1932

Abstract

Coulomb crystals—as a source of translationally cold, highly localized ions—are being increasingly utilized in the investigation of ion-molecule reaction dynamics in the cold regime. To develop a fundamental understanding of ion-molecule reactions, and to challenge existing models that describe the rates, product branching ratios, and temperature dependence of such processes, investigators need to exercise full control over the experimental reaction parameters. This requires not only state selection of the reactants, but also control over the collision process (e.g., the collisional energy and angular momentum) and state-selective product detection. The combination of Coulomb crystals in ion traps with cold neutral-molecule sources is enabling the measurement of state-selective reaction rates in a diverse range of systems. With the development of appropriate product detection techniques, we are moving toward the ultimate goal of examining low-energy, state-to-state ion-molecule reaction dynamics.

Associated Article

There are media items related to this article:
Low-Temperature Kinetics and Dynamics with Coulomb Crystals: Supplemental Video 1
Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040214-121527
2015-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/physchem/66/1/annurev-physchem-040214-121527.html?itemId=/content/journals/10.1146/annurev-physchem-040214-121527&mimeType=html&fmt=ahah

Literature Cited

  1. Marquette JB, Rowe BR, Dupeyrat G, Poissant G, Rebrion C. 1.  1985. Ion-polar-molecule reactions: a CRESU study of He+, C+, N+ + H2O, NH3 at 27, 68, and 163 K. Chem. Phys. Lett. 122:431–35 [Google Scholar]
  2. Clary DC. 2.  1987. Rate constants for the reactions of ions with dipolar polyatomic molecules. J. Chem. Soc. Faraday Trans. 2:139–48 [Google Scholar]
  3. Bell MT, Softley TP. 3.  2009. Ultracold molecules and ultracold chemistry. Mol. Phys. 107:99–132 [Google Scholar]
  4. Quéméner G, Julienne PS. 4.  2012. Ultracold molecules under control!. Chem. Rev. 112:4949–5011 [Google Scholar]
  5. Stuhl BK, Hummon MT, Ye J. 5.  2014. Cold state-selected molecular collisions and reactions. Annu. Rev. Phys. Chem. 65:501–18 [Google Scholar]
  6. Willitsch S, Bell MT, Gingell AD, Softley TP. 6.  2008. Chemical applications of laser- and sympathetically-cooled ions in ion traps. Phys. Chem. Chem. Phys. 10:7200–10 [Google Scholar]
  7. van de Meerakker SYT, Bethlem HL, Vanhaecke N, Meijer G. 7.  2012. Manipulation and control of molecular beams. Chem. Rev. 112:4828–78 [Google Scholar]
  8. Jankunas J, Osterwalder A. 8.  2015. Cold and controlled molecular beams: production and applications. Annu. Rev. Phys. Chem. 66:In press [Google Scholar]
  9. Hutzler NR, Lu H-I, Doyle JM. 9.  2012. The buffer gas beam: an intense, cold, and slow source for atoms and molecules. Chem. Rev. 112:4803–27 [Google Scholar]
  10. Troe J. 10.  1987. Statistical adiabatic channel model for ion-molecule capture processes. J. Chem. Phys. 87:2773–80 [Google Scholar]
  11. Clary DC. 11.  1990. Fast chemical reactions: Theory challenges experiment. Annu. Rev. Phys. Chem. 41:61–90 [Google Scholar]
  12. Dashevskaya EI, Litvin I, Nikitin EE, Troe J. 12.  2004. Quantum scattering and adiabatic channel treatment of the low-energy and low-temperature capture of a rotating quadrupolar molecule by an ion. J. Chem. Phys. 120:9989–97 [Google Scholar]
  13. Ham DO, Trainor DW, Kaufman F. 13.  1970. Gas phase kinetics of H + H + H2 → 2H*2. J. Chem. Phys. 53:4395–96 [Google Scholar]
