1932

Abstract

The 26S proteasome is a 2.5-MDa complex, and it operates at the executive end of the ubiquitin-proteasome pathway. It is a proven target for therapeutic agents for the treatment of some cancers and autoimmune diseases, and moreover, it has potential as a target of antibacterial agents. Most inhibitors, including all molecules approved for clinical use, target the 20S proteolytic core complex; its structure was determined two decades ago. Hitherto, efforts to develop inhibitors targeting the 19S regulatory particle subunits have been less successful. This is, in part, because the molecular architecture of this subcomplex has been, until recently, poorly understood, and high-resolution structures have been available only for a few subunits. In this review, we describe, from a structural perspective, the development of inhibitory molecules that target both the 20S and 19S subunits of the proteasome. We highlight the recent progress achieved in structure-based drug-discovery approaches, and we discuss the prospects for further improvement.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010814-124727
2016-01-06
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/56/1/annurev-pharmtox-010814-124727.html?itemId=/content/journals/10.1146/annurev-pharmtox-010814-124727&mimeType=html&fmt=ahah

Literature Cited

  1. Glickman MH, Ciechanover A. 1.  2002. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82:2373–428 [Google Scholar]
  2. Finley D. 2.  2009. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78:477–513 [Google Scholar]
  3. Driscoll JJ, Dechowdhury R. 3.  2010. Therapeutically targeting the SUMOylation, Ubiquitination and Proteasome pathways as a novel anticancer strategy. Target. Oncol. 5:4281–89 [Google Scholar]
  4. Sterz J, von Metzler I, Hahne J-C, Lamottke B, Rademacher J. 4.  et al. 2008. The potential of proteasome inhibitors in cancer therapy. Expert Opin. Investig. Drugs 17:6879–95 [Google Scholar]
  5. Orlowski RZ, Kuhn DJ. 5.  2008. Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin. Cancer Res. 14:61649–57 [Google Scholar]
  6. Nalepa G, Rolfe M, Harper JW. 6.  2006. Drug discovery in the ubiquitin-proteasome system. Nat. Rev. Drug Discov. 5:7596–613 [Google Scholar]
  7. Adams J. 7.  2004. The proteasome: a suitable antineoplastic target. Nat. Rev. Cancer 4:5349–60 [Google Scholar]
  8. Adams J. 8.  2002. Proteasome inhibition: a novel approach to cancer therapy. Trends Mol. Med. 8:4 Suppl.S49–54 [Google Scholar]
  9. Fierabracci A. 9.  2012. Proteasome inhibitors: a new perspective for treating autoimmune diseases. Curr. Drug Targets 13:131665–75 [Google Scholar]
  10. Wang J, Maldonado MA. 10.  2006. The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell. Mol. Immunol. 3:4255–61 [Google Scholar]
  11. Adams J, Kauffman M. 11.  2004. Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Investig. 22:2304–11 [Google Scholar]
  12. Molineaux SM. 12.  2012. Molecular pathways: targeting proteasomal protein degradation in cancer. Clin. Cancer Res. 18:115–20 [Google Scholar]
  13. Dahlmann B, Kopp F, Kuehn L, Niedel B, Pfeifer G. 13.  et al. 1989. The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FEBS Lett. 251:1–2125–31 [Google Scholar]
  14. Andricopulo AD, Salum LB, Abraham DJ. 14.  2009. Structure-based drug design strategies in medicinal chemistry. Curr. Top. Med. Chem. 9:9771–90 [Google Scholar]
  15. Whittle PJ, Blundell TL. 15.  1994. Protein structure–based drug design. Annu. Rev. Biophys. Biomol. Struct. 23:349–75 [Google Scholar]
  16. Harrison C. 16.  2012. Structure-based drug design: opening the door to an epigenetic target. Nat. Rev. Drug Discov. 11:9672–73 [Google Scholar]
