewski J, Feldman RD. 77.  2009. Estradiol-mediated ERK phosphorylation and apoptosis in vascular smooth muscle cells requires GPR30. Am. J. Physiol. Cell Physiol. 297:C1178–87 [Google Scholar]
  78. Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. 78.  2005. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 307:1625–30 [Google Scholar]
  79. Lappano R, De Marco P, De Francesco EM, Chimento A, Pezzi V, Maggiolini M. 79.  2013. Cross-talk between GPER and growth factor signaling. J. Steroid Biochem. Mol. Biol. 137:50–56 [Google Scholar]
  80. Jang EJ, Seok YM, Arterburn JB, Olatunji LA, Kim IK. 80.  2013. GPER-1 agonist G1 induces vasorelaxation through activation of epidermal growth factor receptor–dependent signalling pathway. J. Pharm. Pharmacol. 65:1488–99 [Google Scholar]
  81. Meyer MR, Baretella O, Prossnitz ER, Barton M. 81.  2010. Dilation of epicardial coronary arteries by the G protein–coupled estrogen receptor agonists G-1 and ICI 182,780. Pharmacology 86:58–64 [Google Scholar]
  82. Gros R, Ding Q, Liu B, Chorazyczewski J, Feldman RD. 82.  2014. Aldosterone mediates its rapid effects in vascular endothelial cells through GPER activation. Am. J. Physiol. Cell Physiol. 304:C532–40 [Google Scholar]
  83. Kurt AH, Buyukafsar K. 83.  2013. Vasoconstriction induced by G1, a G-protein-coupled oestrogen receptor1 (GPER-1) agonist, in the isolated perfused rat kidney. Eur. J. Pharmacol. 702:71–78 [Google Scholar]
  84. Filardo EJ, Quinn JA, Bland KI, Frackelton AR Jr. 84.  2000. Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein–coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol. Endocrinol. 14:1649–60 [Google Scholar]
  85. Brailoiu GC, Benamar K, Arterburn JB, Gao E, Rabinowitz JE. 85.  et al. 2013. Aldosterone increases cardiac vagal tone via GPER activation. J. Physiol. 591:4223–35 [Google Scholar]
  86. Batenburg WW, Jansen PM, van den Bogaerdt AJ, Danser AHJ. 86.  2013. Angiotensin II–aldosterone interaction in human coronary microarteries involves GPR30, EGFR, and endothelial NO synthase. Cardiovasc. Res. 94:136–43 [Google Scholar]
  87. Cheng SB, Dong J, Pang Y, Larocca J, Hixon M. 87.  et al. 2014. Anatomical location and redistribution of G protein–coupled estrogen receptor-1 during the estrus cycle in mouse kidney and specific binding to estrogens but not aldosterone. Mol. Cell. Endocrinol. 382:950–59 [Google Scholar]
  88. Limbird LE. 88.  1996. Identification of receptors using direct radioligand binding techniques. Cell Surface Receptors: A Short Course on Theory and Methods61–122 Dordrecht, Neth: Kluwer, 2nd ed.. [Google Scholar]
  89. Rocha R, Rudolph AE, Frierdich GE, Nachowiak DA, Kekec BK. 89.  et al. 2002. Aldosterone induces a vascular inflammatory phenotype in the rat heart. Am. J. Physiol. Heart Circ. Physiol. 283:H1802–10 [Google Scholar]
  90. Young MJ, Moussa L, Dilley R, Funder JW. 90.  2003. Early inflammatory responses in experimental cardiac hypertrophy and fibrosis: effects of 11β-hydroxysteroid dehydrogenase inactivation. Endocrinology 144:1121–25 [Google Scholar]
  91. Le Menuet D, Isnard R, Bichara M, Viengchareun S, Muffat-Joly M. 91.  et al. 2001. Alteration of cardiac and renal functions in transgenic mice overexpressing human mineralocorticoid receptor. J. Biol. Chem. 276:38911–20 [Google Scholar]