  14. Trainor DW, Ham DO, Kaufman F. 14.  1973. Gas phase recombination of hydrogen and deuterium atoms. J. Chem. Phys. 58:4599–609 [Google Scholar]
  15. Randeniya LK, Zeng XK, Smith MA. 15.  1988. Low-temperature NO+ ion-molecule reactions in a nitric oxide expansion. Chem. Phys. Lett. 147:346–52 [Google Scholar]
  16. Mackenzie SR, Softley TP. 16.  1994. New experimental method for studying rotationally state-selected ion-molecule reactions. J. Chem. Phys. 101:10609–17 [Google Scholar]
  17. Rowe BR, Dupeyrat G, Marquette JB, Gaucherel P. 17.  1984. Study of the reactions N+2+ 2N2 → N+4+ N2 and O+2+ 2O2 → O+4+ O2 from 20 to 160 K by the CRESU technique. J. Chem. Phys. 80:4915–21 [Google Scholar]
  18. Rowe BR, Marquette JB. 18.  1987. CRESU studies of ion-molecule reactions. Int. J. Mass Spectrom. Ion Proc. 80:239–54 [Google Scholar]
  19. Sims AR, Smith IWM. 19.  1995. Gas-phase reactions and energy transfer at very low temperatures. Annu. Rev. Phys. Chem. 46:109–38 [Google Scholar]
  20. Smith IWM, Rowe BR. 20.  2000. Reaction kinetics at very low temperatures: laboratory studies and interstellar chemistry. Acc. Chem. Res. 33:261–68 [Google Scholar]
  21. Henson AB, Gersten S, Shagam Y, Narevicius J, Narevicius E. 21.  2012. Observation of resonances in Penning ionization reactions at sub-kelvin temperatures in merged beams. Science 338:234–38 [Google Scholar]
  22. Lavert-Ofir E, Shagam Y, Henson AB, Gersten S, Klos J. 22.  et al. 2014. Observation of the isotope effect in sub-kelvin reactions. Nat. Chem. 6:332–35 [Google Scholar]
  23. Bertsche B, Jankunas J, Osterwalder A. 23.  2014. Low-temperature collisions between neutral molecules in merged molecular beams. Chimia 68:256–59 [Google Scholar]
  24. Jankunas J, Bertsche B, Osterwalder A. 24.  2014. Study of the Ne(3P2) + CH3F electron-transfer reaction below 1 K. J. Phys. Chem. A 118:3875–79 [Google Scholar]
  25. Jankunas J, Bertsche B, Jachymski K, Hapka M, Osterwalder A. 25.  2014. Dynamics of gas phase Ne* + NH3 and Ne* + ND3 Penning ionisation at low temperatures. J. Chem. Phys. 140:244302 [Google Scholar]
  26. Phaneuf RA, Havener CC, Dunn GH, Muller A. 26.  1999. Merged-beam experiments in atomic and molecular physics. Rep. Prog. Phys. 62:1143–80 [Google Scholar]
  27. Zhang CB, Offenberg D, Roth B, Wilson MA, Schiller S. 27.  2007. Molecular-dynamics simulations of cold single-species and multispecies ion ensembles in a linear Paul trap. Phys. Rev. A 76:012719 [Google Scholar]
  28. Madsen DN, Balslev S, Drewsen M, Kjaergaard N, Videsen Z, Thomsen JW. 28.  2000. Measurements on photo-ionization of 3s3p 1P1 magnesium atoms. J. Phys. B 33:4981–88 [Google Scholar]
  29. Mavadia S, Goodwin JF, Stutter G, Bharadia S, Crick DR. 29.  et al. 2013. Control of the conformations of ion Coulomb crystals in a Penning trap. Nat. Commun. 4:2571 [Google Scholar]
  30. Willitsch S. 30.  2012. Coulomb-crystallised molecular ions in traps: methods, applications, prospects. Int. Rev. Phys. Chem. 31:175–99 [Google Scholar]
  31. Gerlich D. 31.  1995. Ion-neutral collisions in a 22-pole trap at very low energies. Phys. Scr. T59:256–63 [Google Scholar]
  32. Gerlich D, Borodi G. 32.  2009. Buffer gas cooling of polyatomic ions in rf multi-electrode traps. Faraday Discuss. 142:57–72 [Google Scholar]
  33. Mikosch J, Otto R, Trippel S, Eichhorn C, Weidemuller M, Wester R. 33.  2008. Inverse temperature dependent lifetimes of transient SN2 ion-dipole complexes. J. Phys. Chem. A 112:10448–52 [Google Scholar]
