1932

Abstract

Fluctuation correlation spectroscopy (FCS) is a well-established analytical technique traditionally used to monitor molecular diffusion in dilute solutions, the dynamics of chemical reactions, and molecular processes inside living cells. In this review, we present the recent use of FCS for measuring the size of colloidal nanoparticles in solution. We review the theoretical basis and experimental implementation of this technique and its advantages and limitations. In particular, we show examples of the use of FCS to measure the size of gold nanoparticles, monitor the rotational dynamics of gold nanorods, and investigate the formation of protein coronas on nanoparticles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040214-121510
2016-05-27
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/physchem/67/1/annurev-physchem-040214-121510.html?itemId=/content/journals/10.1146/annurev-physchem-040214-121510&mimeType=html&fmt=ahah

Literature Cited

  1. Roco M, Mirkin C, Hersam M. 1.  2011. Nanotechnology research directions for societal needs in 2020: summary of international study. J. Nanopart. Res. 13:897–919 [Google Scholar]
  2. Grunes J, Zhu J, Somorjai GA. 2.  2003. Catalysis and nanoscience. Chem. Commun. 35:2257–60 [Google Scholar]
  3. Anwar S. 3.  2010. Nanotechnology for Telecommunications Boca Raton, FL: CRC
  4. West JL, Halas NJ. 4.  2000. Applications of nanotechnology to biotechnology: commentary. Curr. Opin. Biotechnol. 11:215–17 [Google Scholar]
  5. Raj S, Jose S, Sumod U, Sabitha M. 5.  2012. Nanotechnology in cosmetics: opportunities and challenges. J. Pharm. Bioall. Sci. 4:186–93 [Google Scholar]
  6. Nel A, Xia T, Madler L, Li N. 6.  2006. Toxic potential of materials at the nanolevel. Science 311:622–27 [Google Scholar]
  7. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV. 7.  et al. 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8:543–57 [Google Scholar]
  8. Elson E. 8.  2001. Introduction. See Ref. 115 1–6
  9. Scheringer M. 9.  2008. Nanoecotoxicology: environmental risks of nanomaterials. Nat. Nanotechnol. 3:322–23 [Google Scholar]
  10. Murray RA, Qiu Y, Chiodo F, Marradi M, Penadés S, Moya SE. 10.  2014. A quantitative study of the intracellular dynamics of fluorescently labelled glyco-gold nanoparticles via fluorescence correlation spectroscopy. Small 10:2602–10 [Google Scholar]
  11. Wang D, Yordanov S, Paroor HM, Mukhopadhyay A, Li CY. 11.  et al. 2011. Probing diffusion of single nanoparticles at water-oil interfaces. Small 7:3502–7 [Google Scholar]
  12. Nienhaus GU, Maffre P, Nienhaus K. 12.  2013. Studying the protein corona on nanoparticles by FCS. Methods Enzymol. 519:115–37 [Google Scholar]
  13. Dominguez-Medina S, Kisley L, Tauzin LJ, Hoggard A, Shuang B. 13.  et al. 2016. Adsorption and unfolding of a single protein triggers nanoparticle aggregation. ACS Nano 102103–12
  14. Suh J, Dawson M, Hanes J. 14.  2005. Real-time multiple-particle tracking: applications to drug and gene delivery. Adv. Drug Deliv. Rev. 57:63–78 [Google Scholar]
  15. Braeckmans K, Buyens K, Bouquet W, Vervaet C, Joye P. 15.  et al. 2010. Sizing nanomatter in biological fluids by fluorescence single particle tracking. Nano Lett. 10:4435–42 [Google Scholar]
  16. Gallego-Urrea JA, Tuoriniemi J, Hassellöv M. 16.  2011. Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples. Trends Anal. Chem. 30:473–83 [Google Scholar]
  17. Hole P, Sillence K, Hannell C, Maguire C, Roesslein M. 17.  et al. 2013. Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J. Nanopart. Res. 15:2101 [Google Scholar]
  18. Mehtala JG, Wei A. 18.  2014. Nanometric resolution in the hydrodynamic size analysis of ligand-stabilized gold nanorods. Langmuir 30:13737–43 [Google Scholar]
