1932

Abstract

The notion of structure is central to the subject of chemistry. This review traces the development of the idea of crystal structure since the time when a crystal structure could be determined from a three-dimensional diffraction pattern and assesses the feasibility of computationally predicting an unknown crystal structure of a given molecule. Crystal structure prediction is of considerable fundamental and applied importance, and its successful execution is by no means a solved problem. The ease of crystal structure determination today has resulted in the availability of large numbers of crystal structures of higher-energy polymorphs and pseudopolymorphs. These structural libraries lead to the concept of a crystal structure landscape. A crystal structure of a compound may accordingly be taken as a data point in such a landscape.

[Erratum, Closure]

An erratum has been published for this article:
Crystal Structure and Prediction
Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040214-121452
2015-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/physchem/66/1/annurev-physchem-040214-121452.html?itemId=/content/journals/10.1146/annurev-physchem-040214-121452&mimeType=html&fmt=ahah

Literature Cited

  1. Kitaigorodskii AI. 1.  1973. Molecular Crystals and Molecules New York: Academic
  2. Desiraju GR. 2.  1989. Crystal Engineering: The Design of Organic Solids Amsterdam: Elsevier
  3. Price SL. 3.  2009. Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism. Acc. Chem. Res. 42:117–26 [Google Scholar]
  4. Day GM. 4.  2011. Current approaches to predicting molecular organic crystal structures. Crystallogr. Rev. 17:3–52 [Google Scholar]
  5. Kendrick J, Leusen FJJ, Neumann MA, van de Streek J. 5.  2011. Progress in crystal structure prediction. Chem. Eur. J. 17:10736–44 [Google Scholar]
  6. Bragg WH. 6.  1921. The structure of organic crystals. Proc. Phys. Soc. Lond. 34:33–50 [Google Scholar]
  7. Robertson JM. 7.  1953. Organic Crystals and Molecules: Theory of X-Ray Structure Analysis with Applications to Organic Chemistry Ithaca, NY: Cornell Univ. Press
  8. Pauling L. 8.  1929. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51:1010–26 [Google Scholar]
  9. Robertson JM. 9.  1935. The structure of benzoquinone: a quantitative X-ray investigation. Proc. R. Soc. Lond. A 150:106–28 [Google Scholar]
  10. Robertson JM. 10.  1936. The structure of resorcinol: a quantitative X-ray investigation. Proc. R. Soc. Lond. A 157:79–99 [Google Scholar]
  11. Robertson JM, Ubbelohde AR. 11.  1938. A new form of resorcinol. II. Thermodynamic properties in relation to structure. Proc. R. Soc. Lond. A 167:136–47 [Google Scholar]
  12. Authier A. 12.  2013. Early Days of X-Ray Crystallography Oxford, UK: Oxford Univ. Press
  13. Khotsyanova TL, Kitaigorodskii AI, Struchkov YT. 13.  1953. Crystal structure of iodoform. Z. Fiz. Khim. 27:647–56 [Google Scholar]
  14. Lommerse JPM, Motherwell WDS, Ammon HL, Dunitz JD, Gavezzotti A. 14.  et al. 2000. A test of crystal structure prediction of small organic molecules. Acta Crystallogr. B 56:697–714 [Google Scholar]
  15. Motherwell WDS, Ammon HL, Dunitz JD, Dzyabchenko A, Erk P. 15.  et al. 2002. Crystal structure prediction of small organic molecules: a second blind test. Acta Crystallogr. B 58:647–61 [Google Scholar]