  34. Wineland DJ, Bergquist JC, Itano WM, Bollinger JJ, Manney CH. 34.  1987. Atomic ion Coulomb clusters in an ion trap. Phys. Rev. Lett. 59:2935–38 [Google Scholar]
  35. Diedrich JF, Peik E, Chen JM, Quint W, Walther H. 35.  1987. Observation of a phase transition of stored laser-cooled ions. Phys. Rev. Lett. 59:2931–34 [Google Scholar]
  36. Doolen GD, Slattery WL, DeWitt HE. 36.  1980. Improved equation of state for the classical one-component plasma. Phys. Rev. A 21:2087–95 [Google Scholar]
  37. Pollock EL, Hansen JP. 37.  1973. Statistical mechanics of dense ionized matter. II. Equilibrium properties and melting transition of the crystallized one-component plasma. Phys. Rev. A 8:3110–22 [Google Scholar]
  38. Hasse R, Schiffer JP. 38.  1990. The structure of the cylindrically confined Coulomb lattice. Ann. Phys. 203:419–48 [Google Scholar]
  39. Shuman ES, Barry JF, Glenn DR, DeMille D. 39.  2009. Radiative force from optical cycling on a diatomic molecule. Phys. Rev. Lett. 103:223001 [Google Scholar]
  40. Shuman ES, Barry JF, DeMille D. 40.  2010. Laser cooling of a diatomic molecule. Nature 467:820–23 [Google Scholar]
  41. Zhelyazkova V, Cournol A, Wall TE, Matsushima A, Hudson JJ. 41.  et al. 2014. Laser cooling and slowing of CaF molecules. Phys. Rev. A 89:053416 [Google Scholar]
  42. Nguyen JH, Viteri CR, Hohenstein EG, Sherrill CD, Brown KR, Odom B. 42.  2011. Challenges of laser-cooling molecular ions. New J. Phys. 13:063023 [Google Scholar]
  43. Diedrich F, Bergquist JC, Itano WM, Wineland DJ. 43.  1989. Laser cooling to zero-point energy of motion. Phys. Rev. Lett. 62:403–6 [Google Scholar]
  44. Bell MT, Gingell AD, Oldham JM, Softley TP, Willitsch S. 44.  2009. Ion-molecule chemistry at very low temperatures: cold chemical reactions between Coulomb-crystallized ions and velocity-selected neutral molecules. Faraday Discuss. 142:73–91 [Google Scholar]
  45. Härter A, Krukow A, Brunner A, Hecker Denschlag J. 45.  2013. Minimization of ion micromotion using ultracold atomic probes. Appl. Phys. Lett. 102:221115 [Google Scholar]
  46. Schiffer JP. 46.  2003. Order in confined ions. J. Phys. B 36:511–23 [Google Scholar]
  47. Baba T, Waki I. 47.  1996. Cooling and mass analysis of molecules using laser-cooled atoms. Jpn. J. Appl. Phys. 35:L1134–37 [Google Scholar]
  48. Molhave K, Drewsen M. 48.  2000. Formation of translationally cold MgH+ and MgD+ molecules in an ion trap. Phys. Rev. A 62:011401 [Google Scholar]
  49. Gingell AD, Bell MT, Oldham JM, Softley TP, Harvey JN. 49.  2010. Cold chemistry with electronically excited Ca+ Coulomb crystals. J. Chem. Phys. 133:194302 [Google Scholar]
  50. Roth B, Blythe P, Wenz H, Daerr H, Schiller S. 50.  2006. Ion-neutral chemical reactions between ultracold localized ions and neutral molecules with single-particle resolution. Phys. Rev. A 73:042712 [Google Scholar]
  51. Drewsen M, Mortensen A, Martinussen R, Staanum P, Sorensen JL. 51.  2004. Nondestructive identification of cold and extremely localized single molecular ions. Phys. Rev. Lett. 93:243201 [Google Scholar]
  52. Staanum PF, Hojbjerre K, Wester R, Drewsen M. 52.  2008. Probing isotope effects in chemical reactions using single ions. Phys. Rev. Lett. 100:243003 [Google Scholar]
  53. Versolato OO, Schwarz M, Hansen AK, Gingell AD, Windberger A. 53.  et al. 2013. Decay rate measurement of the first vibrationally excited state of MgH+ in a cryogenic Paul trap. Phys. Rev. Lett. 111:053002 [Google Scholar]
  54. Welling M, Schuessler HA, Thompson RI, Walther H. 54.  1998. Ion/molecule reactions, mass spectrometry and optical spectroscopy in a linear ion trap. Int. J. Mass Spectrom. Ion Process. 172:95–114 [Google Scholar]
