1932

Abstract

Asian Americans are one of the fastest-growing populations in the United States. A relatively large subset of this population carries a unique loss-of-function point mutation in aldehyde dehydrogenase 2 (ALDH2), ALDH2*2. Found in approximately 560 million people of East Asian descent, ALDH2*2 reduces enzymatic activity by approximately 60% to 80% in heterozygotes. Furthermore, this variant is associated with a higher risk for several diseases affecting many organ systems, including a particularly high incidence relative to the general population of esophageal cancer, myocardial infarction, and osteoporosis. In this review, we discuss the pathophysiology associated with the ALDH2*2 variant, describe why this variant needs to be considered when selecting drug treatments, and suggest a personalized medicine approach for Asian American carriers of this variant. We also discuss future clinical and translational perspectives regarding ALDH2*2 research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010814-124915
2015-01-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/55/1/annurev-pharmtox-010814-124915.html?itemId=/content/journals/10.1146/annurev-pharmtox-010814-124915&mimeType=html&fmt=ahah

Literature Cited

  1. Grieco EM, Acosta YD, de la Cruz GP, Cambino C, Gryn T. 1.  et al. 2012. The foreign-born population in the United States: 2010 Am. Community Surv. Rep. ACS-19, US Census Bur., Washington, DC. http://www.census.gov/prod/2012pubs/acs-19.pdf
  2. 2. US Census Bur 2012. Table 4: Projections of the population by sex, race and Hispanic origin for the United States: 2015 to 2060 (NP2012-T4) 2012 Natl. Popul. Proj. Summ. Tables, US Census Bur., Popul. Div., Washington, DC. http://www.census.gov/population/projections/data/national/2012/summarytables.html [Google Scholar]
  3. Qian F, Ling FS, Deedwania P, Hernandez AF, Fonarow GC. 3.  et al. 2012. Care and outcomes of Asian-American acute myocardial infarction patients: findings from the American Heart Association Get With The Guidelines-Coronary Artery Disease program. Circ. Cardiovasc. Qual. Outcomes 5:126–33 [Google Scholar]
  4. Li H, Borinskaya S, Yoshimura K, Kal'ina N, Marusin A. 4.  et al. 2009. Refined geographic distribution of the oriental ALDH2*504Lys (nee 487Lys) variant. Ann. Hum. Genet. 73:335–45 [Google Scholar]
  5. Goedde HW, Agarwal DP, Harada S, Rothhammer F, Whittaker JO, Lisker R. 5.  1986. Aldehyde dehydrogenase polymorphism in North American, South American, and Mexican Indian populations. Am. J. Hum. Genet. 38:395–99 [Google Scholar]
  6. Novoradovsky AG, Kidd J, Kidd K, Goldman D. 6.  1995. Apparent monomorphism of ALDH2 in seven American Indian populations. Alcohol 12:163–67 [Google Scholar]
  7. Luo HR, Wu GS, Pakstis AJ, Tong L, Oota H. 7.  et al. 2009. Origin and dispersal of atypical aldehyde dehydrogenase ALDH2*487Lys. Gene 435:96–103 [Google Scholar]
  8. Palaniappan LP, Araneta MR, Assimes TL, Barrett-Connor EL, Carnethon MR. 8.  et al. 2010. Call to action: cardiovascular disease in Asian Americans: a science advisory from the American Heart Association. Circulation 122:1242–52 [Google Scholar]
  9. 9. Cent. Dis. Control Prev 2007. Heart Disease Death Rates, 2000–2006; Asians and Pacific Islanders Ages 35+, by County. Accessed online February 5, 2014