  16. Day GM, Motherwell WDS, Ammon HL, Boerrigter SXM, Della Valle RG. 16.  et al. 2005. A third blind test of crystal structure prediction. Acta Crystallogr. B 61:511–27 [Google Scholar]
  17. Day GM, Cooper TG, Cruz-Cabeza AJ, Hejczyk KE, Ammon HL. 17.  et al. 2009. Significant progress in predicting the crystal structures of small organic molecules: a report on the fourth blind test. Acta Crystallogr. B 65:107–25 [Google Scholar]
  18. Bardwell DA, Adjiman CS, Arnautova YA, Bartashevich E, Boerrigter SXM. 18.  et al. 2011. Towards crystal structure prediction of complex organic compounds: a report on the fifth blind test. Acta Crystallogr. B 67:535–51 [Google Scholar]
  19. Kitaigorodskii AI. 19.  1961. The interaction curve of non-bonded carbon and hydrogen atoms and its application. Tetrahedron 14:230–36 [Google Scholar]
  20. Kitaigorodskii AI. 20.  1965. The principle of close packing and the condition of thermodynamic stability of organic crystals. Acta Crystallogr. 18:585–90 [Google Scholar]
  21. Williams DE. 21.  1966. Nonbonded potential parameters derived from crystalline aromatic hydrocarbons. J. Chem. Phys. 45:3770–78 [Google Scholar]
  22. Nyburg SC, Wong-Ng W. 22.  1979. Anisotropic atom-atom forces and the space group of solid chlorine. Proc. R. Soc. Lond. A 367:29–45 [Google Scholar]
  23. Price SL, Stone AJ. 23.  1982. The anisotropy of the C12–C12 pair potential as shown by the crystal structure: evidence for intermolecular bonding or lone pair effects?. Mol. Phys. 47:1457–70 [Google Scholar]
  24. Williams DE, Hsu L-Y. 24.  1985. Transferability of nonbonded Cl⋅⋅⋅Cl potential energy function to crystalline chlorine. Acta Crystallogr. A 41:296–301 [Google Scholar]
  25. Sakurai T. 25.  1965. The crystal structure of the triclinic modification of quinhydrone. Acta Crystallogr. 19:320–30 [Google Scholar]
  26. Sakurai T. 26.  1968. On the refinement of the crystal structures of phenoquinone and monoclinic quinhydrone. Acta Crystallogr. B 24:403–12 [Google Scholar]
  27. Wen S, Beran GJO. 27.  2012. Accidental degeneracy in crystalline aspirin: new insights from high-level ab initio calculations. Cryst. Growth Des. 12:2169–72 [Google Scholar]
  28. Wen S, Beran GJO. 28.  2012. Crystal polymorphism in oxalyl dihydrazide: Is empirical DFT-D accurate enough?. J. Chem. Theory Comput. 8:2698–705 [Google Scholar]
  29. Neumann MA. 29.  2008. Tailor-made force fields for crystal-structure prediction. J. Phys. Chem. B 12:9810–29 [Google Scholar]
  30. Beran GJO, Nanda K. 30.  2010. Predicting organic crystal lattice energies with chemical accuracy. J. Phys. Chem. Lett. 1:3480–87 [Google Scholar]
  31. Hirata S, Gilliard K, He X, Li J, Sode O. 31.  2014. Ab initio molecular crystal structures, spectra, and phase diagrams. Acc. Chem. Res. 472721–30
  32. Yang J, Hu W, Usvyat D, Matthews D, Schütz M, Chan GK-L. 32.  2014. Ab initio determination of the crystalline benzene lattice energy to sub-kilojoule/mole accuracy. Science 345:640–43 [Google Scholar]
  33. Stoll H, Paulus B, Fulde P. 33.  2005. On the accuracy of correlation-energy expansions in terms of local increments. J. Chem. Phys. 123:144108 [Google Scholar]
  34. Manby FR, Alfe D, Gillan MJ. 34.  2006. Extension of molecular electronic structure methods to the solid state: computation of the cohesive energy of lithium hydride. Phys. Chem. Chem. Phys. 8:5178–80 [Google Scholar]