  19. Shuang B, Chen J, Kisley L, Landes CF. 19.  2014. Troika of single particle tracking programing: SNR enhancement, particle identification, and mapping. Phys. Chem. Chem. Phys. 16:624–34 [Google Scholar]
  20. Digman MA, Gratton E. 20.  2011. Lessons in fluctuation correlation spectroscopy. Annu. Rev. Phys. Chem. 62:645–68 [Google Scholar]
  21. Haustein E, Schwille P. 21.  2007. Fluorescence correlation spectroscopy: novel variations of an established technique. Annu. Rev. Biophys. Biomol. Struct. 36:151–69 [Google Scholar]
  22. Ries J, Schwille P. 22.  2012. Fluorescence correlation spectroscopy. Bioessays 34:361–68 [Google Scholar]
  23. Elson EL. 23.  2011. Fluorescence correlation spectroscopy: past, present, future. Biophys. J. 101:2855–70 [Google Scholar]
  24. Gilmer GH, Gilmore W, Huang J, Webb WW. 24.  1965. Diffuse interface in a critical fluid mixture. Phys. Rev. Lett. 14:491–94 [Google Scholar]
  25. Huang JS, Webb WW. 25.  1969. Viscous damping of thermal excitations on the interface of critical fluid mixtures. Phys. Rev. Lett. 23:160–63 [Google Scholar]
  26. Webb W. 26.  2001. Fluorescence correlation spectroscopy: theory and applications. See Ref. 115 305–30
  27. Magde D, Elson E, Webb WW. 27.  1972. Thermodynamic fluctuations in a reacting system: measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29:705–8 [Google Scholar]
  28. Koppel DE, Axelrod D, Schlessinger J, Elson EL, Webb WW. 28.  1976. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys. J. 16:1315–29 [Google Scholar]
  29. Rigler R, Mets Ü, Widengren J, Kask P. 29.  1993. Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur. Biophys. J. 22:169–75 [Google Scholar]
  30. Schwille P, Bieschke J, Oehlenschläger F. 30.  1997. Kinetic investigations by fluorescence correlation spectroscopy: the analytical and diagnostic potential of diffusion studies. Biophys. Chem. 66:211–28 [Google Scholar]
  31. Reznik C, Landes CF. 31.  2012. Transport in supported polyelectrolyte brushes. Acc. Chem. Res. 45:1927–35 [Google Scholar]
  32. Daniels CR, Tauzin LJ, Foster E, Advincula RC, Landes CF. 32.  2013. pH responsive, charge selective polymer-mediated transport probed by traditional and scanning FCS. J. Phys. Chem. B 117:4284–90 [Google Scholar]
  33. Schwille P, Kummer S, Heikal AA, Moerner WE, Webb WW. 33.  2000. Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. PNAS 97:151–56 [Google Scholar]
  34. Basak S, Chattopadhyay K. 34.  2014. Studies of protein folding and dynamics using single molecule fluorescence spectroscopy. Phys. Chem. Chem. Phys. 16:11139–49 [Google Scholar]
  35. Wachsmuth M, Conrad C, Bulkescher J, Koch B, Mahen R. 35.  et al. 2015. High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells. Nat. Biotechnol. 33:384–89 [Google Scholar]
  36. Oehlenschläger F, Schwille P, Eigen M. 36.  1996. Detection of HIV-1 RNA by nucleic acid sequence-based amplification combined with fluorescence correlation spectroscopy. PNAS 93:12811–16 [Google Scholar]
  37. Cluzel P, Surette M, Leibler S. 37.  2000. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287:1652–55 [Google Scholar]
  38. Akcakir O, Therrien J, Belomoin G, Barry N, Muller JD. 38.  et al. 2000. Detection of luminescent single ultrasmall silicon nanoparticles using fluctuation correlation spectroscopy. App. Phys. Lett. 76:1857–59 [Google Scholar]
  39. Balaji PS, Murthy AVR, Tiwari N, Kulkarni S. 39.  2011. Fluorescence correlation spectroscopy of gold nanoparticles. Spectrosc. Lett. 45:22–28 [Google Scholar]