  10. Goedde HW, Agarwal DP, Fritze G, Meier-Tackmann D, Singh S. 10.  et al. 1992. Distribution of ADH2 and ALDH2 genotypes in different populations. Hum. Genet. 88:344–46 [Google Scholar]
  11. Parrilla R, Okawa K, Lindros KO, Zimmerman UJ, Kobayashi K, Williamson JR. 11.  1974. Functional compartmentation of acetaldehyde oxidation in rat liver. J. Biol. Chem. 249:4926–33 [Google Scholar]
  12. Eriksson CJ, Marselos M, Koivula T. 12.  1975. Role of cytosolic rat liver aldehyde dehydrogenase in the oxidation of acetaldehyde during ethanol metabolism in vivo. Biochem. J. 152:709–12 [Google Scholar]
  13. Braun T, Bober E, Singh S, Agarwal DP, Goedde HW. 13.  1987. Evidence for a signal peptide at the amino-terminal end of human mitochondrial aldehyde dehydrogenase. FEBS Lett. 215:233–36 [Google Scholar]
  14. O'Brien PJ, Siraki AG, Shangari N. 14.  2005. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit. Rev. Toxicol. 35:609–62 [Google Scholar]
  15. Chen CH, Ferreira JC, Gross ER, Mochly-Rosen D. 15.  2014. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol. Rev. 94:1–34 [Google Scholar]
  16. Yoshida A, Huang IY, Ikawa M. 16.  1984. Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proc. Natl. Acad. Sci. USA 81:258–61 [Google Scholar]
  17. Larson HN, Zhou J, Chen Z, Stamler JS, Weiner H, Hurley TD. 17.  2007. Structural and functional consequences of coenzyme binding to the inactive Asian variant of mitochondrial aldehyde dehydrogenase: roles of residues 475 and 487. J. Biol. Chem. 282:12940–50 [Google Scholar]
  18. Weiner H, Wei B, Zhou J. 18.  2001. Subunit communication in tetrameric class 2 human liver aldehyde dehydrogenase as the basis for half-of-the-site reactivity and the dominance of the oriental subunit in a heterotetramer. Chem. Biol. Interact. 130–132:47–56 [Google Scholar]
  19. Yuan XW, Zhou WJ, Shang X, Li L, Liu YH, Xu XM. 19.  2013. Rapid simultaneous genotyping of polymorphisms in ADH1B and ALDH2 using high resolution melting assay. Clin. Chem. Lab. Med. 51:e75–77 [Google Scholar]
  20. Yokoyama T, Yokoyama A, Kato H, Tsujinaka T, Muto M. 20.  et al. 2003. Alcohol flushing, alcohol and aldehyde dehydrogenase genotypes, and risk for esophageal squamous cell carcinoma in Japanese men. Cancer Epidemiol. Biomarkers Prev. 12:1227–33 [Google Scholar]
  21. Matsuse H, Shimoda T, Fukushima C, Mitsuta K, Kawano T. 21.  et al. 2001. Screening for acetaldehyde dehydrogenase 2 genotype in alcohol-induced asthma by using the ethanol patch test. J. Allergy Clin. Immunol. 108:715–19 [Google Scholar]
  22. Yokoyama A, Muramatsu T, Ohmori T, Kumagai Y, Higuchi S, Ishii H. 22.  1997. Reliability of a flushing questionnaire and the ethanol patch test in screening for inactive aldehyde dehydrogenase-2 and alcohol-related cancer risk. Cancer Epidemiol. Biomarkers Prev. 6:1105–7 [Google Scholar]
  23. Kimura M, Miyakawa T, Matsushita S, So M, Higuchi S. 23.  2011. Gender differences in the effects of ADH1B and ALDH2 polymorphisms on alcoholism. Alcohol. Clin. Exp. Res. 35:1923–27 [Google Scholar]
  24. Kimura M, Sawayama T, Matsushita S, Higuchi S, Kashima H. 24.  2009. Association between personality traits and ALDH2 polymorphism in Japanese male alcoholics. Alcohol. Clin. Exp. Res. 33:799–803 [Google Scholar]
