1932

Abstract

Recent bioapplications of one-dimensional (1D) zinc oxide (ZnO) nanomaterials, despite the short development period, have shown promising signs as new sensors and assay platforms offering exquisite biomolecular sensitivity and selectivity. The incorporation of 1D ZnO nanomaterials has proven beneficial to various modes of biodetection owing to their inherent properties. The more widely explored electrochemical and electrical approaches tend to capitalize on the reduced physical dimensionality, yielding a high surface-to-volume ratio, as well as on the electrical properties of ZnO. The newer development of the use of 1D ZnO nanomaterials in fluorescence-based biodetection exploits the innate optical property of their high anisotropy. This review considers stimulating research advances made to identify and understand fundamental properties of 1D ZnO nanomaterials, and examines various biosensing modes utilizing them, while focusing on the unique optical properties of individual and ensembles of 1D ZnO nanomaterials specifically pertaining to their bio-optical applications in simple and complex fluorescence assays.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-031215-010949
2016-05-27
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/physchem/67/1/annurev-physchem-031215-010949.html?itemId=/content/journals/10.1146/annurev-physchem-031215-010949&mimeType=html&fmt=ahah

Literature Cited

  1. Kołodziejczak-Radzimska A, Jesionowski T. 1.  2014. Zinc oxide—from synthesis to application: a review. Materials 7:2833–81 [Google Scholar]
  2. Wang ZL. 2.  2008. Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology. ACS Nano 2:1987–92 [Google Scholar]
  3. Gao PX, Wang ZL. 3.  2004. Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process. J. Phys. Chem. B 108:7534–37 [Google Scholar]
  4. Kumar N, Dorfman A, Hahm JI. 4.  2005. Fabrication of optically enhanced ZnO nanorods and microrods using novel biocatalysts. J. Nanosci. Nanotechnol. 5:1915–18 [Google Scholar]
  5. Park WI, Kim DH, Jung SW, Yi GC. 5.  2002. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett. 80:4232–34 [Google Scholar]
  6. Wang ZL. 6.  2004. Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter 16:R829–58 [Google Scholar]
  7. Wu JJ, Liu SC. 7.  2002. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv. Mater. 14:215–18 [Google Scholar]
  8. Yang P, Yan H, Mao S, Russo R, Johnson J. 8.  et al. 2002. Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 12:323–31 [Google Scholar]
  9. Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA. 9.  et al. 2005. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98:041301 [Google Scholar]
  10. Liu X, Wu X, Cao H, Chang RPH. 10.  2004. Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 95:3141–47 [Google Scholar]
  11. Greene LE, Law M, Goldberger J, Kim F, Johnson JC. 11.  et al. 2003. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 42:3031–34 [Google Scholar]
  12. Vayssieres L. 12.  2003. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15:464–66 [Google Scholar]
  13. Vayssieres L, Keis K, Hagfeldt A, Lindquist SE. 13.  2001. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 13:4395–98 [Google Scholar]
  14. Vayssieres L, Keis K, Lindquist SE, Hagfeldt A. 14.  2001. Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. J. Phys. Chem. B 105:3550–52 [Google Scholar]
  15. Tam KH, Cheung CK, Leung YH, Djurišić AB, Ling CC. 15.  et al. 2006. Defects in ZnO nanorods prepared by a hydrothermal method. J. Phys. Chem. B 110:20865–71 [Google Scholar]
  16. Liu Y, Ai K, Yuan Q, Lu L. 16.  2011. Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging. Biomaterials 32:1185–92 [Google Scholar]
