1932

Abstract

Infrared spectroscopy has played an instrumental role in the study of a wide variety of biological questions. However, in many cases, it is impossible or difficult to rely on the intrinsic vibrational modes of biological molecules of interest, such as proteins, to reveal structural and environmental information in a site-specific manner. To overcome this limitation, investigators have dedicated many recent efforts to the development and application of various extrinsic vibrational probes that can be incorporated into biological molecules and used to site-specifically interrogate their structural or environmental properties. In this review, we highlight recent advancements in this rapidly growing research area.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040214-121802
2015-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/physchem/66/1/annurev-physchem-040214-121802.html?itemId=/content/journals/10.1146/annurev-physchem-040214-121802&mimeType=html&fmt=ahah

Literature Cited

  1. Cho M. 1.  2008. Coherent two-dimensional optical spectroscopy. Chem. Rev. 108:1331–418 [Google Scholar]
  2. Kim H, Cho M. 2.  2013. Infrared probes for studying the structure and dynamics of biomolecules. Chem. Rev. 113:5817–47 [Google Scholar]
  3. Liu J, Strzalka J, Tronin A, Johansson JS, Blasie JK. 3.  2009. Mechanism of interaction between the general anesthetic halothane and a model ion channel protein, II: fluorescence and vibrational spectroscopy using a cyanophenylalanine probe. Biophys. J. 96:4176–87 [Google Scholar]
  4. Kuroda DG, Bauman JD, Challa JR, Patel D, Troxler T. 4.  et al. 2013. Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase. Nat. Chem. 5:174–81 [Google Scholar]
  5. Brewer SH, Song BB, Raleigh DP, Dyer RB. 5.  2007. Residue specific resolution of protein folding dynamics using isotope-edited infrared temperature jump spectroscopy. Biochemistry 46:3279–85 [Google Scholar]
  6. Middleton CT, Marek P, Cao P, Chiu C-C, Singh S. 6.  et al. 2012. Two-dimensional infrared spectroscopy reveals the complex behaviour of an amyloid fibril inhibitor. Nat. Chem. 4:355–60 [Google Scholar]
  7. Hu W, Webb LJ. 7.  2011. Direct measurement of the membrane dipole field in bicelles using vibrational Stark effect spectroscopy. J. Phys. Chem. Lett. 2:1925–30 [Google Scholar]
  8. Ghosh A, Qiu J, DeGrado WF, Hochstrasser RM. 8.  2011. Tidal surge in the M2 proton channel, sensed by 2D IR spectroscopy. Proc. Natl. Acad. Sci. USA 108:6115–20 [Google Scholar]
  9. Remorino A, Korendovych IV, Wu Y, DeGrado WF, Hochstrasser RM. 9.  2011. Residue-specific vibrational echoes yield 3D structures of a transmembrane helix dimer. Science 332:1206–9 [Google Scholar]
  10. Layfield JP, Hammes-Schiffer S. 10.  2013. Calculation of vibrational shifts of nitrile probes in the active site of ketosteroid isomerase upon ligand binding. J. Am. Chem. Soc. 135:717–25 [Google Scholar]
  11. Levinson NM, Boxer SG. 11.  2014. A conserved water-mediated hydrogen bond network defines bosutinib's kinase selectivity. Nat. Chem. Biol. 10:127–32 [Google Scholar]
  12. Getahun Z, Huang CY, Wang T, De Leon B, DeGrado WF, Gai F. 12.  2003. Using nitrile-derivatized amino acids as infrared probes of local environment. J. Am. Chem. Soc. 125:405–11 [Google Scholar]
  13. Merrifield RB. 13.  1963. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85:2149–54 [Google Scholar]