  25. Lee SY, Wang TY, Chen SL, Huang SY, Tzeng NS. 25.  et al. 2013. Interaction between novelty seeking and the aldehyde dehydrogenase 2 gene in heroin-dependent patients. J. Clin. Psychopharmacol. 33:386–90 [Google Scholar]
  26. Wang YS, Lee SY, Chen SL, Chang YH, Wang TY. 26.  et al. 2013. Role of DRD2 and ALDH2 genes in bipolar II disorder with and without comorbid anxiety disorder. Eur. Psychiatry 29:142–48 [Google Scholar]
  27. Harada S, Agarwal DP, Goedde HW. 27.  1985. Aldehyde dehydrogenase polymorphism and alcohol metabolism in alcoholics. Alcohol 2:391–92 [Google Scholar]
  28. Takeuchi F, Isono M, Nabika T, Katsuya T, Sugiyama T. 28.  et al. 2011. Confirmation of ALDH2 as a major locus of drinking behavior and of its variants regulating multiple metabolic phenotypes in a Japanese population. Circ. J. 75:911–18 [Google Scholar]
  29. Yang X, Lu X, Wang L, Chen S, Li J. 29.  et al. 2013. Common variants at 12q24 are associated with drinking behavior in Han Chinese. Am. J. Clin. Nutr. 97:545–51 [Google Scholar]
  30. Wang TY, Lee SY, Chen SL, Chen SH, Chu CH. 30.  et al. 2012. The aldehyde dehydrogenase 2 gene is associated with heroin dependence. Drug Alcohol Depend. 120:220–24 [Google Scholar]
  31. Ohsawa I, Nishimaki K, Murakami Y, Suzuki Y, Ishikawa M, Ohta S. 31.  2008. Age-dependent neurodegeneration accompanying memory loss in transgenic mice defective in mitochondrial aldehyde dehydrogenase 2 activity. J. Neurosci. 28:6239–49 [Google Scholar]
  32. Kamino K, Nagasaka K, Imagawa M, Yamamoto H, Yoneda H. 32.  et al. 2000. Deficiency in mitochondrial aldehyde dehydrogenase increases the risk for late-onset Alzheimer's disease in the Japanese population. Biochem. Biophys. Res. Commun. 273:192–96 [Google Scholar]
  33. Wang B, Wang J, Zhou S, Tan S, He X. 33.  et al. 2008. The association of mitochondrial aldehyde dehydrogenase gene (ALDH2) polymorphism with susceptibility to late-onset Alzheimer's disease in Chinese. J. Neurol. Sci. 268:172–75 [Google Scholar]
  34. Kim JM, Stewart R, Shin IS, Jung JS, Yoon JS. 34.  2004. Assessment of association between mitochondrial aldehyde dehydrogenase polymorphism and Alzheimer's disease in an older Korean population. Neurobiol. Aging 25:295–301 [Google Scholar]
  35. Wey MC, Fernandez E, Martinez PA, Sullivan P, Goldstein DS, Strong R. 35.  2012. Neurodegeneration and motor dysfunction in mice lacking cytosolic and mitochondrial aldehyde dehydrogenases: implications for Parkinson's disease. PLOS ONE 7e31522
  36. Fitzmaurice AG, Rhodes SL, Cockburn M, Ritz B, Bronstein JM. 36.  2014. Aldehyde dehydrogenase variation enhances effect of pesticides associated with Parkinson disease. Neurology 82:419–26 [Google Scholar]
  37. Dickson PA, James MR, Heath AC, Montgomery GW, Martin NG. 37.  et al. 2006. Effects of variation at the ALDH2 locus on alcohol metabolism, sensitivity, consumption, and dependence in Europeans. Alcohol. Clin. Exp. Res. 30:1093–100 [Google Scholar]
  38. Hsieh AY, Tripp DA, Ji LJ, Sullivan MJ. 38.  2010. Comparisons of catastrophizing, pain attitudes, and cold-pressor pain experience between Chinese and European Canadian young adults. J. Pain 11:1187–94 [Google Scholar]
  39. Watson PJ, Latif RK, Rowbotham DJ. 39.  2005. Ethnic differences in thermal pain responses: a comparison of South Asian and White British healthy males. Pain 118:194–200 [Google Scholar]