  17. Yuan Q, Hein S, Misra RDK. 17.  2010. New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response. Acta Biomater. 6:2732–39 [Google Scholar]
  18. Kachynski AV, Kuzmin AN, Nyk M, Roy I, Prasad PN. 18.  2008. Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine. J. Phys. Chem. C 112:10721–24 [Google Scholar]
  19. George S, Pokhrel S, Xia T, Gilbert B, Ji Z. 19.  et al. 2010. Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4:15–29 [Google Scholar]
  20. Willander M, Nur O, Zhao QX, Yang LL, Lorenz M. 20.  et al. 2009. Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnology 20:332001 [Google Scholar]
  21. Klingshirn CF, Waag A, Hoffmann A, Geurts J. 21.  2010. Zinc Oxide: From Fundamental Properties Towards Novel Applications Berlin: Springer
  22. Kupec J, Stoop RL, Witzigmann B. 22.  2010. Light absorption and emission in nanowire array solar cells. Opt. Express 18:27589–605 [Google Scholar]
  23. Grange R, Brönstrup G, Kiometzis M, Sergeyev A, Richter J. 23.  et al. 2012. Far-field imaging for direct visualization of light interferences in GaAs nanowires. Nano Lett. 12:5412–17 [Google Scholar]
  24. Law M, Sirbuly DJ, Johnson JC, Goldberger J, Saykally RJ, Yang P. 24.  2004. Nanoribbon waveguides for subwavelength photonics integration. Science 305:1269–73 [Google Scholar]
  25. Sirbuly DJ, Law M, Pauzauskie P, Yan H, Maslov AV. 25.  et al. 2005. Optical routing and sensing with nanowire assemblies. PNAS 102:7800–5 [Google Scholar]
  26. Grzela G, Paniagua-Domínguez R, Barten T, Fontana Y, Sánchez-Gil JA, Rivas JG. 26.  2012. Nanowire antenna emission. Nano Lett. 12:5481–86 [Google Scholar]
  27. Yan R, Park J-H, Choi Y, Heo C-J, Yang S-M. 27.  et al. 2012. Nanowire-based single-cell endoscopy. Nat. Nanotechnol. 7:191–96 [Google Scholar]
  28. Carlo C, Peter K, Jesper N, Mark LB, Fontcuberta i Morral A. 28.  2011. Engineering light absorption in single-nanowire solar cells with metal nanoparticles. New J. Phys. 13:123026 [Google Scholar]
  29. Johnson JC, Yan H, Schaller RD, Haber LH, Saykally RJ, Yang P. 29.  2001. Single nanowire lasers. J. Phys. Chem. B 105:11387–90 [Google Scholar]
  30. Huang MH, Mao S, Feick H, Yan HQ, Wu YY. 30.  et al. 2001. Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–99 [Google Scholar]
  31. Zhang C, Zhang F, Xia T, Kumar N, Hahm J-I. 31.  et al. 2009. Low-threshold two-photon pumped ZnO nanowire lasers. Opt. Express 17:7893–900 [Google Scholar]
  32. Ishikawa-Ankerhold HC, Ankerhold R, Drummen GPC. 32.  2012. Advanced fluorescence microscopy techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17:4047–132 [Google Scholar]
  33. Pepperkok R, Ellenberg J. 33.  2006. High-throughput fluorescence microscopy for systems biology. Nat. Rev. Mol. Cell Biol. 7:690–96 [Google Scholar]
  34. Lichtman JW, Conchello J-A. 34.  2005. Fluorescence microscopy. Nat. Meth. 2:910–19 [Google Scholar]
  35. Waters JC. 35.  2009. Accuracy and precision in quantitative fluorescence microscopy. J. Cell Biol. 185:1135–48 [Google Scholar]
  36. Lakowicz JR. 36.  2006. Principles of Fluorescence Spectroscopy New York: Springer
  37. Hahm J. 37.  2010. Enhanced fluorescence detection enabled by zinc oxide nanomaterials. Metal-Enhanced Fluorescence CD Geddes 363–91 Hoboken, NJ: Wiley [Google Scholar]
  38. Hahm J. 38.  2014. Zinc oxide nanomaterials for biomedical fluorescence detection. J. Nanosci. Nanotechnol. 14:475–86 [Google Scholar]
  39. Dorfman A, Kumar N, Hahm J. 39.  2006. Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms. Langmuir 22:4890–95 [Google Scholar]
  40. Singh M, Song S, Hahm J-I. 40.  2014. Unique temporal and spatial biomolecular emission profile on individual zinc oxide nanorods. Nanoscale 6:308–15 [Google Scholar]