  55. Raab C, Eschner J, Bolle J, Oberst H, Schmidt-Kaler F, Blatt R. 55.  2000. Motional sidebands and direct measurement of the cooling rate in the resonance fluorescence of a single trapped ion. Phys. Rev. Lett. 85:534–41 [Google Scholar]
  56. Dholakia K, Horvath GZ, Segal DM, Thompson RC, Warrington DM, Wilson DC. 56.  1993. Photon-correlation detection of ion-oscillation frequencies in quadrupole ion traps. Phys. Rev. A 47:441–48 [Google Scholar]
  57. Berkeland DJ, Miller JD, Bergquist JC, Itano WM, Wineland DJ. 57.  1998. Minimization of the ion micromotion in a Paul trap. J. Appl. Phys. 83:5025–33 [Google Scholar]
  58. Hojbjerre K, Offenberg D, Bisgaard CZ, Stapelfeldt H, Staanum PF. 58.  et al. 2008. Consecutive photodissociation of a single complex molecular ion. Phys. Rev. A 77:030702 [Google Scholar]
  59. Sheridan K, Keller M. 59.  2011. Weighing of trapped ion crystals and its applications. New J. Phys. 13:123002 [Google Scholar]
  60. Hansen AK, Sorensen MA, Staanum PF, Drewsen M. 60.  2012. Single-ion recycling reactions. Angew. Chem. Int. Ed. Engl. 51:7960–62 [Google Scholar]
  61. Willitsch S, Bell MT, Gingell A, Proctor SR, Softley TP. 61.  2008. Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules. Phys. Rev. Lett. 100:043203 [Google Scholar]
  62. Harvey JN, Schroder D, Koch W, Danovich D, Shaik S, Schwarz H. 62.  1997. Electron-transfer reactivity in the activation of organic fluorides by bare metal monocations. Chem. Phys. Lett. 278:391–97 [Google Scholar]
  63. Chang Y-P, Dlugolecki K, Kupper J, Rosch D, Wild D, Willitsch S. 63.  2013. Specific chemical reactivities of spatially separated 3-aminophenol conformers with cold Ca+ ions. Science 342:98–101 [Google Scholar]
  64. van Buuren LD, Sommer C, Motsch M, Pohle S, Schenk M. 64.  et al. 2009. Electrostatic extraction of cold molecules from a cryogenic reservoir. Phys. Rev. Lett. 102:033001 [Google Scholar]
  65. Twyman KS, Bell MT, Heazlewood BR, Softley TP. 65.  2014. Production of cold beams of ND3 with variable rotational state distributions by electrostatic extraction of He and Ne buffer-gas-cooled beams. J. Chem. Phys. 141:024308 [Google Scholar]
  66. Bethlem HL, Berden G, Meijer G. 66.  1999. Decelerating neutral dipolar molecules. Phys. Rev. Lett. 83:1558–61 [Google Scholar]
  67. Vogelius IS, Madsen LB, Drewsen M. 67.  2004. Rotational cooling of heteronuclear molecular ions with 1Σ, 2Σ, 3Σ, and 2Π electronic ground states. Phys. Rev. A 70:053412 [Google Scholar]
  68. Staanum PF, Hojbjerre K, Skyt PS, Hansen AK, Drewsen M. 68.  2010. Rotational laser cooling of vibrationally and translationally cold molecular ions. Nat. Phys. 6:271–74 [Google Scholar]
  69. Schneider T, Roth B, Duncker H, Ernsting I, Schiller S. 69.  2010. All-optical preparation of molecular ions in the rovibrational ground state. Nat. Phys. 6:275–78 [Google Scholar]
  70. Tong X, Winney AH, Willitsch S. 70.  2010. Sympathetic cooling of molecular ions in selected rotational and vibrational states produced by threshold photoionization. Phys. Rev. Lett. 105:143001 [Google Scholar]
  71. Hall FHJ, Willitsch S. 71.  2012. Millikelvin reactive collisions between sympathetically cooled molecular ions and laser-cooled atoms in an ion-atom hybrid trap. Phys. Rev. Lett. 109:233202 [Google Scholar]
  72. Schwarz M, Versolato OO, Windberger A, Brunner FR, Ballance T. 72.  et al. 2012. Cryogenic linear Paul trap for cold highly charged ion experiments. Rev. Sci. Instrum. 83:083115 [Google Scholar]