  92. Di Zhang A, Nguyen Dinh Cat A, Soukaseum C, Escoubet B, Cherfa A. 92.  et al. 2008. Cross-talk between mineralocorticoid and angiotensin II signaling for cardiac remodeling. Hypertension 52:1060–67 [Google Scholar]
  93. Wang D, Liu Y-H, Yang X-P, Rhaleb N-E, Xu J. 93.  et al. 2004. Role of a selective aldosterone blocker in mice with chronic heart failure. J. Card. Fail. 10:67–73 [Google Scholar]
  94. Fraccarollo D, Galuppo P, Schmidt I, Ertl G, Bauersachs J. 94.  2005. Additive amelioration of left ventricular remodeling and molecular alterations by combined aldosterone and angiotensin receptor blockade after myocardial infarction. Cardiovasc. Res. 67:97–105 [Google Scholar]
  95. Kuster GM, Kotlyar E, Rude MK, Siwik DA, Liao R. 95.  et al. 2005. Mineralocorticoid receptor inhibition ameliorates the transition to myocardial failure and decreases oxidative stress and inflammation in mice with chronic pressure overload. Circulation 111:420–27 [Google Scholar]
  96. Berger S, Wolfer DP, Selbach O, Alter H, Erdmann G. 96.  et al. 2006. Loss of the limbic mineralocorticoid receptor impairs behavioral plasticity. Proc. Natl. Acad. Sci. USA 103:195–200 [Google Scholar]
  97. Rozeboom AM, Akil H, Seasholtz AF. 97.  2007. Mineralocorticoid receptor overexpression in forebrain decreases anxiety-like behavior and alters the stress response in mice. Proc. Natl. Acad. Sci. USA 104:4688–93 [Google Scholar]
  98. Huang BS, Leenen FH. 98.  2009. The brain renin-angiotensin-aldosterone system: a major mechanism for sympathetic hyperactivity and left ventricular remodeling and dysfunction after myocardial infarction. Curr. Heart Fail. Rep. 6:81–88 [Google Scholar]
  99. Huang BS, White RA, Ahmad M, Tan J, Jeng AY, Leenen FH. 99.  2009. Central infusion of aldosterone synthase inhibitor attenuates left ventricular dysfunction and remodelling in rats after myocardial infarction. Cardiovasc. Res. 81:574–81 [Google Scholar]
  100. Banerjee I, Fuseler JW, Price RL, Borg TK, Baudino TA. 100.  2007. Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am. J. Physiol. Heart Circ. Physiol. 293:H1883–91 [Google Scholar]
  101. Swirski FK, Nahrendorf M. 101.  2013. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339:161–66 [Google Scholar]
  102. Dorn GW II. 102.  2009. Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovasc. Res. 81:465–73 [Google Scholar]
  103. Rickard AJ, Morgan J, Bienvenu LA, Fletcher EK, Cranston GA. 103.  et al. 2012. Cardiomyocyte mineralocorticoid receptors are essential for deoxycorticosterone/salt-mediated inflammation and cardiac fibrosis. Hypertension 60:1443–50 [Google Scholar]
  104. Nabeebaccus A, Zhang M, Shah AM. 104.  2011. NADPH oxidases and cardiac remodelling. Heart Fail. Rev. 16:5–12 [Google Scholar]
  105. Rude MK, Duhaney TA, Kuster GM, Judge S, Heo J. 105.  et al. 2005. Aldosterone stimulates matrix metalloproteinases and reactive oxygen species in adult rat ventricular cardiomyocytes. Hypertension 46:555–61 [Google Scholar]
  106. He BJ, Joiner ML, Singh MV, Luczak ED, Swaminathan PD. 106.  et al. 2011. Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nat. Med. 17:1610–18 [Google Scholar]