  14. Schultz KC, Supekova L, Ryu Y, Xie J, Perera R, Schultz PG. 14.  2006. A genetically encoded infrared probe. J. Am. Chem. Soc. 128:13984–85 [Google Scholar]
  15. Connor RE, Tirrell DA. 15.  2007. Non-canonical amino acids in protein polymer design. Polym. Rev. 47:9–28 [Google Scholar]
  16. Ayers B, Blaschke UK, Camarero JA, Cotton GJ, Holford M, Muir TW. 16.  1999. Introduction of unnatural amino acids into proteins using expressed protein ligation. Pept. Sci. 51:343–54 [Google Scholar]
  17. Jo H, Culik RM, Korendovych IV, DeGrado WF, Gai F. 17.  2010. Selective incorporation of nitrile-based infrared probes into proteins via cysteine alkylation. Biochemistry 49:10354–56 [Google Scholar]
  18. Choi J-H, Ham S, Cho M. 18.  2003. Local amide I mode frequencies and coupling constants in polypeptides. J. Phys. Chem. B 107:9132–38 [Google Scholar]
  19. Ganim Z, Chung HS, Smith AW, DeFlores LP, Jones KC, Tokmakoff A. 19.  2008. Amide I two-dimensional infrared spectroscopy of proteins. Acc. Chem. Res. 41:432–41 [Google Scholar]
  20. DeFlores LP, Ganim Z, Nicodemus RA, Tokmakoff A. 20.  2009. Amide I′II′2D IR spectroscopy provides enhanced protein secondary structural sensitivity. J. Am. Chem. Soc. 131:3385–91 [Google Scholar]
  21. Kim YS, Hochstrasser RM. 21.  2009. Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics. J. Phys. Chem. B 113:8231–51 [Google Scholar]
  22. Maekawa H, Ballano G, Toniolo C, Ge N-H. 22.  2011. Linear and two-dimensional infrared spectroscopic study of the amide I and II modes in fully extended peptide chains. J. Phys. Chem. B 115:5168–82 [Google Scholar]
  23. Roy S, Lessing J, Meisl G, Ganim Z, Tokmakoff A. 23.  et al. 2011. Solvent and conformation dependence of amide I vibrations in peptides and proteins containing proline. J. Chem. Phys. 135:234507 [Google Scholar]
  24. Zhao J, Shi JP, Wang JP. 24.  2014. Amide-I characteristics of helical β-peptides by linear infrared measurement and computations. J. Phys. Chem. B 118:94–106 [Google Scholar]
  25. Tadesse L, Nazarbaghi R, Walters L. 25.  1991. Isotopically enhanced infrared spectroscopy: a novel method for examining secondary structure at specific sites in conformationally heterogeneous peptides. J. Am. Chem. Soc. 113:7036–37 [Google Scholar]
  26. Decatur SM, Antonic J. 26.  1999. Isotope-edited infrared spectroscopy of helical peptides. J. Am. Chem. Soc. 121:11914–15 [Google Scholar]
  27. Decatur SM. 27.  2006. Elucidation of residue-level structure and dynamics of polypeptides via isotope-edited infrared spectroscopy. Acc. Chem. Res. 39:169–75 [Google Scholar]
  28. Lin YS, Shorb JM, Mukherjee P, Zanni MT, Skinner JL. 28.  2009. Empirical amide I vibrational frequency map: application to 2D-IR line shapes for isotope-edited membrane peptide bundles. J. Phys. Chem. B 113:592–602 [Google Scholar]
  29. Wang L, Middleton CT, Zanni MT, Skinner JL. 29.  2011. Development and validation of transferable amide I vibrational frequency maps for peptides. J. Phys. Chem. B 115:3713–24 [Google Scholar]
  30. Huang CY, Getahun Z, Zhu YJ, Klemke JW, DeGrado WF, Gai F. 30.  2002. Helix formation via conformation diffusion search. Proc. Natl. Acad. Sci. USA 99:2788–93 [Google Scholar]
  31. Bredenbeck J, Helbing J, Behrendt R, Renner C, Moroder L. 31.  et al. 2003. Transient 2D-IR spectroscopy: snapshots of the nonequilibrium ensemble during the picosecond conformational transition of a small peptide. J. Phys. Chem. B 107:8654–60 [Google Scholar]