  17. Amzel LM. 17.  1998. Structure-based drug design. Curr. Opin. Biotechnol. 9:4366–69 [Google Scholar]
  18. Blundell TL. 18.  1996. Structure-based drug design. Nature 384:6604 Suppl.23–26 [Google Scholar]
  19. Murray CW, Rees DC. 19.  2009. The rise of fragment-based drug discovery. Nat. Chem. 1:3187–92 [Google Scholar]
  20. Mashalidis EH, Śledź P, Lang S, Abell C. 20.  2013. A three-stage biophysical screening cascade for fragment-based drug discovery. Nat. Protoc. 8:112309–24 [Google Scholar]
  21. Förster F, Unverdorben P, Śledź P, Baumeister W. 21.  2013. Unveiling the long-held secrets of the 26S proteasome. Structure 21:91551–62 [Google Scholar]
  22. Wilk S, Orlowski M. 22.  1980. Cation-sensitive neutral endopeptidase: isolation and specificity of the bovine pituitary enzyme. J. Neurochem. 35:51172–82 [Google Scholar]
  23. Orlowski M, Wilk S. 23.  1981. A multicatalytic protease complex from pituitary that forms enkephalin and enkephalin containing peptides. Biochem. Biophys. Res. Commun. 101:3814–22 [Google Scholar]
  24. Wilk S, Orlowski M. 24.  1983. Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex. J. Neurochem. 40:3842–49 [Google Scholar]
  25. Dahlmann B, Kuehn L, Rutschmann M, Reinauer H. 25.  1985. Purification and characterization of a multicatalytic high-molecular-mass proteinase from rat skeletal muscle. Biochem. J. 228:1161–70 [Google Scholar]
  26. Tanaka K, Ii K, Ichihara A, Waxman L, Goldberg AL. 26.  1986. A high molecular weight protease in the cytosol of rat liver. I. Purification, enzymological properties, and tissue distribution. J. Biol. Chem. 261:3215197–203 [Google Scholar]
  27. Hegerl R, Pfeifer G, Pühler G, Dahlmann B, Baumeister W. 27.  1991. The three-dimensional structure of proteasomes from Thermoplasma acidophilum as determined by electron microscopy using random conical tilting. FEBS Lett. 283:1117–21 [Google Scholar]
  28. Zühl F, Tamura T, Dolenc I, Cejka Z, Nagy I. 28.  et al. 1997. Subunit topology of the Rhodococcus proteasome. FEBS Lett. 400:183–90 [Google Scholar]
  29. Seemüller E, Lupas A, Zühl F, Zwickl P, Baumeister W. 29.  1995. The proteasome from Thermoplasma acidophilum is neither a cysteine nor a serine protease. FEBS Lett. 359:2–3173–78 [Google Scholar]
  30. Seemüller E, Lupas A, Stock D, Löwe J, Huber R, Baumeister W. 30.  1995. Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268:5210579–82 [Google Scholar]
  31. Löwe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R. 31.  1995. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268:5210533–39 [Google Scholar]
  32. Groll M, Ditzel L, Löwe J, Stock D, Bochtler M. 32.  et al. 1997. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386:6624463–71 [Google Scholar]
  33. Kniepert A, Groettrup M. 33.  2014. The unique functions of tissue-specific proteasomes. Trends Biochem. Sci. 39:117–24 [Google Scholar]
  34. Baumeister W, Walz J, Zühl F, Seemüller E. 34.  1998. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:3367–80 [Google Scholar]
  35. Kunjappu MJ, Hochstrasser M. 35.  2014. Assembly of the 20S proteasome. Biochim. Biophys. Acta184312–12
  36. Stadtmueller BM, Hill CP. 36.  2011. Proteasome activators. Mol. Cell 41:18–19 [Google Scholar]
  37. Zhang F, Wu Z, Zhang P, Tian G, Finley D, Shi Y. 37.  2009. Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 34:4485–96 [Google Scholar]
  38. Forouzan D, Ammelburg M, Hobel CF, Ströh LJ, Sessler N. 38.  et al. 2012. The archaeal proteasome is regulated by a network of AAA ATPases. J. Biol. Chem. 287:4639254–62 [Google Scholar]
  39. Barthelme D, Sauer RT. 39.  2012. Identification of the Cdc48·20S proteasome as an ancient AAA+ proteolytic machine. Science 337:6096843–46 [Google Scholar]