  41. Adalsteinsson V, Parajuli O, Kepics S, Gupta A, Reeves WB, Hahm J-I. 41.  2008. Ultrasensitive detection of cytokines enabled by nanoscale ZnO arrays. Anal. Chem. 80:6594–601 [Google Scholar]
  42. Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S. 42.  2005. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16:63–72 [Google Scholar]
  43. Han XX, Kitahama Y, Tanaka Y, Guo J, Xu WQ. 43.  et al. 2008. Simplified protocol for detection of protein–ligand interactions via surface-enhanced resonance Raman scattering and surface-enhanced fluorescence. Anal. Chem. 80:6567–72 [Google Scholar]
  44. Margineanu A, Hofkens J, Cotlet M, Habuchi S, Stefan A. 44.  et al. 2004. Photophysics of a water-soluble rylene dye: comparison with other fluorescent molecules for biological applications. J. Phys. Chem. B 108:12242–51 [Google Scholar]
  45. Song L, Hennink EJ, Young T, Tanke HJ. 45.  1995. Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys. J. 68:2588–600 [Google Scholar]
  46. Dorfman A, Kumar N, Hahm J. 46.  2006. Nanoscale ZnO-enhanced fluorescence detection of protein interactions. Adv. Mater. 18:2685–90 [Google Scholar]
  47. Cui J. 47.  2008. Defect control and its influence on the exciton emission of electrodeposited ZnO nanorods. J. Phys. Chem. C 112:10385–88 [Google Scholar]
  48. Greene LE, Law M, Tan DH, Montano M, Goldberger J. 48.  et al. 2005. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 5:1231–36 [Google Scholar]
  49. Dorfman A, Parajuli O, Kumar N, Hahm J. 49.  2008. Novel telomeric repeat elongation assay performed on ZnO nanorod array supports. J. Nanosci. Nanotechnol. 8:410–15 [Google Scholar]
  50. Kumar N, Dorfman A, Hahm J. 50.  2006. Ultrasensitive DNA sequence detection of Bacillus anthracis using nanoscale ZnO sensor arrays. Nanotechnology 17:2875–81 [Google Scholar]
  51. Singh M, Jiang R, Coia H, Choi DS, Alabanza A. 51.  et al. 2015. Insight into factors affecting the presence, degree, and temporal stability of fluorescence intensification on ZnO nanorod ends. Nanoscale 7:1424–36 [Google Scholar]
  52. Aslan K, Lakowicz JR, Szmacinski H, Geddes CD. 52.  2004. Metal-enhanced fluorescence solution-based sensing platform. J. Fluoresc. 14:677–79 [Google Scholar]
  53. Lakowicz JR. 53.  2001. Radiative decay engineering: biophysical and biomedical applications. Anal. Biochem. 298:1–24 [Google Scholar]
  54. Lakowicz JR, Malicka J, D’Auria S, Gryczynski I. 54.  2003. Release of the self-quenching of fluorescence near silver metallic surfaces. Anal. Biochem. 320:13–20 [Google Scholar]
  55. Lakowicz JR, Shen Y, D’Auria S, Malicka J, Fang J. 55.  et al. 2002. Radiative decay engineering: 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal. Biochem. 301:261–77 [Google Scholar]
  56. Li Z, Yang R, Yu M, Bai F, Li C, Wang ZL. 56.  2008. Cellular level biocompatibility and biosafety of ZnO nanowires. J. Phys. Chem. C 112:20114–17 [Google Scholar]
  57. Grasset F, Saito N, Li D, Park D, Sakaguchi I. 57.  et al. 2003. Surface modification of zinc oxide nanoparticles by aminopropyltriethoxysilane. J. Alloys Compd. 360:298–311 [Google Scholar]
  58. Heo YW, Pearton SJ, Norton DP, Ren F. 58.  2011. ZnO thin-film and nanowire-based sensing applications. Semiconductor Device-Based Sensors for Gas, Chemical, and Biomedical Applications F Ren, SJ Pearton 149–214 Philadelphia: Taylor & Francis [Google Scholar]
  59. Park H-Y, Gedi V, Kim J, Park H-C, Han S-H, Yoon M-Y. 59.  2011. Ultrasensitive diagnosis for an anthrax-protective antigen based on a polyvalent directed peptide polymer coupled to zinc oxide nanorods. Adv. Mater. 23:5425–29 [Google Scholar]