  35. Li J, Sode O, Voth GA, Hirata S. 35.  2013. A solid-solid phase transition in carbon dioxide at high pressures and intermediate temperatures. Nat. Commun. 4:2647 [Google Scholar]
  36. Kitaigorodskii AI. 36.  1968. Calculation of molecular conformation and packing in crystals by means of atom-atom potentials. Polym. Sci. U.S.S.R. 10:3097–100 [Google Scholar]
  37. Williams DE. 37.  1968. Computer calculation of molecular crystal structures. Science 159:645–46 [Google Scholar]
  38. Dauber P, Hagler AT. 38.  1980. Crystal packing, hydrogen bonding, and the effect of crystal forces on molecular conformation. Acc. Chem. Res. 13:105–12 [Google Scholar]
  39. Leiserowitz L, Hagler AT. 39.  1983. The generation of possible crystal structures of primary amides. Proc. R. Soc. Lond. A 388:133–75 [Google Scholar]
  40. Maddox J. 40.  1988. Crystals from first principles. Nature 335:201 [Google Scholar]
  41. Perlstein J. 41.  1992. Molecular self-assemblies: Monte Carlo predictions for the structure of the one-dimensional translation aggregate. J. Am. Chem. Soc. 114:1955–63 [Google Scholar]
  42. Karfunkel HR, Gdanitz RJ. 42.  1992. Ab initio prediction of possible crystal structures for general organic molecules. J. Comput. Chem. 13:1171–83 [Google Scholar]
  43. Hofmann DMF, Lengauer T. 43.  1998. Crystal structure prediction based on statistical potentials. J. Mol. Model. 4:132–44 [Google Scholar]
  44. Holden JR, Du Z, Ammon HL. 44.  1993. Prediction of possible crystal structures for C-, H-, N-, O-, and F-containing organic compounds. J. Comput. Chem. 14:422–37 [Google Scholar]
  45. Gavezzotti A, Filippini G. 45.  1996. Computer prediction of organic crystal structures using partial X-ray diffraction data. J. Am. Chem. Soc. 118:7153–57 [Google Scholar]
  46. Hofmann DWM, Lengauer T. 46.  1997. A discrete algorithm for crystal structure prediction of organic molecules. Acta Crystallogr. A 53:225–35 [Google Scholar]
  47. Gavezzotti A. 47.  1991. Generation of possible crystal structures from the molecular structure for low-polarity organic compounds. J. Am. Chem. Soc. 113:4622–29 [Google Scholar]
  48. Chin DN, Palmore GTR, Whitesides GM. 48.  1999. Predicting crystalline packing arrangements of molecules that form hydrogen-bonded tapes. J. Am. Chem. Soc. 121:2115–22 [Google Scholar]
  49. Wawak RJ, Gibson KD, Liwo A, Scheraga HA. 49.  1996. Theoretical prediction of a crystal structure. Proc. Natl. Acad. Sci. USA 93:1743–46 [Google Scholar]
  50. Willock DJ, Price SL, Leslie M, Catlow CRA. 50.  1995. The relaxation of molecular crystal structures using a distributed multipole electrostatic model. J. Comput. Chem. 16:628–47 [Google Scholar]
  51. van Eijck BP, Mooij WTM, Kroon J. 51.  1995. Attempted prediction of the crystal structures of six monosaccharides. Acta Crystallogr. B 51:99–103 [Google Scholar]
  52. Chaka AM, Zaniewski R, Youngs W, Tessierj C, Klopman G. 52.  1996. Predicting the crystal structure of organic molecular materials. Acta Crystallogr. B 52:165–83 [Google Scholar]
  53. Rarey M, Kramer B, Lengauer T, Klebe G. 53.  1996. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261:470–89 [Google Scholar]
  54. Rarey M, Wefing S, Lengauer T. 54.  1996. Placement of medium-sized molecular fragments into active sites of proteins. J. Comput.-Aided Mol. Des. 10:41–54 [Google Scholar]