  40. Rabl J, Smith DM, Yu Y, Chang S-C, Goldberg AL, Cheng Y. 40.  2008. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol. Cell 30:3360–68 [Google Scholar]
  41. Ruschak AM, Religa TL, Breuer S, Witt S, Kay LE. 41.  2010. The proteasome antechamber maintains substrates in an unfolded state. Nature 467:7317868–71 [Google Scholar]
  42. Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A. 42.  2012. Complete subunit architecture of the proteasome regulatory particle. Nature 482:7384186–91 [Google Scholar]
  43. Lasker K, Forster F, Bohn S, Walzthoeni T, Villa E. 43.  et al. 2012. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. PNAS 109:51380–87 [Google Scholar]
  44. Matyskiela ME, Lander GC, Martin A. 44.  2013. Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 20:7781–88 [Google Scholar]
  45. Śledź P, Unverdorben P, Beck F, Pfeifer G, Schweitzer A. 45.  et al. 2013. Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. PNAS 110:187264–69 [Google Scholar]
  46. Pathare GR, Nagy I, Bohn S, Unverdorben P, Hubert A. 46.  et al. 2012. The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. PNAS 109:1149–54 [Google Scholar]
  47. Verma R, Aravind L, Oania R, McDonald WH, Yates JR. 47.  et al. 2002. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298:5593611–15 [Google Scholar]
  48. Matyskiela ME, Martin A. 48.  2013. Design principles of a universal protein degradation machine. J. Mol. Biol. 425:2199–213 [Google Scholar]
  49. Śledź P, Förster F, Baumeister W. 49.  2013. Allosteric effects in the regulation of 26S proteasome activities. J. Mol. Biol. 425:91415–23 [Google Scholar]
  50. Beck F, Unverdorben P, Bohn S, Schweitzer A, Pfeifer G. 50.  et al. 2012. Near-atomic resolution structural model of the yeast 26S proteasome. PNAS 109:3714870–75 [Google Scholar]
  51. Vinitsky A, Cardozo C, Sepp-Lorenzino L, Michaud C, Orlowski M. 51.  1994. Inhibition of the proteolytic activity of the multicatalytic proteinase complex (proteasome) by substrate-related peptidyl aldehydes. J. Biol. Chem. 269:4729860–66 [Google Scholar]
  52. McCormack TA, Cruikshank AA, Grenier L, Melandri FD, Nunes SL. 52.  et al. 1998. Kinetic studies of the branched chain amino acid preferring peptidase activity of the 20S proteasome: development of a continuous assay and inhibition by tripeptide aldehydes and clasto-lactacystin beta-lactone. Biochemistry 37:217792–800 [Google Scholar]
  53. Vinitsky A, Michaud C, Powers JC, Orlowski M. 53.  1992. Inhibition of the chymotrypsin-like activity of the pituitary multicatalytic proteinase complex. Biochemistry 31:399421–28 [Google Scholar]
  54. Borissenko L, Groll M. 54.  2007. 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem. Rev. 107:3687–717 [Google Scholar]
  55. Kisselev AF, van der Linden WA, Overkleeft HS. 55.  2012. Proteasome inhibitors: an expanding army attacking a unique target. Chem. Biol. 19:199–115 [Google Scholar]
  56. Braun HA, Umbreen S, Groll M, Kuckelkorn U, Mlynarczuk I. 56.  et al. 2005. Tripeptide mimetics inhibit the 20 S proteasome by covalent bonding to the active threonines. J. Biol. Chem. 280:3128394–401 [Google Scholar]
  57. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. 57.  1994. The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78:5773–85 [Google Scholar]
  58. Lee DH, Goldberg AL. 58.  1996. Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J. Biol. Chem. 271:4427280–84 [Google Scholar]
  59. Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM. 59.  1999. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. PNAS 96:1810403–8 [Google Scholar]
  60. Groll M, Berkers CR, Ploegh HL, Ovaa H. 60.  2006. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure 14:3451–56 [Google Scholar]