  73. Hansen AK, Versolato OO, Klosowski L, Kristensen SB, Gingell A. 73.  et al. 2014. Efficient rotational cooling of Coulomb-crystallized molecular ions by a helium buffer gas. Nature 508:76–79 [Google Scholar]
  74. Deb N, Heazlewood BR, Rennick CJ, Softley TP. 74.  2014. Laser induced rovibrational cooling of the linear polyatomic ion C2H+2. J. Chem. Phys. 140:164314 [Google Scholar]
  75. Rellergert WG, Sullivan ST, Schowalter SJ, Kotochigova S, Chen K, Hudson ER. 75.  2013. Evidence for sympathetic vibrational cooling of translationally cold molecules. Nature 495:490–94 [Google Scholar]
  76. Deb N, Heazlewood BR, Bell MT, Softley TP. 76.  2013. Blackbody-mediated rotational laser cooling schemes in MgH+, DCl+, HCl+, LiH and CsH. Phys. Chem. Chem. Phys. 15:14270–81 [Google Scholar]
  77. Qian J, Fu H, Anderson SL. 77.  1997. The dynamics of the C2H+2+ ND3 reaction: a mode-selective differential scattering study. J. Phys. Chem. A 101:6504–12 [Google Scholar]
  78. Wiley WC, McLaren IH. 78.  1955. Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum. 26:1150–57 [Google Scholar]
  79. Schneider C, Schowalter SJ, Chen K, Sullivan ST, Hudson ER. 79.  2014. Laser-cooling-assisted mass spectrometry. Phys. Rev. Appl. 2:034013 [Google Scholar]
  80. Deb N, Pollum LL, Smith AD, Keller M, Rennick CJ. 80.  et al. 2014. Coulomb crystal mass spectrometry in a digital ion trap. arXiv:1501.02207 [physics.chem–ph]
  81. Lazarou C, Keller M, Garraway BM. 81.  2010. Molecular heat pump for rotational states. Phys. Rev. A 81:013418 [Google Scholar]
  82. Grier AT, Cetina M, Orucevic F, Vuletic V. 82.  2009. Observation of cold collisions between trapped ions and trapped atoms. Phys. Rev. Lett. 102:223201 [Google Scholar]
  83. Zipkes C, Palzer S, Sias C, Kohl M. 83.  2010. A trapped single ion inside a Bose-Einstein condensate. Nature 464:388–91 [Google Scholar]
  84. Schmid S, Härter A, Hecker Denschlag J. 84.  2010. Dynamics of a cold trapped ion in a Bose-Einstein condensate. Phys. Rev. Lett. 105:133202 [Google Scholar]
  85. Hall FHJ, Aymar M, Bouloufa-Maafa N, Dulieu O, Willitsch S. 85.  2011. Light-assisted ion-neutral reactive processes in the cold regime: radiative molecule formation versus charge exchange. Phys. Rev. Lett. 107:243202 [Google Scholar]
  86. Rellergert WG, Sullivan ST, Kotochigova S, Petrov A, Chen K. 86.  et al. 2011. Measurement of a large chemical reaction rate between ultracold closed-shell 40Ca atoms and open-shell 174Yb+ ions held in a hybrid atom-ion trap. Phys. Rev. Lett. 107:243201 [Google Scholar]
  87. Ravi K, Sharma A, Werth G, Rangwala SA. 87.  2011. Combined ion and atom trap for low-temperature ion-atom physics. Appl. Phys. B 107:971–81 [Google Scholar]
  88. Sivarajah I, Goodman DS, Wells JE, Narducci FA, Smith WW. 88.  2012. Evidence of sympathetic cooling of Na+ ions by a Na magneto-optical trap in a hybrid trap. Phys. Rev. A 86:063419 [Google Scholar]
  89. Willitsch S. 89.  2014. Ion-atom hybrid systems. Proc. Int. Sch. Phys. Enrico Fermi, Course 189. Amsterdam: IOS. In press [Google Scholar]
  90. Hall FH, Eberle P, Hegi G, Raoult M, Aymar M. 90.  et al. 2013. Ion-neutral chemistry at ultralow energies: dynamics of reactive collisions between laser-cooled Ca+ ions and Rb atoms in an ion-atom hybrid trap. Mol. Phys. 111:2020–32 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040214-121527
Loading
/content/journals/10.1146/annurev-physchem-040214-121527
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error