  32. Backus EHG, Bloem R, Donaldson PM, Ihalainen JA, Pfister R. 32.  et al. 2010. 2D-IR study of a photoswitchable isotope-labeled α-helix. J. Phys. Chem. B 114:3735–40 [Google Scholar]
  33. Fleming S, Frederix P, Sasselli IR, Hunt NT, Ulijn RV, Tuttle T. 33.  2013. Assessing the utility of infrared spectroscopy as a structural diagnostic tool for β-sheets in self-assembling aromatic peptide amphiphiles. Langmuir 29:9510–15 [Google Scholar]
  34. Buchanan LE, Carr JK, Fluitt AM, Hoganson AJ, Moran SD. 34.  et al. 2014. Structural motif of polyglutamine amyloid fibrils discerned with mixed-isotope infrared spectroscopy. Proc. Natl. Acad. Sci. USA 111:5796–801 [Google Scholar]
  35. Kim YS, Liu L, Axelsen PH, Hochstrasser RM. 35.  2009. 2D IR provides evidence for mobile water molecules in β-amyloid fibrils. Proc. Natl. Acad. Sci. USA 106:17751–56 [Google Scholar]
  36. Ma J, Komatsu H, Kim YS, Liu L, Hochstrasser RM, Axelsen PH. 36.  2013. Intrinsic structural heterogeneity and long-term maturation of amyloid β peptide fibrils. ACS Chem. Neurosci. 4:1236–43 [Google Scholar]
  37. Huang CY, Getahun Z, Wang T, DeGrado WF, Gai F. 37.  2001. Time-resolved infrared study of the helix-coil transition using 13C-labeled helical peptides. J. Am. Chem. Soc. 123:12111–12 [Google Scholar]
  38. Waldman ADB, Birdsall B, Roberts GCK, Holbrook JJ. 38.  1986. 13C-NMR and transient kinetic studies on lactate dehydrogenase [Cys(13CN)165]: direct measurement of a rate-limiting rearrangement in protein structure. Biochim. Biophys. Acta 870:102–11 [Google Scholar]
  39. Doherty GM, Motherway R, Mayhew SG, Malthouse JPG. 39.  1992. 13C NMR of cyanylated flavodoxin from Megasphaera elsdenii and of thiocyanate model compounds. Biochemistry 31:7922–30 [Google Scholar]
  40. Fafarman AT, Sigala PA, Herschlag D, Boxer SG. 40.  2010. Decomposition of vibrational shifts of nitriles into electrostatic and hydrogen-bonding effects. J. Am. Chem. Soc. 132:12811–13 [Google Scholar]
  41. Tucker MJ, Getahun Z, Nanda V, DeGrado WF, Gai F. 41.  2004. A new method for determining the local environment and orientation of individual side chains of membrane-binding peptides. J. Am. Chem. Soc. 126:5078–79 [Google Scholar]
  42. Woys AM, Lin Y-S, Reddy AS, Xiong W, de Pablo JJ. 42.  et al. 2010. 2D IR line shapes probe ovispirin peptide conformation and depth in lipid bilayers. J. Am. Chem. Soc. 132:2832–38 [Google Scholar]
  43. Manor J, Arbely E, Beerlink A, Akkawi M, Arkin IT. 43.  2014. Use of isotope-edited FTIR to derive a backbone structure of a transmembrane protein. J. Phys. Chem. Lett. 5:2573–79 [Google Scholar]
  44. Remorino A, Hochstrasser RM. 44.  2012. Three-dimensional structures by two-dimensional vibrational spectroscopy. Acc. Chem. Res. 45:1896–905 [Google Scholar]
  45. Buchanan LE, Dunkelberger EB, Tran HQ, Cheng P-N, Chiu C-C. 45.  et al. 2013. Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet. Proc. Natl. Acad. Sci. USA 110:19285–90 [Google Scholar]
  46. Woys AM, Almeida AM, Wang L, Chiu C-C, McGovern M. 46.  et al. 2012. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: quantitative benchmark for the interpretation of amyloid and protein infrared spectra. J. Am. Chem. Soc. 134:19118–28 [Google Scholar]
  47. Moran SD, Woys AM, Buchanan LE, Bixby E, Decatur SM, Zanni MT. 47.  2012. Two-dimensional IR spectroscopy and segmental 13C labeling reveals the domain structure of human γd-crystallin amyloid fibrils. Proc. Natl. Acad. Sci. USA 109:3329–34 [Google Scholar]