  61. Piva R, Ruggeri B, Williams M, Costa G, Tamagno I. 61.  et al. 2008. CEP-18770: a novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood 111:52765–75 [Google Scholar]
  62. Kupperman E, Lee EC, Cao Y, Bannerman B, Fitzgerald M. 62.  et al. 2010. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res. 70:51970–80 [Google Scholar]
  63. Gräwert MA, Gallastegui N, Stein M, Schmidt B, Kloetzel P-M. 63.  et al. 2011. Elucidation of the α-keto-aldehyde binding mechanism: a lead structure motif for proteasome inhibition. Angew. Chem. Int. Ed. Engl. 50:2542–44 [Google Scholar]
  64. Screen M, Britton M, Downey SL, Verdoes M, Voges MJ. 64.  et al. 2010. Nature of pharmacophore influences active site specificity of proteasome inhibitors. J. Biol. Chem. 285:5140125–34 [Google Scholar]
  65. Geurink PP, van der Linden WA, Mirabella AC, Gallastegui N, de Bruin G. 65.  et al. 2013. Incorporation of non-natural amino acids improves cell permeability and potency of specific inhibitors of proteasome trypsin-like sites. J. Med. Chem. 56:31262–75 [Google Scholar]
  66. Groll M, Schellenberg B, Bachmann AS, Archer CR, Huber R. 66.  et al. 2008. A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 452:7188755–58 [Google Scholar]
  67. Clerc J, Groll M, Illich DJ, Bachmann AS, Huber R. 67.  et al. 2009. Synthetic and structural studies on syringolin A and B reveal critical determinants of selectivity and potency of proteasome inhibition. PNAS 106:166507–12 [Google Scholar]
  68. Coleman CS, Rocetes JP, Park DJ, Wallick CJ, Warn-Cramer BJ. 68.  et al. 2006. Syringolin A, a new plant elicitor from the phytopathogenic bacterium Pseudomonas syringae pv. syringae, inhibits the proliferation of neuroblastoma and ovarian cancer cells and induces apoptosis. Cell Prolif. 39:6599–609 [Google Scholar]
  69. Clerc J, Li N, Krahn D, Groll M, Bachmann AS. 69.  et al. 2011. The natural product hybrid of Syringolin A and Glidobactin A synergizes proteasome inhibition potency with subsite selectivity. Chem. Commun. 47:1385–87 [Google Scholar]
  70. Stein ML, Beck P, Kaiser M, Dudler R, Becker CFW, Groll M. 70.  2012. One-shot NMR analysis of microbial secretions identifies highly potent proteasome inhibitor. PNAS 109:4518367–71 [Google Scholar]
  71. Koguchi Y, Kohno J, Nishio M, Takahashi K, Okuda T. 71.  et al. 2000. TMC-95A, B, C, and D, novel proteasome inhibitors produced by Apiospora montagnei Sacc. TC 1093. Taxonomy, production, isolation, and biological activities. J. Antibiot. 53:2105–9 [Google Scholar]
  72. Groll M, Koguchi Y, Huber R, Kohno J. 72.  2001. Crystal structure of the 20 S proteasome:TMC-95A complex: a non-covalent proteasome inhibitor. J. Mol. Biol. 311:3543–48 [Google Scholar]
  73. Kaiser M, Groll M, Renner C, Huber R, Moroder L. 73.  2002. The core structure of TMC-95A is a promising lead for reversible proteasome inhibition. Angew. Chem. Int. Ed. Engl. 41:5780–83 [Google Scholar]
  74. Kaiser M, Groll M, Siciliano C, Assfalg-Machleidt I, Weyher E. 74.  et al. 2004. Binding mode of TMC-95A analogues to eukaryotic 20S proteasome. ChemBioChem 5:91256–66 [Google Scholar]
  75. Groll M, Götz M, Kaiser M, Weyher E, Moroder L. 75.  2006. TMC-95-based inhibitor design provides evidence for the catalytic versatility of the proteasome. Chem. Biol. 13:6607–14 [Google Scholar]
  76. Basse N, Piguel S, Papapostolou D, Ferrier-Berthelot A, Richy N. 76.  et al. 2007. Linear TMC-95-based proteasome inhibitors. J. Med. Chem. 50:122842–50 [Google Scholar]
  77. Groll M, Gallastegui N, Maréchal X, Le Ravalec V, Basse N. 77.  et al. 2010. 20S proteasome inhibition: designing noncovalent linear peptide mimics of the natural product TMC-95A. ChemMedChem 5:101701–5 [Google Scholar]