  60. Choi A, Kim K, Jung H-I, Lee SY. 60.  2010. ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode. Sens. Actuators B 148:577–82 [Google Scholar]
  61. Hu W, Liu Y, Chen T, Liu Y, Li CM. 61.  2015. Hybrid ZnO nanorod-polymer brush hierarchically nanostructured substrate for sensitive antibody microarrays. Adv. Mater. 27:181–85 [Google Scholar]
  62. Yin Y, Sun Y, Yu M, Liu X, Jiang T. 62.  et al. 2015. ZnO nanorod array grown on Ag layer: a highly efficient fluorescence enhancement platform. Sci. Rep. 5:8152 [Google Scholar]
  63. Hahm J. 63.  2013. Biomedical detection via macro- and micro-sensors fabricated with metallic and semiconducting oxides. J. Biomed. Nanotechnol. 9:1–25 [Google Scholar]
  64. Cao H, Xu JY, Zhang DZ, Chang SH, Ho ST. 64.  et al. 2000. Spatial confinement of laser light in active random media. Phys. Rev. Lett. 84:5584–87 [Google Scholar]
  65. Chu S, Wang G, Zhou W, Lin Y, Chernyak L. 65.  et al. 2011. Electrically pumped waveguide lasing from ZnO nanowires. Nat. Nanotechnol. 6:506–10 [Google Scholar]
  66. Koch MH, Timbrell PY, Lamb RN. 66.  1995. The influence of film crystallinity on the coupling efficiency of ZnO optical modulator waveguides. Semicond. Sci. Technol. 10:1523–27 [Google Scholar]
  67. Yu SF, Yuen C, Lau SP, Lee HW. 67.  2004. Zinc oxide thin-film random lasers on silicon substrate. Appl. Phys. Lett. 84:3244–46 [Google Scholar]
  68. Yuen C, Yu SF, Leong ESP, Yang HY, Lau SP. 68.  et al. 2005. Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer. Appl. Phys. Lett. 86:031112 [Google Scholar]
  69. Lee Y-J, Ruby DS, Peters DW, McKenzie BB, Hsu JWP. 69.  2008. ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett. 8:1501–5 [Google Scholar]
  70. Salman KA, Omar K, Hassan Z. 70.  2012. Effective conversion efficiency enhancement of solar cell using ZnO/PS antireflection coating layers. Sol. Energy 86:541–47 [Google Scholar]
  71. Kaiser R, Levy Y, Vansteenkiste N, Aspect A, Seifert W. 71.  et al. 1994. Resonant enhancement of evanescent waves with a thin dielectric waveguide. Opt. Commun. 104:234–40 [Google Scholar]
  72. Wang G, Spalding GC, Huang R, Luan L, Ketterson JB. 72.  2003. Numerical analysis of waveguide-enhanced optical bistability. Opt. Quantum Electron. 35:1357–66 [Google Scholar]
  73. Johnson JC, Yan H, Choi H-J, Knutsen KP, Petersen PB. 73.  et al. 2010. Single nanowire waveguides and lasers. Proc. SPIE 5223:187–96 [Google Scholar]
  74. Johnson JC, Yan H, Yang P, Saykally RJ. 74.  2003. Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B 107:8816–28 [Google Scholar]
  75. Voss T, Svacha GT, Mazur E, Müller S, Ronning C. 75.  et al. 2007. High-order waveguide modes in ZnO nanowires. Nano Lett. 7:3675–80 [Google Scholar]
  76. Sirbuly DJ, Tao A, Law M, Fan R, Yang P. 76.  2007. Multifunctional nanowire evanescent wave optical sensors. Adv. Mater. 19:61–66 [Google Scholar]
  77. Börner S, Rüter CE, Voss T, Kip D, Schade W. 77.  2007. Modeling of ZnO nanorods for evanescent field optical sensors. Phys. Status Solidi A 204:3487–95 [Google Scholar]
  78. Pauzauskie PJ, Yang P. 78.  2006. Nanowire photonics. Mater. Today 9:36–45 [Google Scholar]
  79. Yan R, Gargas D, Yang P. 79.  2009. Nanowire photonics. Nat. Photonics 3:569–76 [Google Scholar]
  80. Snyder AW, Love JD. 80.  1983. Optical Waveguide Theory London: Chapman & Hall
  81. Buck JA. 81.  2004. Fundamentals of Optical Fibers Hoboken, NJ: Wiley
  82. Bond WL. 82.  1965. Measurement of the refractive indices of several crystals. J. Appl. Phys. 36:1674–77 [Google Scholar]
  83. Dahlin AB. 83.  2012. Size matters: problems and advantages associated with highly miniaturized sensors. Sensors 12:3018–36 [Google Scholar]