  48. Moran SD, Decatur SM, Zanni MT. 48.  2012. Structural and sequence analysis of the human γd-crystallin amyloid fibril core using 2D IR spectroscopy, segmental 13C labeling, and mass spectrometry. J. Am. Chem. Soc. 134:18410–16 [Google Scholar]
  49. Lam AR, Moran SD, Preketes NK, Zhang TO, Zanni MT, Mukamel S. 49.  2013. Study of the γd-crystallin protein using two-dimensional infrared (2DIR) spectroscopy: experiment and simulation. J. Phys. Chem. B 117:15436–43 [Google Scholar]
  50. Moran SD, Zhang TO, Decatur SM, Zanni MT. 50.  2013. Amyloid fiber formation in human γd-crystallin induced by UV-B photodamage. Biochemistry 52:6169–81 [Google Scholar]
  51. Kurochkin DV, Naraharisetty SRG, Rubtsov IV. 51.  2007. A relaxation-assisted 2D IR spectroscopy method. Proc. Natl. Acad. Sci. USA 104:14209–14 [Google Scholar]
  52. Backus EHG, Nguyen PH, Botan V, Pfister R, Moretto A. 52.  et al. 2008. Energy transport in peptide helices: a comparison between high- and low-energy excitations. J. Phys. Chem. B 112:9091–99 [Google Scholar]
  53. Backus EHG, Bloem R, Pfister R, Moretto A, Crisma M. 53.  et al. 2009. Dynamical transition in a small helical peptide and its implication for vibrational energy transport. J. Phys. Chem. B 113:13405–9 [Google Scholar]
  54. Bian H, Li J, Zhang Q, Chen H, Zhuang W. 54.  et al. 2012. Ion segregation in aqueous solutions. J. Phys. Chem. B 116:14426–32 [Google Scholar]
  55. Li J, Bian H, Wen X, Chen H, Yuan K, Zheng J. 55.  2012. Probing ion/molecule interactions in aqueous solutions with vibrational energy transfer. J. Phys. Chem. B 116:12284–94 [Google Scholar]
  56. Lin Z, Zhang N, Jayawickramarajah J, Rubtsov IV. 56.  2012. Ballistic energy transport along PEG chains: distance dependence of the transport efficiency. Phys. Chem. Chem. Phys. 14:10445–54 [Google Scholar]
  57. Ihalainen JA, Bredenbeck J, Pfister R, Helbing J, Chi L. 57.  et al. 2007. Folding and unfolding of a photoswitchable peptide from picoseconds to microseconds. Proc. Natl. Acad. Sci. USA 104:5383–88 [Google Scholar]
  58. Ihalainen JA, Paoli B, Muff S, Backus EHG, Bredenbeck J. 58.  et al. 2008. α-Helix folding in the presence of structural constraints. Proc. Natl. Acad. Sci. USA 105:9588–93 [Google Scholar]
  59. Jones KC, Peng CS, Tokmakoff A. 59.  2013. Folding of a heterogeneous β-hairpin peptide from temperature-jump 2D IR spectroscopy. Proc. Natl. Acad. Sci. USA 110:2828–33 [Google Scholar]
  60. Williams S, Causgrove TP, Gilmanshin R, Fang KS, Callender RH. 60.  et al. 1996. Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry 35:691–97 [Google Scholar]
  61. Thompson PA, Eaton WA, Hofrichter J. 61.  1997. Laser temperature jump study of the helix reversible arrow coil kinetics of an alanine peptide interpreted with a ‘kinetic zipper’ model. Biochemistry 36:9200–10 [Google Scholar]
  62. Munoz V, Thompson PA, Hofrichter J, Eaton WA. 62.  1997. Folding dynamics and mechanism of β-hairpin formation. Nature 390:196–99 [Google Scholar]
  63. Tucker MJ, Abdo M, Courter JR, Chen J, Brown SP. 63.  et al. 2013. Nonequilibrium dynamics of helix reorganization observed by transient 2D IR spectroscopy. Proc. Natl. Acad. Sci. USA 110:17314–19 [Google Scholar]
  64. Miwa JH, Patel AK, Vivatrat N, Popek SM, Meyer AM. 64.  2001. Compatibility of the thioamide functional group with β-sheet secondary structure: incorporation of a thioamide linkage into a β-hairpin peptide. Org. Lett. 3:3373–75 [Google Scholar]