  78. Britton M, Lucas MM, Downey SL, Screen M, Pletnev AA. 78.  et al. 2009. Selective inhibitor of proteasome's caspase-like sites sensitizes cells to specific inhibition of chymotrypsin-like sites. Chem. Biol. 16:121278–89 [Google Scholar]
  79. Mirabella AC, Pletnev AA, Downey SL, Florea BI, Shabaneh TB. 79.  et al. 2011. Specific cell-permeable inhibitor of proteasome trypsin-like sites selectively sensitizes myeloma cells to bortezomib and carfilzomib. Chem. Biol. 18:5608–18 [Google Scholar]
  80. García-Echeverría C, Imbach P, France D, Fürst P, Lang M. 80.  et al. 2001. A new structural class of selective and non-covalent inhibitors of the chymotrypsin-like activity of the 20S proteasome. Bioorg. Med. Chem. Lett. 11:101317–19 [Google Scholar]
  81. Furet P, Imbach P, Noorani M, Koeppler J, Laumen K. 81.  et al. 2004. Entry into a new class of potent proteasome inhibitors having high antiproliferative activity by structure-based design. J. Med. Chem. 47:204810–13 [Google Scholar]
  82. Blackburn C, Gigstad KM, Hales P, Garcia K, Jones M. 82.  et al. 2010. Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S β5-subunit. Biochem. J. 430:3461–76 [Google Scholar]
  83. Blackburn C, Barrett C, Blank JL, Bruzzese FJ, Bump N. 83.  et al. 2010. Optimization of a series of dipeptides with a P3 threonine residue as non-covalent inhibitors of the chymotrypsin-like activity of the human 20S proteasome. Bioorg. Med. Chem. Lett. 20:226581–86 [Google Scholar]
  84. Gaczynska M, Rock KL, Goldberg AL. 84.  1993. Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365:6443264–67 [Google Scholar]
  85. Driscoll J, Brown MG, Finley D, Monaco JJ. 85.  1993. MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature 365:6443262–64 [Google Scholar]
  86. van Swieten PF, Samuel E, Hernández RO, van den Nieuwendijk AMCH, Leeuwenburgh MA. 86.  et al. 2007. A cell-permeable inhibitor and activity-based probe for the caspase-like activity of the proteasome. Bioorg. Med. Chem. Lett. 17:123402–5 [Google Scholar]
  87. Ho YK, Bargagna-Mohan P, Wehenkel M, Mohan R, Kim K-B. 87.  2007. LMP2-specific inhibitors: chemical genetic tools for proteasome biology. Chem. Biol. 14:4419–30 [Google Scholar]
  88. Muchamuel T, Basler M, Aujay MA, Suzuki E, Kalim KW. 88.  et al. 2009. A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat. Med. 15:7781–87 [Google Scholar]
  89. Huber EM, Basler M, Schwab R, Heinemeyer W, Kirk CJ. 89.  et al. 2012. Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell 148:4727–38 [Google Scholar]
  90. Raval RR, Lau KW, Tran MGB, Sowter HM, Mandriota SJ. 90.  et al. 2005. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol. Cell. Biol. 25:135675–86 [Google Scholar]
  91. Kondo K, Kim WY, Lechpammer M, Kaelin WG Jr. 91.  2003. Inhibition of HIF2α is sufficient to suppress pVHL-defective tumor growth. PLOS Biol. 1:3e83 [Google Scholar]
  92. Gordan JD, Bertout JA, Hu C-J, Diehl JA, Simon MC. 92.  2007. HIF-2α promotes hypoxic cell proliferation by enhancing c-Myc transcriptional activity. Cancer Cell 11:4335–47 [Google Scholar]
  93. Li H, Ponder EL, Verdoes M, Asbjornsdottir KH, Deu E. 93.  et al. 2012. Validation of the proteasome as a therapeutic target in Plasmodium using an epoxyketone inhibitor with parasite-specific toxicity. Chem. Biol. 19:121535–45 [Google Scholar]
  94. Hu G, Lin G, Wang M, Dick L, Xu R-M. 94.  et al. 2006. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate. Mol. Microbiol. 59:51417–28 [Google Scholar]
  95. Lin G, Hu G, Tsu C, Kunes YZ, Li H. 95.  et al. 2006. Mycobacterium tuberculosis prcBA genes encode a gated proteasome with broad oligopeptide specificity. Mol. Microbiol. 59:51405–16 [Google Scholar]