  40. Chon B, Briggman K, Hwang J. 40.  2014. Single molecule confocal fluorescence lifetime correlation spectroscopy for accurate nanoparticle size determination. Phys. Chem. Chem. Phys. 16:13418–25 [Google Scholar]
  41. Domingos RF, Baalousha MA, Ju-Nam Y, Reid MM, Tufenkji N. 41.  et al. 2009. Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ. Sci. Technol. 43:7277–84 [Google Scholar]
  42. Ruijgrok PV, Verhart NR, Zijlstra P, Tchebotareva AL, Orrit M. 42.  2011. Brownian fluctuations and heating of an optically aligned gold nanorod. Phys. Rev. Lett. 107:037401 [Google Scholar]
  43. Zhao JJ, Bae SC, Xie F, Granick S. 43.  2001. Diffusion of polymer-coated nanoparticles studied by fluorescence correlation spectroscopy. Macromolecules 34:3123–26 [Google Scholar]
  44. Liedl T, Keller S, Simmel FC, Rädler JO, Parak WJ. 44.  2005. Fluorescent nanocrystals as colloidal probes in complex fluids measured by fluorescence correlation spectroscopy. Small 1:997–1003 [Google Scholar]
  45. Aragón SR, Pecora R. 45.  1975. Fluorescence correlation spectroscopy and Brownian rotational diffusion. Biopolymers 14:119–37 [Google Scholar]
  46. Hess ST, Webb WW. 46.  2002. Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys. J. 83:2300–17 [Google Scholar]
  47. Ruttinger S, Buschmann V, Kramer B, Erdmann R, Macdonald R, Koberling F. 47.  2008. Comparison and accuracy of methods to determine the confocal volume for quantitative fluorescence correlation spectroscopy. J. Microsc. 232:343–52 [Google Scholar]
  48. Müller CB, Loman A, Pacheco V, Koberling F, Willbold D. 48.  et al. 2008. Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy. EPL 83:46001 [Google Scholar]
  49. Gendron PO, Avaltroni F, Wilkinson KJ. 49.  2008. Diffusion coefficients of several rhodamine derivatives as determined by pulsed field gradient–nuclear magnetic resonance and fluorescence correlation spectroscopy. J. Fluoresc. 18:1093–101 [Google Scholar]
  50. Dertinger T, Pacheco V, von der Hocht I, Hartmann R, Gregor I, Enderlein J. 50.  2007. Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. ChemPhysChem 8:433–43 [Google Scholar]
  51. Korlann Y, Dertinger T, Michalet X, Weiss S, Enderlein J. 51.  2008. Measuring diffusion with polarization-modulation dual-focus fluorescence correlation spectroscopy. Opt. Express 16:14609–16 [Google Scholar]
  52. Culbertson CT, Jacobson SC, Michael Ramsey J. 52.  2002. Diffusion coefficient measurements in microfluidic devices. Talanta 56:365–73 [Google Scholar]
  53. Majer G, Melchior JP. 53.  2014. Characterization of the fluorescence correlation spectroscopy (FCS) standard Rhodamine 6G and calibration of its diffusion coefficient in aqueous solutions. J. Chem. Phys. 140:094201 [Google Scholar]
  54. Buschmann VK B, Koberling F. 54.  2009. Quantitative FCS: determination of the confocal volume by FCS and bead scanning with MicroTime 200 Appl. Note, PicoQuant, Berlin
  55. Hebert B, Costantino S, Wiseman PW. 55.  2005. Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys. J. 88:3601–14 [Google Scholar]
  56. Brown CM, Dalal RB, Hebert B, Digman MA, Horwitz AR, Gratton E. 56.  2008. Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope. J. Microsc. 229:78–91 [Google Scholar]
  57. Gao F, Kreidermacher A, Fritsch I, Heyes CD. 57.  2013. 3D Imaging of flow patterns in an internally-pumped microfluidic device: redox magnetohydrodynamics and electrochemically-generated density gradients. Anal. Chem. 85:4414–22 [Google Scholar]
  58. Born M, Wolf E, Bhatia AB, Gabor D, Stokes AR. 58.  et al. 2000. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light Cambridge, UK: Cambridge Univ. Press
  59. Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW. 59.  2003. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–86 [Google Scholar]