  84. Luong JH, Male KB, Glennon JD. 84.  2008. Biosensor technology: technology push versus market pull. Biotechnol. Adv. 26:492–500 [Google Scholar]
  85. Melo MR, Clark S, Barrio D. 85.  2011. Miniaturization and globalization of clinical laboratory activities. Clin. Chem. Lab. Med. 49:581–86 [Google Scholar]
  86. Ahn K-Y, Kwon K, Huh J, Kim GT, Lee EB. 86.  et al. 2011. A sensitive diagnostic assay of rheumatoid arthritis using three-dimensional ZnO nanorod structure. Biosens. Bioelectron. 28:378–85 [Google Scholar]
  87. Chen RJ, Choi HC, Bangsaruntip S, Yenilmez E, Tang X. 87.  et al. 2004. An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. J. Am. Chem. Soc. 126:1563–68 [Google Scholar]
  88. Allen BL, Kichambare PD, Star A. 88.  2007. Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 19:1439–51 [Google Scholar]
  89. Maehashi K, Katsura T, Kerman K, Takamura Y, Matsumoto K, Tamiya E. 89.  2007. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal. Chem. 79:782–87 [Google Scholar]
  90. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM. 90.  2005. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23:1294–301 [Google Scholar]
  91. Zheng G, Lieber CM. 91.  2011. Nanowire biosensors for label-free, real-time, ultrasensitive protein detection. Methods Mol. Biol. 790:223–37 [Google Scholar]
  92. Hahm J-I, Lieber CM. 92.  2004. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4:51–54 [Google Scholar]
  93. Cui Y, Wei Q, Park H, Lieber CM. 93.  2001. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–92 [Google Scholar]
  94. Al-Hilli SM, Willander M, Öst A, Strålfors P. 94.  2007. ZnO nanorods as an intracellular sensor for pH measurements. J. Appl. Phys. 102:084304 [Google Scholar]
  95. Zhao J, Wu D, Zhi J. 95.  2009. A novel tyrosinase biosensor based on biofunctional ZnO nanorod microarrays on the nanocrystalline diamond electrode for detection of phenolic compounds. Bioelectrochemistry 75:44–49 [Google Scholar]
  96. Zhao ZW, Chen XJ, Tay BK, Chen JS, Han ZJ, Khor KA. 96.  2007. A novel amperometric biosensor based on ZnO:Co nanoclusters for biosensing glucose. Biosens. Bioelectron. 23:135–39 [Google Scholar]
  97. Zang J, Li CM, Cui X, Wang J, Sun X. 97.  et al. 2007. Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis 19:1008–14 [Google Scholar]
  98. Wei A, Sun XW, Wang JX, Lei Y, Cai XP. 98.  et al. 2006. Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Appl. Phys. Lett. 89:123902 [Google Scholar]
  99. Asif MH, Ali SMU, Nur O, Willander M, Brännmark C. 99.  et al. 2010. Functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose. Biosens. Bioelectron. 25:2205–11 [Google Scholar]
  100. Zhang F, Wang X, Ai S, Sun Z, Wan Q. 100.  et al. 2004. Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal. Chim. Acta 519:155–60 [Google Scholar]
  101. Liu Y-L, Yang Y-H, Yang H-F, Liu Z-M, Shen G-L, Yu R-Q. 101.  2005. Nanosized flower-like ZnO synthesized by a simple hydrothermal method and applied as matrix for horseradish peroxidase immobilization for electro-biosensing. J. Inorg. Biochem. 99:2046–53 [Google Scholar]
  102. Batista PD, Mulato M. 102.  2005. ZnO extended-gate field-effect transistors as pH sensors. Appl. Phys. Lett. 87:143508 [Google Scholar]
  103. Asif MH, Nur O, Willander M, Danielsson B. 103.  2009. Selective calcium ion detection with functionalized ZnO nanorods-extended gate MOSFET. Biosens. Bioelectron. 24:3379–82 [Google Scholar]
  104. Israr MQ, Sadaf JR, Asif MH, Nur O, Willander M, Danielsson B. 104.  2010. Potentiometric cholesterol biosensor based on ZnO nanorods chemically grown on Ag wire. Thin Solid Films 519:1106–9 [Google Scholar]