  55. Williams DE. 55.  1996. Ab initio molecular packing analysis. Acta Crystallogr. A 52:326–28 [Google Scholar]
  56. Asmadi A, Neumann MA, Kendrick J, Girard P, Perrin MA, Leusen FJJ. 56.  2009. Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals. J. Phys. Chem. B 113:16303–13 [Google Scholar]
  57. Dunitz JD, Gavezzotti A. 57.  2005. Towards a quantitative description of crystal packing in terms of molecular pairs: application to the hexamorphic crystal system, 5-methyl-2[(2-nitrophenyl)amino]-3-thiophenecarbonitrile. Cryst. Growth Des. 5:2180–89 [Google Scholar]
  58. Desiraju GR, Steiner T. 58.  1999. The Weak Hydrogen Bond in Structural Chemistry and Biology Oxford, UK: Oxford Univ. Press
  59. Aparna V, Rambabu G, Panigrahi SK, Sarma JARP, Desiraju GR. 59.  2005. Virtual screening of 4-anilinoquinazoline analogues as EGFR kinase inhibitors: importance of hydrogen bonds in the evaluation of poses and scoring functions. J. Chem. Inf. Model. 45:725–38 [Google Scholar]
  60. Jetti RKR, Boese R, Sarma JARP, Reddy LS, Vishweshwar P, Desiraju GR. 60.  2004. Searching for a polymorph: second crystal form of 6-amino-2-phenylsulfonylimino-1,2-dihydropyridine. Angew. Chem. Int. Ed. Engl. 42:1963–67 [Google Scholar]
  61. Roy S, Matzger AJ. 61.  2009. Unmasking a third polymorph of benchmark crystal-structure-prediction compound. Angew. Chem. Int. Ed. Engl. 48:8505–8 [Google Scholar]
  62. Chan HCS, Kendrick J, Leusen FJJ. 62.  2011. Molecule VI, a benchmark crystal-structure-prediction sulfonimide: Are its polymorphs predictable?. Angew. Chem. Int. Ed. Engl. 50:2979–81 [Google Scholar]
  63. Grimme S, Antony J, Ehrlich S, Krieg H. 63.  2010. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132:154104 [Google Scholar]
  64. Marom N, DiStasio RA Jr., Atalla V, Levchenko S, Reilly AM. 64.  et al. 2013. Many-body dispersion interactions in molecular crystal polymorphism. Angew. Chem. Int. Ed. Engl. 52:6629–32 [Google Scholar]
  65. Reilly AM, Tkatchenko A. 65.  2014. Role of dispersion interactions in the polymorphism and entropic stabilization of the aspirin crystal. Phys. Rev. Lett. 113:055701 [Google Scholar]
  66. Braun DE, Bhardwaj RM, Florence AJ, Tocher DA, Price SL. 66.  2013. Complex polymorphic system of gallic acid: five monohydrates, three anhydrates, and over 20 solvates. Cryst. Growth Des. 13:19–23 [Google Scholar]
  67. Desiraju GR, Sarma JARP. 67.  2002. The supramolecular synthon approach to crystal structure prediction. Cryst. Growth Des. 2:93–100 [Google Scholar]
  68. Dey D, Kirchner MT, Vangala VR, Desiraju GR, Mondal R, Howard JAK. 68.  2005. Crystal structure prediction of aminols: advantages of a supramolecular synthon approach with experimental structures. J. Am. Chem. Soc. 127:10545–59 [Google Scholar]
  69. Gavezzotti A. 69.  2002. Structure and intermolecular potentials in molecular crystals. Model. Simul. Mater. Sci. Eng. 10:R1–29 [Google Scholar]
  70. Desiraju GR. 70.  1995. Supramolecular synthons in crystal engineering: a new organic synthesis. Angew. Chem. Int. Ed. Engl. 34:2311–27 [Google Scholar]
  71. Desiraju GR. 71.  2005. Chemistry: the middle kingdom. Curr. Sci. 88:374–80 [Google Scholar]
  72. Groth P. 72.  1906–1919. Chemische Kristallographie3–5 Leipzig: Verlag von Wilhelm Engelmann