  60. Kinkhabwala AA, Yu Z, Fan S, Moerner WE. 60.  2012. Fluorescence correlation spectroscopy at high concentrations using gold bowtie nanoantennas. Chem. Phys. 406:3–8 [Google Scholar]
  61. Tcherniak A, Reznik C, Link S, Landes CF. 61.  2009. Fluorescence correlation spectroscopy: criteria for analysis in complex systems. Anal. Chem. 81:746–54 [Google Scholar]
  62. Haustein E, Schwille P. 62.  2003. Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29:153–66 [Google Scholar]
  63. Tcherniak A, Prakash A, Mayo JT, Colvin VL, Link S. 63.  2009. Fluorescence correlation spectroscopy of magnetite nanocrystal diffusion. J. Phys. Chem. C 113:844–48 [Google Scholar]
  64. Widengren J, Kudryavtsev V, Antonik M, Berger S, Gerken M, Seidel CAM. 64.  2006. Single-molecule detection and identification of multiple species by multiparameter fluorescence detection. Anal. Chem. 78:2039–50 [Google Scholar]
  65. Böhmer M, Enderlein J. 65.  2003. Fluorescence spectroscopy of single molecules under ambient conditions: methodology and technology. ChemPhysChem 4:792–808 [Google Scholar]
  66. Peleg G, Ghanouni P, Kobilka BK, Zare RN. 66.  2001. Single-molecule spectroscopy of the β2 adrenergic receptor: observation of conformational substates in a membrane protein. PNAS 98:8469–74 [Google Scholar]
  67. Kisley L, Chen J, Mansur AP, Shuang B, Kourentzi K. 67.  et al. 2014. Unified superresolution experiments and stochastic theory provide mechanistic insight into protein ion-exchange adsorptive separations. PNAS 111:2075–80 [Google Scholar]
  68. Landes CF, Rambhadran A, Taylor JN, Salatan F, Jayaraman V. 68.  2011. Structural landscape of isolated agonist-binding domains from single AMPA receptors. Nat. Chem. Biol. 7:168–73 [Google Scholar]
  69. Meseth U, Wohland T, Rigler R, Vogel H. 69.  1999. Resolution of fluorescence correlation measurements. Biophys. J. 76:1619–31 [Google Scholar]
  70. Lam JD, Culbertson MJ, Skinner NP, Barton ZJ, Burden DL. 70.  2011. Information content in fluorescence correlation spectroscopy: binary mixtures and detection volume distortion. Anal. Chem. 83:5268–74 [Google Scholar]
  71. Blades ML, Grekova E, Wobma HM, Chen K, Chan WCW, Cramb DT. 71.  2012. Three-color fluorescence cross-correlation spectroscopy for analyzing complex nanoparticle mixtures. Anal. Chem. 84:9623–31 [Google Scholar]
  72. Kuyper CL, Budzinski KL, Lorenz RM, Chiu DT. 72.  2005. Real-time sizing of nanoparticles in microfluidic channels using confocal correlation spectroscopy. J. Am. Chem. Soc. 128:730–31 [Google Scholar]
  73. Kuyper CL, Fujimoto BS, Zhao Y, Schiro PG, Chiu DT. 73.  2006. Accurate sizing of nanoparticles using confocal correlation spectroscopy. J. Phys. Chem. B 110:24433–41 [Google Scholar]
  74. Sperling RA, Liedl T, Duhr S, Kudera S, Zanella M. 74.  et al. 2007. Size determination of (bio)conjugated water-soluble colloidal nanoparticles: a comparison of different techniques. J. Phys. Chem. C 111:11552–59 [Google Scholar]
  75. Liu H, Dong C, Ren J. 75.  2014. Tempo-spatially resolved scattering correlation spectroscopy under dark-field illumination and its application to investigate dynamic behaviors of gold nanoparticles in live cells. J. Am. Chem. Soc. 136:2775–85 [Google Scholar]
  76. Maier SA. 76.  2007. Electromagnetics of metals. Plasmonics: Fundamentals and Applications5–19 New York: Springer [Google Scholar]
  77. Tcherniak A, Ha JW, Dominguez-Medina S, Slaughter LS, Link S. 77.  2010. Probing a century old prediction one plasmonic particle at a time. Nano Lett. 10:1398–404 [Google Scholar]