  96. Lin G, Li D, de Carvalho LPS, Deng H, Tao H. 96.  et al. 2009. Inhibitors selective for mycobacterial versus human proteasomes. Nature 461:7264621–26 [Google Scholar]
  97. Lin G, Tsu C, Dick L, Zhou XK, Nathan C. 97.  2008. Distinct specificities of Mycobacterium tuberculosis and mammalian proteasomes for N-acetyl tripeptide substrates. J. Biol. Chem. 283:4934423–31 [Google Scholar]
  98. Lin G, Chidawanyika T, Tsu C, Warrier T, Vaubourgeix J. 98.  et al. 2013. N,C-capped dipeptides with selectivity for mycobacterial proteasome over human proteasomes: role of S3 and S1 binding pockets. J. Am. Chem. Soc. 135:279968–71 [Google Scholar]
  99. Gallastegui N, Beck P, Arciniega M, Huber R, Hillebrand S, Groll M. 99.  2012. Hydroxyureas as noncovalent proteasome inhibitors. Angew. Chem. Int. Ed. Engl. 51:1247–49 [Google Scholar]
  100. Kikuchi J, Shibayama N, Yamada S, Wada T, Nobuyoshi M. 100.  et al. 2013. Homopiperazine derivatives as a novel class of proteasome inhibitors with a unique mode of proteasome binding. PLOS ONE 8:4e60649 [Google Scholar]
  101. Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL. 101.  1995. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268:5211726–31 [Google Scholar]
  102. Dick LR, Cruikshank AA, Grenier L, Melandri FD, Nunes SL, Stein RL. 102.  1996. Mechanistic studies on the inactivation of the proteasome by lactacystin: a central role for clasto-lactacystin β-lactone. J. Biol. Chem. 271:137273–76 [Google Scholar]
  103. Dick LR, Cruikshank AA, Destree AT, Grenier L, McCormack TA. 103.  et al. 1997. Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J. Biol. Chem. 272:1182–88 [Google Scholar]
  104. Groll M, Huber R, Potts BCM. 104.  2006. Crystal structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of β-lactone ring opening and a mechanism for irreversible binding. J. Am. Chem. Soc. 128:155136–41 [Google Scholar]
  105. Groll M, Balskus EP, Jacobsen EN. 105.  2008. Structural analysis of spiro β-lactone proteasome inhibitors. J. Am. Chem. Soc. 130:4514981–83 [Google Scholar]
  106. Groll M, McArthur KA, Macherla VR, Manam RR, Potts BC. 106.  2009. Snapshots of the fluorosalinosporamide/20S complex offer mechanistic insights for fine tuning proteasome inhibition. J. Med. Chem. 52:175420–28 [Google Scholar]
  107. Asai A, Tsujita T, Sharma SV, Yamashita Y, Akinaga S. 107.  et al. 2004. A new structural class of proteasome inhibitors identified by microbial screening using yeast-based assay. Biochem. Pharmacol. 67:2227–34 [Google Scholar]
  108. Groll M, Larionov OV, Huber R, de Meijere A. 108.  2006. Inhibitor-binding mode of homobelactosin C to proteasomes: new insights into class I MHC ligand generation. PNAS 103:124576–79 [Google Scholar]
  109. Kawamura S, Unno Y, List A, Mizuno A, Tanaka M. 109.  et al. 2013. Potent proteasome inhibitors derived from the unnatural cis-cyclopropane isomer of Belactosin A: synthesis, biological activity, and mode of action. J. Med. Chem. 56:93689–700 [Google Scholar]
  110. Nyquist K, Martin A. 110.  2014. Marching to the beat of the ring: polypeptide translocation by AAA+proteases. Trends Biochem. Sci. 39:253–60 [Google Scholar]
  111. Sauer RT, Baker TA. 111.  2011. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 80:587–612 [Google Scholar]
  112. Hanson PI, Whiteheart SW. 112.  2005. AAA+ proteins: have engine, will work. Nat. Rev. Mol. Cell Biol. 6:7519–29 [Google Scholar]
  113. Neuwald AF, Aravind L, Spouge JL, Koonin EV. 113.  1999. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9:127–43 [Google Scholar]