  40. Woodrow KM, Friedman GD, Siegelaub AB, Collen MF. 40.  1972. Pain tolerance: differences according to age, sex and race. Psychosom. Med. 34:548–56 [Google Scholar]
  41. Bang S, Kim KY, Yoo S, Kim YG, Hwang SW. 41.  2007. Transient receptor potential A1 mediates acetaldehyde-evoked pain sensation. Eur. J. Neurosci. 26:2516–23 [Google Scholar]
  42. Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R. 42.  et al. 2007. 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc. Natl. Acad. Sci. USA 104:13519–24 [Google Scholar]
  43. Zambelli VO, Gross ER, Chen CH, Gutierrez VP, Cury Y, Mochly-Rosen D. 43.  2014. Aldehyde dehydrogenase-2 regulates nociception in rodent models of acute inflammatory pain. Sci. Transl. Med. 6:251251ra118. [Google Scholar]
  44. Murata C, Suzuki Y, Muramatsu T, Taniyama M, Atsumi Y. 44.  et al. 2000. Inactive aldehyde dehydrogenase 2 worsens glycemic control in patients with type 2 diabetes mellitus who drink low to moderate amounts of alcohol. Alcohol. Clin. Exp. Res. 24:5S–11S [Google Scholar]
  45. Xu F, Chen Y, Lv R, Zhang H, Tian H. 45.  et al. 2010. ALDH2 genetic polymorphism and the risk of type II diabetes mellitus in CAD patients. Hypertens. Res. 33:49–55 [Google Scholar]
  46. Yamaguchi J, Hasegawa Y, Kawasaki M, Masui T, Kanoh T. 46.  et al. 2006. ALDH2 polymorphisms and bone mineral density in an elderly Japanese population. Osteoporos. Int. 17:908–13 [Google Scholar]
  47. Takagi S, Iwai N, Yamauchi R, Kojima S, Yasuno S. 47.  et al. 2002. Aldehyde dehydrogenase 2 gene is a risk factor for myocardial infarction in Japanese men. Hypertens. Res. 25:677–81 [Google Scholar]
  48. Jo SA, Kim EK, Park MH, Han C, Park HY. 48.  et al. 2007. A Glu487Lys polymorphism in the gene for mitochondrial aldehyde dehydrogenase 2 is associated with myocardial infarction in elderly Korean men. Clin. Chim. Acta 382:43–47 [Google Scholar]
  49. Xu F, Chen YG, Xue L, Li RJ, Zhang H. 49.  et al. 2011. Role of aldehyde dehydrogenase 2 Glu504lys polymorphism in acute coronary syndrome. J. Cell. Mol. Med. 15:1955–62 [Google Scholar]
  50. Takeuchi F, Yokota M, Yamamoto K, Nakashima E, Katsuya T. 50.  et al. 2012. Genome-wide association study of coronary artery disease in the Japanese. Eur. J. Hum. Genet. 20:333–40 [Google Scholar]
  51. Wang Q, Zhou S, Wang L, Lei M, Wang Y. 51.  et al. 2013. ALDH2 rs671 polymorphism and coronary heart disease risk among Asian populations: a meta-analysis and meta-regression. DNA Cell Biol. 32:393–99 [Google Scholar]
  52. Thielmann M, Kottenberg E, Kleinbongard P, Wendt D, Gedik N. 52.  et al. 2013. Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial. Lancet 382:597–604 [Google Scholar]
  53. Chen CH, Budas GR, Churchill EN, Disatnik MH, Hurley TD, Mochly-Rosen D. 53.  2008. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science 321:1493–95 [Google Scholar]
  54. Gross ER, Hsu AK, Urban TJ, Mochly-Rosen D, Gross GJ. 54.  2013. Nociceptive-induced myocardial remote conditioning is mediated by neuronal gamma protein kinase C. Basic Res. Cardiol. 108:381 [Google Scholar]
  55. Contractor H, Stottrup NB, Cunnington C, Manlhiot C, Diesch J. 55.  et al. 2013. Aldehyde dehydrogenase-2 inhibition blocks remote preconditioning in experimental and human models. Basic Res. Cardiol. 108:343 [Google Scholar]