  78. Titus EJ, Willets KA. 78.  2013. Accuracy of superlocalization imaging using Gaussian and dipole emission point-spread functions for modeling gold nanorod luminescence. ACS Nano 7:6258–67 [Google Scholar]
  79. Lakowicz J. 79.  2006. Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 1:5–33 [Google Scholar]
  80. Guo Y-J, Sun G-M, Zhang L, Tang Y-J, Luo J-J, Yang P-H. 80.  2014. Multifunctional optical probe based on gold nanorods for detection and identification of cancer cells. Sens. Actuators B 191:741–49 [Google Scholar]
  81. Donehue JE, Wertz E, Talicska CN, Biteen JS. 81.  2014. Plasmon-enhanced brightness and photostability from single fluorescent proteins coupled to gold nanorods. J. Phys. Chem. C 118:15027–35 [Google Scholar]
  82. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N. 82.  et al. 2004. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 11:169–83 [Google Scholar]
  83. Brolo AG. 83.  2012. Plasmonics for future biosensors. Nat. Photon. 6:709–13 [Google Scholar]
  84. Huang Z, Wang H, Yang W. 84.  2015. Gold nanoparticle-based facile detection of human serum albumin and its application as an INHIBIT logic gate. ACS Appl. Mater. Interfaces 7:8990–98 [Google Scholar]
  85. Christopher P, Xin H, Linic S. 85.  2011. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3:467–72 [Google Scholar]
  86. Tcherniak A, Dominguez-Medina S, Chang W-S, Swanglap P, Slaughter LS. 86.  et al. 2011. One-photon plasmon luminescence and its application to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods. J. Phys. Chem. C 115:15938–49 [Google Scholar]
  87. Yorulmaz M, Khatua S, Zijlstra P, Gaiduk A, Orrit M. 87.  2012. Luminescence quantum yield of single gold nanorods. Nano Lett. 12:4385–91 [Google Scholar]
  88. Wackenhut F, Failla AV, Meixner AJ. 88.  2013. Multicolor microscopy and spectroscopy reveals the physics of the one-photon luminescence in gold nanorods. J. Phys. Chem. C 117:17870–77 [Google Scholar]
  89. Prashanthi S, Lanke SR, Kumar PH, Siva D, Bangal PR. 89.  2012. Determination of hydrodynamic properties of bare gold and silver nanoparticles as a fluorescent probe using its surface-plasmon-induced photoluminescence by fluorescence correlation spectroscopy. Appl. Spectrosc. 66:835–41 [Google Scholar]
  90. Devadas MS, Li Z, Hartland GV. 90.  2014. Imaging and analysis of single optically trapped gold nanoparticles using spatial modulation spectroscopy. J. Phys. Chem. Lett. 5:2910–15 [Google Scholar]
  91. Zhang B, Lan T, Huang X, Dong C, Ren J. 91.  2014. Optical trapping effect and its calibration method in resonance light scattering correlation spectroscopy of gold nanoparticles in solution. J. Phys. Chem. C 118:14495–501 [Google Scholar]
  92. Deptuła T, Buitenhuis J, Jarzębski M, Patkowski A, Gapinski J. 92.  2015. Size of submicrometer particles measured by FCS: correction of the confocal volume. Langmuir 31:6681–87 [Google Scholar]
  93. Berne BJ, Pecora R. 93.  2000. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics Mineola, NY: Dover
  94. Kask P, Piksarv P, Pooga M, Mets Ü, Lippmaa E. 94.  1989. Separation of the rotational contribution in fluorescence correlation experiments. Biophys. J. 55:213–20 [Google Scholar]
  95. Tirado MM, Martínez CL, de la Torre JG. 95.  1984. Comparison of theories for the translational and rotational diffusion coefficients of rod-like macromolecules. Application to short DNA fragments. J. Chem. Phys. 81:2047–52 [Google Scholar]
  96. Tsay JM, Doose S, Weiss S. 96.  2006. Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy.. J. Am. Chem. Soc. 128:1639–47 [Google Scholar]
  97. Bassam A-Q, Toshiharu S. 97.  2010. Optical characterization and rotational dynamics observation of colloidal gold nanorods based on polarized light scattering microscopy. Jpn. J. Appl. Phys. 49:125001 [Google Scholar]