  107. Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M. 107.  et al. 2000. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J. Clin. Investig. 106:55–62 [Google Scholar]
  108. Schulz R. 108.  2007. Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Annu. Rev. Pharmacol. Toxicol. 47:211–42 [Google Scholar]
  109. Yan L, Borregaard N, Kjeldsen L, Moses MA. 109.  2001. The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL): modulation of MMP-9 activity by NGAL. J. Biol. Chem. 276:37258–65 [Google Scholar]
  110. Taube A, Schlich R, Sell H, Eckardt K, Eckel J. 110.  2012. Inflammation and metabolic dysfunction: links to cardiovascular diseases. Am. J. Physiol. Heart Circ. Physiol. 302:H2148–65 [Google Scholar]
  111. Latouche C, El Moghrabi S, Messaoudi S, Nguyen Dinh Cat A, Hernandez-Diaz I. 111.  et al. 2012. Neutrophil gelatinase-associated lipocalin is a novel mineralocorticoid target in the cardiovascular system. Hypertension 59:966–72 [Google Scholar]
  112. Misra A, Haudek SB, Knuefermann P, Vallejo JG, Chen ZJ. 112.  et al. 2003. Nuclear factor-κB protects the adult cardiac myocyte against ischemia-induced apoptosis in a murine model of acute myocardial infarction. Circulation 108:3075–78 [Google Scholar]
  113. Regula KM, Baetz D, Kirshenbaum LA. 113.  2004. Nuclear factor-κB represses hypoxia-induced mitochondrial defects and cell death of ventricular myocytes. Circulation 110:3795–802 [Google Scholar]
  114. Frantz S, Bauersachs J, Ertl G. 114.  2009. Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc. Res. 81:474–81 [Google Scholar]
  115. Vallon V, Wyatt AW, Klingel K, Huang DY, Hussain A. 115.  et al. 2006. SGK1-dependent cardiac CTGF formation and fibrosis following DOCA treatment. J. Mol. Med. 84:396–404 [Google Scholar]
  116. Okoshi MP, Yan X, Okoshi K, Nakayama M, Schuldt AJT. 116.  et al. 2004. Aldosterone directly stimulates cardiac myocyte hypertrophy. J. Card. Fail. 10:511–18 [Google Scholar]
  117. Kehat I, Molkentin JD. 117.  2010. Extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in cardiac hypertrophy. Ann. N.Y. Acad. Sci. 1188:96–102 [Google Scholar]
  118. Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR. 118.  et al. 2000. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 19:6341–50 [Google Scholar]
  119. Schmidt K, Tissier R, Ghaleh B, Drogies T, Felix SB, Krieg T. 119.  2010. Cardioprotective effects of mineralocorticoid receptor antagonists at reperfusion. Eur. Heart J. 31:1655–62 [Google Scholar]
  120. Turchin A, Guo CZ, Adler GK, Ricchiuti V, Kohane IS, Williams GH. 120.  2006. Effect of acute aldosterone administration on gene expression profile in the heart. Endocrinology 147:3183–89 [Google Scholar]
  121. Rossol-Haseroth K, Zhou Q, Braun S, Boldyreff B, Falkenstein E. 121.  et al. 2004. Mineralocorticoid receptor antagonists do not block rapid ERK activation by aldosterone. Biochem. Biophys. Res. Commun. 318:281–88 [Google Scholar]
  122. Latouche C, Sainte-Marie Y, Steenman M, Castro Chaves P, Naray-Fejes-Toth A. 122.  et al. 2010. Molecular signature of mineralocorticoid receptor signaling in cardiomyocytes: from cultured cells to mouse heart. Endocrinology 151:4467–76 [Google Scholar]
  123. Fejes-Toth G, Naray-Fejes-Toth A. 123.  2007. Early aldosterone-regulated genes in cardiomyocytes: clues to cardiac remodeling?. Endocrinology 148:1502–10 [Google Scholar]