  56. Zhang H, Gong DX, Zhang YJ, Li SJ, Hu S. 56.  2012. Effect of mitochondrial aldehyde dehydrogenase-2 genotype on cardioprotection in patients with congenital heart disease. Eur. Heart J. 33:1606–14 [Google Scholar]
  57. Guo JM, Liu AJ, Zang P, Dong WZ, Ying L. 57.  et al. 2013. ALDH2 protects against stroke by clearing 4-HNE. Cell Res. 23:915–30 [Google Scholar]
  58. Fu SH, Zhang HF, Yang ZB, Li TB, Liu B. 58.  et al. 2014. Alda-1 reduces cerebral ischemia/reperfusion injury in rat through clearance of reactive aldehydes. Naunyn-Schmiedeberg's Arch. Pharmacol. 387:87–94 [Google Scholar]
  59. Rantakomi SH, Laukkanen JA, Sivenius J, Kauhanen J, Kurl S. 59.  2013. Hangover and the risk of stroke in middle-aged men. Acta Neurol. Scand. 127:186–91 [Google Scholar]
  60. Nagasawa H, Wada M, Arawaka S, Kawanami T, Kurita K. 60.  et al. 2007. A polymorphism of the aldehyde dehydrogenase 2 gene is a risk factor for multiple lacunar infarcts in Japanese men: the Takahata Study. Eur. J. Neurol. 14:428–34 [Google Scholar]
  61. Hui P, Nakayama T, Morita A, Sato N, Hishiki M. 61.  et al. 2007. Common single nucleotide polymorphisms in Japanese patients with essential hypertension: aldehyde dehydrogenase 2 gene as a risk factor independent of alcohol consumption. Hypertens. Res. 30:585–92 [Google Scholar]
  62. Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ. 62.  et al. 2011. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat. Genet. 43:531–38 [Google Scholar]
  63. Lai CL, Liu MT, Yin SJ, Lee JT, Lu CC, Peng GS. 63.  2012. Heavy binge drinking may increase risk of stroke in nonalcoholic hypertensives carrying variant ALDH2*2 gene allele. Acta Neurol. Taiwanica 21:39–43 [Google Scholar]
  64. Hegab AE, Ha VL, Darmawan DO, Gilbert JL, Ooi AT. 64.  et al. 2012. Isolation and in vitro characterization of basal and submucosal gland duct stem/progenitor cells from human proximal airways. Stem Cells Transl. Med. 1:719–24 [Google Scholar]
  65. Corradi M, Pignatti P, Manini P, Andreoli R, Goldoni M. 65.  et al. 2004. Comparison between exhaled and sputum oxidative stress biomarkers in chronic airway inflammation. Eur. Respir. J. 24:1011–17 [Google Scholar]
  66. Takao A, Shimoda T, Kohno S, Asai S, Harda S. 66.  1998. Correlation between alcohol-induced asthma and acetaldehyde dehydrogenase-2 genotype. J. Allergy Clin. Immunol. 101:576–80 [Google Scholar]
  67. Park JY, Matsuo K, Suzuki T, Ito H, Hosono S. 67.  et al. 2010. Impact of smoking on lung cancer risk is stronger in those with the homozygous aldehyde dehydrogenase 2 null allele in a Japanese population. Carcinogenesis 31:660–65 [Google Scholar]
  68. Secretan B, Straif K, Baan R, Grosse Y, El Ghissassi F. 68.  et al. 2009. A review of human carcinogens—Part E: tobacco, areca nut, alcohol, coal smoke, and salted fish. Lancet Oncol. 10:1033–34 [Google Scholar]
  69. Cui R, Kamatani Y, Takahashi A, Usami M, Hosono N. 69.  et al. 2009. Functional variants in ADH1B and ALDH2 coupled with alcohol and smoking synergistically enhance esophageal cancer risk. Gastroenterology 137:1768–75 [Google Scholar]
  70. Yokoyama A, Muramatsu T, Ohmori T, Higuchi S, Hayashida M, Ishii H. 70.  1996. Esophageal cancer and aldehyde dehydrogenase-2 genotypes in Japanese males. Cancer Epidemiol. Biomarkers Prev. 5:99–102 [Google Scholar]