  105. Ibupoto ZH, Ali SMU, Khun K, Chey CO, Nur O, Willander M. 105.  2011. ZnO nanorods based enzymatic biosensor for selective determination of penicillin. Biosensors 1:153–63 [Google Scholar]
  106. Asif MH, Fulati A, Nur O, Willander M, Brännmark C. 106.  et al. 2009. Functionalized zinc oxide nanorod with ionophore-membrane coating as an intracellular Ca2+ selective sensor. Appl. Phys. Lett. 95:023703 [Google Scholar]
  107. Lei Y, Luo N, Yan X, Zhao Y, Zhang G, Zhang Y. 107.  2012. A highly sensitive electrochemical biosensor based on zinc oxide nanotetrapods for l-lactic acid detection. Nanoscale 4:3438–43 [Google Scholar]
  108. Wang J, Gudiksen MS, Duan X, Cui Y, Lieber CM. 108.  2001. Highly-polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293:1455–57 [Google Scholar]
  109. Tang J, Marcus RA. 109.  2005. Single particle versus ensemble average: from power-law intermittency of a single quantum dot to quasistretched exponential fluorescence decay of an ensemble. J. Chem. Phys. 123:204511 [Google Scholar]
  110. Ratchford D, Dziatkowski K, Hartsfield T, Li X, Gao Y, Tang Z. 110.  2011. Photoluminescence dynamics of ensemble and individual CdSe/ZnS quantum dots with an alloyed core/shell interface. . Appl. Phys. Lett. 109:103509 [Google Scholar]
  111. Dunn K, Derr J, Johnston T, Chaker M, Rosei F. 111.  2009. Multiexponential photoluminescence decay of blinking nanocrystal ensembles. Phys. Rev. B 80:035330 [Google Scholar]
  112. Pelton M, Liu M, Park S, Scherer NF, Guyot-Sionnest P. 112.  2006. Ultrafast resonant optical scattering from single gold nanorods: large nonlinearities and plasmon saturation. Phys. Rev. B 73:155419 [Google Scholar]
  113. Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J. 113.  2010. Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater. 22:1805–25 [Google Scholar]
  114. Zijlstra P, Orrit M. 114.  2011. Single metal nanoparticles: optical detection, spectroscopy and applications. Rep. Prog. Phys. 74:106401 [Google Scholar]
  115. Lu L, Wang L-L, Zou C-L, Ren X-F, Dong C-H. 115.  et al. 2012. Doubly and triply coupled nanowire antennas. J. Phys. Chem. C 116:23779–84 [Google Scholar]
  116. Manjavacas A, García de Abajo FJ. 116.  2009. Robust plasmon waveguides in strongly interacting nanowire arrays. Nano Lett. 9:1285–89 [Google Scholar]
  117. Lindström S, Andersson-Svahn H. 117.  2011. Miniaturization of biological assays: overview on microwell devices for single-cell analyses. Biochim. Biophys. Acta 1810:308–16 [Google Scholar]
  118. Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulos F. 118.  2010. Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens. Bioelectron. 25:1553–65 [Google Scholar]
  119. Spindel S, Sapsford K. 119.  2014. Evaluation of optical detection platforms for multiplexed detection of proteins and the need for point-of-care biosensors for clinical use. Sensors 14:22313–41 [Google Scholar]
  120. Singhal R, Orynbayeva Z, Kalyana Sundaram RV, Niu JJ, Bhattacharyya S. 120.  et al. 2011. Multifunctional carbon-nanotube cellular endoscopes. Nat. Nanotechnol. 6:57–64 [Google Scholar]
  121. Shambat G, Kothapalli S-R, Provine J, Sarmiento T, Harris J. 121.  et al. 2013. Single-cell photonic nanocavity probes. Nano Lett. 13:4999–5005 [Google Scholar]
  122. Lee J, Kang BS, Hicks B, Chancellor J, Thomas F. 122.  et al. 2008. The control of cell adhesion and viability by zinc oxide nanorods. Biomaterials 29:3743–49 [Google Scholar]
/content/journals/10.1146/annurev-physchem-031215-010949
Loading
/content/journals/10.1146/annurev-physchem-031215-010949
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error