  124. Brilla CG, Zhou G, Matsubara L, Weber KT. 124.  1994. Collagen metabolism in cultured adult rat cardiac fibroblasts: response to angiotensin II and aldosterone. J. Mol. Cell. Cardiol. 26:809–20 [Google Scholar]
  125. Fullerton MJ, Funder JW. 125.  1994. Aldosterone and cardiac fibrosis: in vitro studies. Cardiovasc. Res. 28:1863–67 [Google Scholar]
  126. Nagai Y, Miyata K, Sun GP, Rahman M, Kimura S. 126.  et al. 2005. Aldosterone stimulates collagen gene expression and synthesis via activation of ERK1/2 in rat renal fibroblasts. Hypertension 46:1039–45 [Google Scholar]
  127. Krenning G, Zeisberg EM, Kalluri R. 127.  2010. The origin of fibroblasts and mechanism of cardiac fibrosis. J. Cell. Physiol. 225:631–37 [Google Scholar]
  128. Rickard AJ, Morgan J, Tesch G, Funder JW, Fuller PJ, Young MJ. 128.  2009. Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt-induced cardiac fibrosis and increased blood pressure. Hypertension 54:537–43 [Google Scholar]
  129. Bienvenu LA, Morgan J, Rickard AJ, Tesch GH, Cranston GA. 129.  et al. 2012. Macrophage mineralocorticoid receptor signaling plays a key role in aldosterone-independent cardiac fibrosis. Endocrinology 153:3416–25 [Google Scholar]
  130. Usher MG, Duan SZ, Ivaschenko CY, Frieler RA, Berger S. 130.  et al. 2010. Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. J. Clin. Investig. 120:3350–64 [Google Scholar]
  131. Shen JZ, Morgan J, Tesch GH, Fuller PJ, Young MJ. 131.  2014. CCL2-dependent macrophage recruitment is critical for mineralocorticoid receptor-mediated cardiac fibrosis, inflammation, and blood pressure responses in male mice. Endocrinology 155:31057–66 [Google Scholar]
  132. Lawrence T, Natoli G. 132.  2011. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 11:750–61 [Google Scholar]
  133. Frieler RA, Meng H, Duan SZ, Berger S, Schutz G. 133.  et al. 2011. Myeloid-specific deletion of the mineralocorticoid receptor reduces infarct volume and alters inflammation during cerebral ischemia. Stroke 42:179–85 [Google Scholar]
  134. Garbers DL, Dubois SK. 134.  1999. The molecular basis of hypertension. Annu. Rev. Biochem. 68:127–55 [Google Scholar]
  135. Schmidt BM, Georgens AC, Martin N, Tillmann HC, Feuring M. 135.  et al. 2001. Interaction of rapid nongenomic cardiovascular aldosterone effects with the adrenergic system. J. Clin. Endocrinol. Metab. 86:761–67 [Google Scholar]
  136. Schmidt BM, Oehmer S, Delles C, Bratke R, Schneider MP. 136.  et al. 2003. Rapid nongenomic effects of aldosterone on human forearm vasculature. Hypertension 42:156–60 [Google Scholar]
  137. Heylen E, Huang A, Sun D, Kaley G. 137.  2009. Nitric oxide–mediated dilation of arterioles to intraluminal administration of aldosterone. J. Cardiovasc. Pharmacol. 54:535–42 [Google Scholar]
  138. Wehling M, Spes CH, Win N, Janson CP, Schmidt BM. 138.  et al. 1998. Rapid cardiovascular action of aldosterone in man. J. Clin. Endocrinol. Metab. 83:3517–22 [Google Scholar]
  139. Schmidt BM, Montealegre A, Janson CP, Martin N, Stein-Kemmesies C. 139.  et al. 1999. Short term cardiovascular effects of aldosterone in healthy male volunteers. J. Clin. Endocrinol. Metab. 84:3528–33 [Google Scholar]