  73. Deffet L. 73.  1942. Répertoire des Composés organiques polymorphes Liége: Ed. Desoer
  74. Staab E, Addadi L, Leiserowitz L, Lahav M. 74.  1990. Control of polymorphism by ‘tailor-made’ polymeric crystallization auxiliaries: preferential precipitation of a metastable polar form for second harmonic generation. Adv. Mater. 2:40–43 [Google Scholar]
  75. Desiraju GR. 75.  2002. Cryptic crystallography. Nat. Mater. 1:77–79 [Google Scholar]
  76. McCrone WC. 76.  1965. Polymorphism. Physics and Chemistry of the Organic Solid State 2 D Fox, MM Labes, A Weissberger 725–67 New York: Wiley Intersci. [Google Scholar]
  77. Dunitz JD, Bernstein J. 77.  1995. Disappearing polymorphs. Acc. Chem. Res. 28:193–200 [Google Scholar]
  78. Sarma JARP, Desiraju GR. 78.  1999. Polymorphism and pseudopolymorphism in organic crystals. Crystal Engineering: The Design and Application of Fundamental Solids KR Seddon, M Zaworotko 325–56 Dordrecht: Kluwer Acad. [Google Scholar]
  79. Mukherjee A, Desiraju GR. 79.  2011. Synthon polymorphism and pseudopolymorphism in co-crystals: the 4,4′-bipyridine–4-hydroxybenzoic acid structural landscape. Chem. Commun. 47:4090–92 [Google Scholar]
  80. Sreekanth BR, Vishweshwar P, Vyas K. 80.  2007. Supramolecular synthon polymorphism in 2:1 co-crystal of 4-hydroxybenzoic acid and 2,3,5,6-tetramethylpyrazine. Chem. Commun. 23:2375–77 [Google Scholar]
  81. Amadei E, Carcelli M, Ianelli S, Cozzini P, Pelagatti P, Pelizzi C. 81.  1998. Ligand behaviour and reactivity of phenyl 2-pyridyl ketone azine: structures of two polymorphic forms of the azine and a copper complex of the 3-phenyltriazolo[1,5-a]pyridine. J. Chem. Soc. Dalton Trans. 1998:1025–30 [Google Scholar]
  82. Desiraju GR. 82.  1997. Crystal gazing: structure prediction and polymorphism. Science 278:404–5 [Google Scholar]
  83. López-Mejías V, Kampf JW, Matzger AJ. 83.  2012. Nonamorphism in flufenamic acid and a new record for a polymorphic compound with solved structures. J. Am. Chem. Soc. 134:9872–75 [Google Scholar]
  84. Boonstra EG, Herbstein FH. 84.  1963. Composite hexabromobenzene crystals. Acta Crystallogr. 16:252–55 [Google Scholar]
  85. Bond AD, Boese R, Desiraju GR. 85.  2007. On the polymorphism of aspirin. Angew. Chem. Int. Ed. Engl. 46:615–17 [Google Scholar]
  86. Bond AD, Boese R, Desiraju GR. 86.  2007. On the polymorphism of aspirin: crystalline aspirin as intergrowths of two “polymorphic” domains. Angew. Chem. Int. Ed. Engl. 46:618–22 [Google Scholar]
  87. Bhatt PM, Desiraju GR. 87.  2007. Tautomeric polymorphism in omeprazole. Chem. Commun. 2007:2057–59 [Google Scholar]
  88. Bernstein J, Dunitz JD, Gavezzotti A. 88.  2008. Polymorphic perversity: crystal structures with many symmetry-independent molecules in the unit cell. Cryst. Growth Des. 8:2011–18 [Google Scholar]
  89. Desiraju GR, Calabrese JC, Harlow RL. 89.  1991. Pseudoinversion centers in space group and a redetermination of the crystal structure of 3,4-dimethoxycinnamic acid: a study of non-crystallographic symmetry. Acta Crystallogr. B 47:77–86 [Google Scholar]
  90. Nangia A. 90.  2008. Conformational polymorphisms in organic crystals. Acc. Chem. Res. 41:595–604 [Google Scholar]
  91. Desiraju GR. 91.  2007. On the presence of multiple molecules in the crystal asymmetric unit (Z′ > 1). CrystEngComm 9:91–92 [Google Scholar]