  71. Dura P, Berkers T, van Veen EM, Salomon J, te Morsche RHM. 71.  et al. 2013. Polymorphisms in alcohol-metabolizing enzymes and esophageal carcinoma susceptibility: a Dutch Caucasian case-control study. J. Hum. Genet. 58:742–48 [Google Scholar]
  72. Oze I, Matsuo K, Wakai K, Nagata C, Mizoue T. 72.  et al. 2011. Alcohol drinking and esophageal cancer risk: an evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn. J. Clin. Oncol. 41:677–92 [Google Scholar]
  73. Matsuo K, Oze I, Hosono S, Ito H, Watanabe M. 73.  et al. 2013. The aldehyde dehydrogenase 2 (ALDH2) Glu504Lys polymorphism interacts with alcohol drinking in the risk of stomach cancer. Carcinogenesis 34:1510–15 [Google Scholar]
  74. Cao HX, Li SP, Wu JZ, Gao CM, Su P. 74.  et al. 2010. Alcohol dehydrogenase-2 and aldehyde dehydrogenase-2 genotypes, alcohol drinking and the risk for stomach cancer in Chinese males. Asian Pac. J. Cancer Prev. 11:1073–77 [Google Scholar]
  75. Miyasaka K, Kawanami T, Shimokata H, Ohta S, Funakoshi A. 75.  2005. Inactive aldehyde dehydrogenase-2 increased the risk of pancreatic cancer among smokers in a Japanese male population. Pancreas 30:95–98 [Google Scholar]
  76. Kanda J, Matsuo K, Suzuki T, Kawase T, Hiraki A. 76.  et al. 2009. Impact of alcohol consumption with polymorphisms in alcohol-metabolizing enzymes on pancreatic cancer risk in Japanese. Cancer Sci. 100:296–302 [Google Scholar]
  77. Tomoda T, Nouso K, Sakai A, Ouchida M, Kobayashi S. 77.  et al. 2012. Genetic risk of hepatocellular carcinoma in patients with hepatitis C virus: a case control study. J. Gastroenterol. Hepatol. 27:797–804 [Google Scholar]
  78. Chiang CP, Jao SW, Lee SP, Chen PC, Chung CC. 78.  et al. 2012. Expression pattern, ethanol-metabolizing activities, and cellular localization of alcohol and aldehyde dehydrogenases in human large bowel: association of the functional polymorphisms of ADH and ALDH genes with hemorrhoids and colorectal cancer. Alcohol 46:37–49 [Google Scholar]
  79. Miyasaka K, Hosoya H, Tanaka Y, Uegaki S, Kino K. 79.  et al. 2010. Association of aldehyde dehydrogenase 2 gene polymorphism with pancreatic cancer but not colon cancer. Geriatr. Gerontol. Int. 10:Suppl. 1S120–26 [Google Scholar]
  80. Garaycoechea JI, Crossan GP, Langevin F, Daly M, Arends MJ, Patel KJ. 80.  2012. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 489:571–75 [Google Scholar]
  81. Langevin F, Crossan GP, Rosado IV, Arends MJ, Patel KJ. 81.  2011. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 475:53–58 [Google Scholar]
  82. Hira A, Yabe H, Yoshida K, Okuno Y, Shiraishi Y. 82.  et al. 2013. Variant ALDH2 is associated with accelerated progression of bone marrow failure in Japanese Fanconi anemia patients. Blood 122:3206–9 [Google Scholar]
  83. Wilkin JK, Fortner G. 83.  1985. Ethnic contact urticaria to alcohol. Contact Dermat. 12:118–20 [Google Scholar]
  84. Wong JW, Harris K, Powell D. 84.  2011. Alcohol urticaria syndrome. Dermatitis 22:350–54 [Google Scholar]
  85. Kramer A, Below H, Bieber N, Kampf G, Toma CD. 85.  et al. 2007. Quantity of ethanol absorption after excessive hand disinfection using three commercially available hand rubs is minimal and below toxic levels for humans. BMC Infect. Dis. 7:117 [Google Scholar]