  140. Arima S, Kohagura K, Xu HL, Sugawara A, Abe T. 140.  et al. 2003. Nongenomic vascular action of aldosterone in the glomerular microcirculation. J. Am. Soc. Nephrol. 14:2255–63 [Google Scholar]
  141. Farquharson CA, Struthers AD. 141.  2002. Aldosterone induces acute endothelial dysfunction in vivo in humans: evidence for an aldosterone-induced vasculopathy. Clin. Sci. 103:425–31 [Google Scholar]
  142. Romagni P, Rossi F, Guerrini L, Quirini C, Santiemma V. 142.  2003. Aldosterone induces contraction of the resistance arteries in man. Atherosclerosis 166:345–49 [Google Scholar]
  143. Liu SL, Schmuck S, Chorazcyzewski JZ, Gros R, Feldman RD. 143.  2003. Aldosterone regulates vascular reactivity: short-term effects mediated by phosphatidylinositol 3-kinase–dependent nitric oxide synthase activation. Circulation 108:2400–6 [Google Scholar]
  144. McCurley A, Pires PW, Bender SB, Aronovitz M, Zhao MJ. 144.  et al. 2012. Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat. Med. 18:1429–33 [Google Scholar]
  145. Galmiche G, Pizard A, Gueret A, El Moghrabi S, Ouvrard-Pascaud A. 145.  et al. 2014. Smooth muscle cell mineralocorticoid receptors are mandatory for aldosterone-salt to induce vascular stiffness. Hypertension 63:3520–26 [Google Scholar]
  146. Ambroisine ML, Favre J, Oliviero P, Rodriguez C, Gao J. 146.  et al. 2007. Aldosterone-induced coronary dysfunction in transgenic mice involves the calcium-activated potassium (BKCa) channels of vascular smooth muscle cells. Circulation 116:2435–43 [Google Scholar]
  147. Pruthi D, McCurley A, Aronovitz M, Galayda C, Karumanchi SA, Jaffe IZ. 147.  2014. Aldosterone promotes vascular remodeling by direct effects on smooth muscle cell mineralocorticoid receptors. Arterioscler. Thromb. Vasc. Biol. 34:2355–64 [Google Scholar]
  148. Nguyen Dinh Cat A, Griol-Charhbili V, Loufrani L, Labat C, Benjamin L. 148.  et al. 2010. The endothelial mineralocorticoid receptor regulates vasoconstrictor tone and blood pressure. FASEB J. 24:2454–63 [Google Scholar]
  149. Rickard AJ, Morgan J, Chrissobolis S, Miller AA, Sobey CG, Young MJ. 149.  2014. Endothelial cell mineralocorticoid receptors regulate deoxycorticosterone/salt-mediated cardiac remodeling and vascular reactivity but not blood pressure. Hypertension 63:51033–40 [Google Scholar]
  150. Schafer N, Lohmann C, Winnik S, van Tits LJ, Miranda MX. 150.  et al. 2013. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity. Eur. Heart J. 34:3515–24 [Google Scholar]
  151. McCurley A, Jaffe IZ. 151.  2012. Mineralocorticoid receptors in vascular function and disease. Mol. Cell. Endocrinol. 350:256–65 [Google Scholar]
  152. Caprio M, Newfell BG, la Sala A, Baur W, Fabbri A. 152.  et al. 2008. Functional mineralocorticoid receptors in human vascular endothelial cells regulate intercellular adhesion molecule-1 expression and promote leukocyte adhesion. Circ. Res. 102:1359–67 [Google Scholar]
  153. Thum T, Schmitter K, Fleissner F, Wiebking V, Dietrich B. 153.  et al. 2011. Impairment of endothelial progenitor cell function and vascularization capacity by aldosterone in mice and humans. Eur. Heart J. 32:1275–86 [Google Scholar]