  92. Anderson KM, Steed JW. 92.  2007. Comment on “On the presence of multiple molecules in the crystal asymmetric unit (Z′ > 1)” by Gautam R. Desiraju, CrystEngComm, 2007, 9, 91. CrystEngComm 9:328–30 [Google Scholar]
  93. Thakur TS, Sathishkumar R, Dikundwar AG, Guru Row TN, Desiraju GR. 93.  2010. Third polymorph of phenylacetylene. Cryst. Growth Des. 10:4246–49 [Google Scholar]
  94. Dikundwar AG, Sathishkumar R, Guru Row TN, Desiraju GR. 94.  2011. Structural variability in the monofluoroethynylbenzenes mediated through interactions involving “organic” fluorine. Cryst. Growth Des. 11:3954–63 [Google Scholar]
  95. Ridout J, Price LS, Howard JAK, Probert MR. 95.  2014. Polymorphism arising from differing rates of compression of liquids. Cryst. Growth Des. 14:3384–91 [Google Scholar]
  96. Gavezzotti A. 96.  2002. Ten years of experience in polymorph prediction: what next?. CrystEngComm 4:343–47 [Google Scholar]
  97. Laio A, Parrinello M. 97.  2002. Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 99:12562–66 [Google Scholar]
  98. Raiteri P, Martoňák R, Parrinello M. 98.  2005. Exploring polymorphism: the case of benzene. Angew. Chem. Int. Ed. Engl. 44:3769–73 [Google Scholar]
  99. Karamertzanis PG, Raiteri P, Parrinello M, Leslie M, Price SL. 99.  2008. The thermal stability of lattice-energy minima of 5-fluorouracil: metadynamics as an aid to polymorph prediction. J. Phys. Chem. B 112:4298–308 [Google Scholar]
  100. Mukherjee A, Grobelny P, Thakur TS, Desiraju GR. 100.  2011. Polymorphs, pseudopolymorphs, and co-crystals of orcinol: exploring the structural landscape with high throughput crystallography. Cryst. Growth Des. 11:2637–53 [Google Scholar]
  101. Tothadi S, Desiraju GR. 101.  2012. Unusual co-crystal of isonicotinamide: the structural landscape in crystal engineering. Philos. Trans. R. Soc. A 370:2900–15 [Google Scholar]
  102. Desiraju GR. 102.  2007. Crystal engineering: a holistic view. Angew. Chem. Int. Ed. Engl. 46:8342–56 [Google Scholar]
  103. Friščič T, MacGillivray LR. 103.  2009. Engineering cocrystal and polymorph architecture via pseudoseeding. Chem. Commun.773–75
  104. Blagden N, Davey RJ. 104.  2003. Polymorph selection: challenges for the future?. Cryst. Growth Des. 3:873–85 [Google Scholar]
  105. Dubey R, Pavan MS, Guru Row TN, Desiraju GR. 105.  2014. Crystal landscape in the orcinol: 4,4′-bipyridine system: synthon modularity, polymorphism and transferability of multipole charge density parameters. IUCrJ 1:8–18 [Google Scholar]
  106. Dubey R, Pavan MS, Desiraju GR. 106.  2012. Structural landscape of benzoic acid: using experimental crystal structures of fluorobenzoic acids as a probe. Chem. Commun. 48:9020–22 [Google Scholar]
  107. Dubey R, Desiraju GR. 107.  2014. Structural landscape of the 1:1 benzoic acid:isonicotinamide cocrystal. Chem. Commun. 50:1181–84 [Google Scholar]
  108. Hammond GS. 108.  1955. A correlation of reaction rates. J. Am. Chem. Soc. 77:334–38 [Google Scholar]
  109. Curtin DY. 109.  1954. Stereochemical control of organic reactions: differences in behavior of diastereoisomers. I. Ethane derivatives: the cis effect. Rec. Chem. Prog. 15:111–28 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040214-121452
Loading
/content/journals/10.1146/annurev-physchem-040214-121452
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error