  114. Beckwith R, Estrin E, Worden EJ, Martin A. 114.  2013. Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat. Struct. Mol. Biol. 20:101164–72 [Google Scholar]
  115. Lim H-S, Archer CT, Kodadek T. 115.  2007. Identification of a peptoid inhibitor of the proteasome 19S regulatory particle. J. Am. Chem. Soc. 129:257750–51 [Google Scholar]
  116. Lim H-S, Archer CT, Kim Y-C, Hutchens T, Kodadek T. 116.  2008. Rapid identification of the pharmacophore in a peptoid inhibitor of the proteasome regulatory particle. Chem. Commun. 2008:1064–66 [Google Scholar]
  117. Chou T-F, Deshaies RJ. 117.  2011. Development of p97 AAA ATPase inhibitors. Autophagy 7:91091–92 [Google Scholar]
  118. Chou T-F, Brown SJ, Minond D, Nordin BE, Li K. 118.  et al. 2011. Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. PNAS 108:124834–39 [Google Scholar]
  119. Magnaghi P, D'Alessio R, Valsasina B, Avanzi N, Rizzi S. 119.  et al. 2013. Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat. Chem. Biol. 9:548–56 [Google Scholar]
  120. Firestone AJ, Weinger JS, Maldonado M, Barlan K, Langston LD. 120.  et al. 2012. Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein. Nature 484:7392125–29 [Google Scholar]
  121. Wells JA, McClendon CL. 121.  2007. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450:71721001–9 [Google Scholar]
  122. Coyne AG, Scott DE, Abell C. 122.  2010. Drugging challenging targets using fragment-based approaches. Curr. Opin. Chem. Biol. 14:3299–307 [Google Scholar]
  123. Verma R, Peters NR, D'Onofrio M, Tochtrop GP, Sakamoto KM. 123.  et al. 2004. Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin chain. Science 306:5693117–20 [Google Scholar]
  124. Bazzaro M, Anchoori RK, Mudiam MKR, Issaenko O, Kumar S. 124.  et al. 2011. α,β-Unsaturated carbonyl system of chalcone-based derivatives is responsible for broad inhibition of proteasomal activity and preferential killing of human papilloma virus (HPV) positive cervical cancer cells. J. Med. Chem. 54:2449–56 [Google Scholar]
  125. Anchoori RK, Karanam B, Peng S, Wang JW, Jiang R. 125.  et al. 2013. A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell 24:6791–805 [Google Scholar]
  126. Peth A, Besche HC, Goldberg AL. 126.  2009. Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening. Mol. Cell 36:5794–804 [Google Scholar]
  127. Lee B-H, Lee MJ, Park S, Oh D-C, Elsasser S. 127.  et al. 2010. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467:7312179–84 [Google Scholar]
  128. D'Arcy P, Brnjic S, Olofsson MH, Fryknäs M, Lindsten K. 128.  et al. 2011. Inhibition of proteasome de-ubiquitinating activity as a new cancer therapy. Nat. Med. 17:121636–40 [Google Scholar]
  129. Pathare GR, Nagy I, Sledz P, Anderson DJ, Zhou H-J. 129.  et al. 2014. Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. PNAS 111:82984–89 [Google Scholar]
  130. Worden EJ, Padovani C, Martin A. 130.  2014. Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat. Struct. Mol. Biol. 21:220–27 [Google Scholar]
  131. Gallery M, Blank JL, Lin Y, Gutierrez JA, Pulido JC. 131.  et al. 2007. The JAMM motif of human deubiquitinase Poh1 is essential for cell viability. Mol. Cancer Ther. 6:1262–68 [Google Scholar]
  132. Spataro V, Simmen K, Realini CA. 132.  2002. The essential 26S proteasome subunit Rpn11 confers multidrug resistance to mammalian cells. Anticancer Res. 22:6C3905–9 [Google Scholar]
  133. Bivona TG, Hieronymus H, Parker J, Chang K, Taron M. 133.  et al. 2011. FAS and NF-κB signalling modulate dependence of lung cancers on mutant EGFR. Nature 471:7339523–26 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010814-124727
Loading
/content/journals/10.1146/annurev-pharmtox-010814-124727
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error