  86. Salvo N, Barnes E, van Draanen J, Stacey E, Mitera G. 86.  et al. 2010. Prophylaxis and management of acute radiation-induced skin reactions: a systematic review of the literature. Curr. Oncol. 17:94–112 [Google Scholar]
  87. Ning S, Budas GR, Churchill EN, Chen CH, Knox SJ, Mochly-Rosen D. 87.  2012. Mitigation of radiation-induced dermatitis by activation of aldehyde dehydrogenase 2 using topical Alda-1 in mice. Radiat. Res. 178:69–74 [Google Scholar]
  88. Koppaka V, Thompson DC, Chen Y, Ellermann M, Nicolaou KC. 88.  et al. 2012. Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol. Rev. 64:520–39 [Google Scholar]
  89. Aslibekyan S, Brown EE, Reynolds RJ, Redden DT, Morgan S. 89.  et al. 2013. Genetic variants associated with methotrexate efficacy and toxicity in early rheumatoid arthritis: results from the treatment of early aggressive rheumatoid arthritis trial. Pharmacogenomics J. 14:48–53 [Google Scholar]
  90. Mayer B, Beretta M. 90.  2008. The enigma of nitroglycerin bioactivation and nitrate tolerance: news, views and troubles. Br. J. Pharmacol. 155:170–84 [Google Scholar]
  91. Ferreira JC, Mochly-Rosen D. 91.  2012. Nitroglycerin use in myocardial infarction patients. Circ. J. 76:15–21 [Google Scholar]
  92. Mackenzie IS, Maki-Petaja KM, McEniery CM, Bao YP, Wallace SM. 92.  et al. 2005. Aldehyde dehydrogenase 2 plays a role in the bioactivation of nitroglycerin in humans. Arterioscler. Thromb. Vasc. Biol. 25:1891–95 [Google Scholar]
  93. Li Y, Zhang D, Jin W, Shao C, Yan P. 93.  et al. 2006. Mitochondrial aldehyde dehydrogenase-2 (ALDH2) Glu504Lys polymorphism contributes to the variation in efficacy of sublingual nitroglycerin. J. Clin. Invest. 116:506–11 [Google Scholar]
  94. Munzel T, Daiber A, Mulsch A. 94.  2005. Explaining the phenomenon of nitrate tolerance. Circ. Res. 97:618–28 [Google Scholar]
  95. Ankolekar S, Fuller M, Cross I, Renton C, Cox P. 95.  et al. 2013. Feasibility of an ambulance-based stroke trial, and safety of glyceryl trinitrate in ultra-acute stroke: the rapid intervention with glyceryl trinitrate in Hypertensive Stroke Trial (RIGHT, ISRCTN66434824). Stroke J. Cereb. Circ. 44:3120–28 [Google Scholar]
  96. Sun L, Ferreira JC, Mochly-Rosen D. 96.  2011. ALDH2 activator inhibits increased myocardial infarction injury by nitroglycerin tolerance. Sci. Transl. Med. 3:107ra11 [Google Scholar]
  97. Chen Z, Foster MW, Zhang J, Mao L, Rockman HA. 97.  et al. 2005. An essential role for mitochondrial aldehyde dehydrogenase in nitroglycerin bioactivation. Proc. Natl. Acad. Sci. USA 102:12159–64 [Google Scholar]
  98. de Miranda P, Blum MR. 98.  1983. Pharmacokinetics of acyclovir after intravenous and oral administration. J. Antimicrob. Chemother. 12:Suppl. B29–37 [Google Scholar]
  99. de Miranda P, Good SS, Laskin OL, Krasny HC, Connor JD, Lietman PS. 99.  1981. Disposition of intravenous radioactive acyclovir. Clin. Pharmacol. Ther. 30:662–72 [Google Scholar]
  100. Hara K, Suyama K, Itoh H, Nagashima S. 100.  2008. Influence of ALDH2 genetic polymorphisms on aciclovir pharmacokinetics following oral administration of valaciclovir in Japanese end-stage renal disease patients. Drug Metab. Pharmacokinet. 23:306–12 [Google Scholar]
  101. Castro JA, de Mecca MM, Bartel LC. 101.  2006. Toxic side effects of drugs used to treat Chagas' disease (American trypanosomiasis). Hum. Exp. Toxicol. 25:471–79 [Google Scholar]