  154. Bodary PF, Sambaziotis C, Wickenheiser KJ, Rajagopalan S, Pitt B, Eitzman DT. 154.  2006. Aldosterone promotes thrombosis formation after arterial injury in mice. Arterioscler. Thromb. Vasc. Biol. 26:233 [Google Scholar]
  155. Lagrange J, Li Z, Fassot C, Bourhim M, Louis H. 155.  et al. 2014. Endothelial mineralocorticoid receptor activation enhances endothelial protein C receptor and decreases vascular thrombosis in mice. FASEB J. 28:2062–72 [Google Scholar]
  156. Ehsan A, McGraw AP, Aronovitz MJ, Galayda C, Conte MS. 156.  et al. 2013. Mineralocorticoid receptor antagonism inhibits vein graft remodeling in mice. J. Thorac. Cardiovasc. Surg. 145:1642–49.e1 [Google Scholar]
  157. Mulder P, Mellin V, Favre J, Vercauteren M, Remy-Jouet I. 157.  et al. 2008. Aldosterone synthase inhibition improves cardiovascular function and structure in rats with heart failure: a comparison with spironolactone. Eur. Heart J. 29:2171–79 [Google Scholar]
  158. Amar L, Azizi M, Menard J, Peyrard S, Watson C, Plouin PF. 158.  2010. Aldosterone synthase inhibition with LCI699: a proof-of-concept study in patients with primary aldosteronism. Hypertension 56:831–38 [Google Scholar]
  159. Bathgate-Siryk A, Dabul S, Pandya K, Walklett K, Rengo G. 159.  et al. 2014. Negative impact of β-arrestin-1 on post-myocardial infarction heart failure via cardiac and adrenal-dependent neurohormonal mechanisms. Hypertension 63:2404–12 [Google Scholar]
  160. Lymperopoulos A, Rengo G, Zincarelli C, Kim J, Koch WJ. 160.  2011. Adrenal β-arrestin 1 inhibition in vivo attenuates post-myocardial infarction progression to heart failure and adverse remodeling via reduction of circulating aldosterone levels. J. Am. Coll. Cardiol. 57:356–65 [Google Scholar]
  161. Faresse N, Ruffieux-Daidie D, Salamin M, Gomez-Sanchez CE, Staub O. 161.  2010. Mineralocorticoid receptor degradation is promoted by Hsp90 inhibition and the ubiquitin-protein ligase CHIP. Am. J. Physiol. Renal Physiol. 299:F1462–72 [Google Scholar]
  162. Gekle M, Bretschneider M, Meinel S, Ruhs S, Grossmann C. 162.  2014. Rapid mineralocorticoid receptor trafficking. Steroids 81:103–8 [Google Scholar]
  163. Arhancet GB, Woodard SS, Iyanar K, Case BL, Woerndle R. 163.  et al. 2010. Discovery of novel cyanodihydropyridines as potent mineralocorticoid receptor antagonists. J. Med. Chem. 53:5970–78 [Google Scholar]
  164. Fagart J, Hillisch A, Huyet J, Barfacker L, Fay M. 164.  et al. 2010. A new mode of mineralocorticoid receptor antagonism by a potent and selective nonsteroidal molecule. J. Biol. Chem. 285:29932–40 [Google Scholar]
  165. Pitt B, Kober L, Ponikowski P, Gheorghiade M, Filippatos G. 165.  et al. 2013. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur. Heart J. 34:2453–63 [Google Scholar]
  166. Yang J, Chang CY, Safi R, Morgan J, McDonnell DP. 166.  et al. 2011. Identification of ligand-selective peptide antagonists of the mineralocorticoid receptor using phage display. Mol. Endocrinol. 25:32–43 [Google Scholar]
  167. Nilsson S, Koehler KF, Gustafsson JA. 167.  2011. Development of subtype-selective oestrogen receptor-based therapeutics. Nat. Rev. Drug Discov. 10:778–92 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010814-124302
Loading
/content/journals/10.1146/annurev-pharmtox-010814-124302
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error