  98. Loman A, Gregor I, Stutz C, Mund M, Enderlein J. 98.  2010. Measuring rotational diffusion of macromolecules by fluorescence correlation spectroscopy. Photochem. Photobiol. Sci. 9:627–36 [Google Scholar]
  99. Loumaigne M, Vasanthakumar P, Richard A, Débarre A. 99.  2012. Time-of-flight photon spectroscopy: a simple scheme to monitor simultaneously spectral and temporal fluctuations of emission on single nanoparticles. ACS Nano 6:10512–23 [Google Scholar]
  100. Reznik C, Estillore N, Advincula RC, Landes CF. 100.  2009. Single molecule spectroscopy reveals heterogeneous transport mechanisms for molecular ions in a polyelectrolyte polymer brush. J. Phys. Chem. B 113:14611–18 [Google Scholar]
  101. Reznik C, Berg R, Foster E, Advincula R, Landes CF. 101.  2011. Transient three-dimensional orientation of molecular ions in an ordered polyelectrolyte membrane. J. Phys. Chem. Lett. 2:592–98 [Google Scholar]
  102. Rocker C, Potzl M, Zhang F, Parak WJ, Nienhaus GU. 102.  2009. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat. Nanotechnol. 4:577–80 [Google Scholar]
  103. Maffre P, Nienhaus K, Amin F, Parak WJ, Nienhaus GU. 103.  2011. Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy. Beilstein J. Nanotechnol. 2:374–83 [Google Scholar]
  104. Treuel L, Brandholt S, Maffre P, Wiegele S, Shang L, Nienhaus GU. 104.  2013. Impact of protein modification on the protein corona on nanoparticles and nanoparticle: cell interactions. ACS Nano 8:503–13 [Google Scholar]
  105. Dominguez-Medina S, McDonough S, Swanglap P, Landes CF, Link S. 105.  2012. In situ measurement of bovine serum albumin interaction with gold nanospheres. Langmuir 28:9131–39 [Google Scholar]
  106. Dominguez-Medina S, Blankenburg J, Olson J, Landes CF, Link S. 106.  2013. Preventing nanoparticle aggregation under harsh environmental conditions with a protein corona. ACS Sustainable Chem. Eng. 1:833–42 [Google Scholar]
  107. del Pino P, Pelaz B, Zhang Q, Maffre P, Nienhaus GU, Parak WJ. 107.  2014. Protein corona formation around nanoparticles: from the past to the future. Mater. Horiz. 1:301–13 [Google Scholar]
  108. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E. 108.  et al. 2007. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. PNAS 104:2050–55 [Google Scholar]
  109. Walkey CD, Chan WCW. 109.  2012. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 41:2780–99 [Google Scholar]
  110. Fleischer CC, Payne CK. 110.  2014. Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles. J. Phys. Chem. B 118:14017–26 [Google Scholar]
  111. Peters T Jr.. 111.  1995. The albumin molecule: its structure and chemical properties. All About Albumin T Peters Jr ., 9–75 San Diego, CA: Academic [Google Scholar]
  112. Kohli I, Alam S, Patel B, Mukhopadhyay A. 112.  2013. Interaction and diffusion of gold nanoparticles in bovine serum albumin solutions. App. Phys. Lett. 102:203705 [Google Scholar]
  113. Alam S, Mukhopadhyay A. 113.  2014. Translational and rotational diffusions of nanorods within semidilute and entangled polymer solutions. Macromolecules 47:6919–24 [Google Scholar]
  114. Michen B, Geers C, Vanhecke D, Endes C, Rothen-Rutishauser B. 114.  et al. 2015. Avoiding drying-artifacts in transmission electron microscopy: characterizing the size and colloidal state of nanoparticles. Sci. Rep. 5:9793 [Google Scholar]
  115. Rigler R, Elson ES. 115.  2001. Fluorescence Correlation Spectroscopy Chem. Phys. Ser 65 Berlin: Springer
/content/journals/10.1146/annurev-physchem-040214-121510
Loading
/content/journals/10.1146/annurev-physchem-040214-121510
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error