  102. Zhou L, Ishizaki H, Spitzer M, Taylor KL, Temperley ND. 102.  et al. 2012. ALDH2 mediates 5-nitrofuran activity in multiple species. Chem. Biol. 19:883–92 [Google Scholar]
  103. Saulnier Sholler GL, Bergendahl GM, Brard L, Singh AP, Heath BW. 103.  et al. 2011. A phase 1 study of nifurtimox in patients with relapsed/refractory neuroblastoma. J. Pediatr. Hematol. Oncol. 33:25–30 [Google Scholar]
  104. Landin JS, Cohen SD, Khairallah EA. 104.  1996. Identification of a 54-kDa mitochondrial acetaminophen-binding protein as aldehyde dehydrogenase. Toxicol. Appl. Pharmacol. 141:299–307 [Google Scholar]
  105. Lee YP, Liao JT, Cheng YW, Wu TL, Lee SL. 105.  et al. 2013. Inhibition of human alcohol and aldehyde dehydrogenases by acetaminophen: assessment of the effects on first-pass metabolism of ethanol. Alcohol 47:559–65 [Google Scholar]
  106. Lu Z, Bourdi M, Li JH, Aponte AM, Chen Y. 106.  et al. 2011. SIRT3-dependent deacetylation exacerbates acetaminophen hepatotoxicity. EMBO Rep. 12:840–46 [Google Scholar]
  107. Yoval-Sánchez B, Rodríguez-Zavala JS. 107.  2012. Differences in susceptibility to inactivation of human aldehyde dehydrogenases by lipid peroxidation byproducts. Chem. Res. Toxicol. 25:722–29 [Google Scholar]
  108. Staub RE, Quistad GB, Casida JE. 108.  1998. Mechanism for benomyl action as a mitochondrial aldehyde dehydrogenase inhibitor in mice. Chem. Res. Toxicol. 11:535–43 [Google Scholar]
  109. Cherry N, Moore H, McNamee R, Pacey A, Burgess G. 109.  et al. 2008. Occupation and male infertility: glycol ethers and other exposures. Occup. Environ. Med. 65:708–14 [Google Scholar]
  110. Wang RS, Ohtani K, Suda M, Kitagawa K, Nakayama K. 110.  et al. 2007. Reproductive toxicity of ethylene glycol monoethyl ether in Aldh2 knockout mice. Ind. Health 45:574–78 [Google Scholar]
  111. Weng Z, Ohtani K, Suda M, Yanagiba Y, Kawamoto T. 111.  et al. 2014. Assessment of the reproductive toxicity of inhalation exposure to ethyl tertiary butyl ether in male mice with normal, low active and inactive ALDH2. Arch. Toxicol. 88:1007–21 [Google Scholar]
  112. Qaseem A, Denberg TD, Hopkins RH Jr, Humphrey LL, Levine J. 112.  et al. 2012. Screening for colorectal cancer: a guidance statement from the American College of Physicians. Ann. Intern. Med. 156:378–86 [Google Scholar]
  113. Noda J, Umeda S, Mori K, Fukunaga T, Mizoi Y. 113.  1986. Acetaldehyde syndrome after celiac plexus alcohol block. Anesthes. Analg. 65:1300–2 [Google Scholar]
  114. Salaspuro V, Hietala J, Kaihovaara P, Pihlajarinne L, Marvola M, Salaspuro M. 114.  2002. Removal of acetaldehyde from saliva by a slow-release buccal tablet of L-cysteine. Int. J. Cancer J. Int. Cancer 97:361–64 [Google Scholar]
  115. Alkhouri N, Cikach F, Eng K, Moses J, Patel N. 115.  et al. 2014. Analysis of breath volatile organic compounds as a noninvasive tool to diagnose nonalcoholic fatty liver disease in children. Eur. J. Gastroenterol. Hepatol. 26:82–87 [Google Scholar]
  116. Takeshita T, Morimoto K. 116.  2000. Accumulation of hemoglobin-associated acetaldehyde with habitual alcohol drinking in the atypical ALDH2 genotype. Alcohol. Clin. Exp. Res. 24:1–7 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010814-124915
Loading
/content/journals/10.1146/annurev-pharmtox-010814-124915
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error