  65. Cohen VI. 65.  1977. A convenient alkyl, cycloalkyl and aralkyl disulfides synthesis from aliphatic and aromatic aldehydes, aliphatic ketones and cycloketones. J. Org. Chem. 42:2645–47 [Google Scholar]
  66. Deechongkit S, Nguyen H, Powers ET, Dawson PE, Gruebele M, Kelly JW. 66.  2004. Context-dependent contributions of backbone hydrogen bonding to β-sheet folding energetics. Nature 430:101–5 [Google Scholar]
  67. Bunagan MR, Gao J, Kelly JW, Gai F. 67.  2009. Probing the folding transition state structure of the villin headpiece subdomain via side chain and backbone mutagenesis. J. Am. Chem. Soc. 131:7470–76 [Google Scholar]
  68. Velarde L, Wang H-F. 68.  2013. Capturing inhomogeneous broadening of the –CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS). J. Chem. Phys. 139:084204 [Google Scholar]
  69. Waegele MM, Tucker MJ, Gai F. 69.  2009. 5-Cyanotryptophan as an infrared probe of local hydration status of proteins. Chem. Phys. Lett. 478:249–53 [Google Scholar]
  70. Xue L, Zou F, Zhao Y, Huang X, Qu Y. 70.  2012. Nitrile group as infrared probe for the characterization of the conformation of bovine serum albumin solubilized in reverse micelles. Spectrochim. Acta A 97:858–63 [Google Scholar]
  71. Zhang S, Shi R, Ma X, Lu L, He Y. 71.  et al. 2012. Intrinsic electric fields in ionic liquids determined by vibrational Stark effect spectroscopy and molecular dynamics simulation. Chemistry 18:11904–8 [Google Scholar]
  72. Zhang Z, Guo Y, Lu Z, Velarde L, Wang H-F. 72.  2012. Resolving two closely overlapping –CN vibrations and structure in the Langmuir monolayer of the long-chain nonadecanenitrile by polarization sum frequency generation vibrational spectroscopy. J. Phys. Chem. C 116:2976–87 [Google Scholar]
  73. Wang X, He Zhang X. 73.  2013. Predicting mutation-induced Stark shifts in the active site of a protein with a polarized force field. J. Phys. Chem. A 117:6015–23 [Google Scholar]
  74. Huang CY, Wang T, Gai F. 74.  2003. Temperature dependence of the CN stretching vibration of a nitrile-derivatized phenylalanine in water. Chem. Phys. Lett. 371:731–38 [Google Scholar]
  75. Bazewicz CG, Lipkin JS, Smith EE, Liskov MT, Brewer SH. 75.  2012. Expanding the utility of 4-cyano-l-phenylalanine as a vibrational reporter of protein environments. J. Phys. Chem. B 116:10824–31 [Google Scholar]
  76. Bischak CG, Longhi S, Snead DM, Costanzo S, Terrer E, Londergan CH. 76.  2010. Probing structural transitions in the intrinsically disordered C-terminal domain of the measles virus nucleoprotein by vibrational spectroscopy of cyanylated cysteines. Biophys. J. 99:1676–83 [Google Scholar]
  77. McMahon HA, Alfieri KN, Clark CAA, Londergan CH. 77.  2010. Cyanylated cysteine: a covalently attached vibrational probe of protein-lipid contacts. J. Phys. Chem. Lett. 1:850–55 [Google Scholar]
  78. Stafford AJ, Ensign DL, Webb LJ. 78.  2010. Vibrational Stark effect spectroscopy at the interface of Ras and Rap1A bound to the Ras binding domain of RalGDS reveals an electrostatic mechanism for protein-protein interaction. J. Phys. Chem. B 114:15331–44 [Google Scholar]
  79. Alfieri KN, Vienneau AR, Londergan CH. 79.  2011. Using infrared spectroscopy of cyanylated cysteine to map the membrane binding structure and orientation of the hybrid antimicrobial peptide CM15. Biochemistry 50:11097–108 [Google Scholar]
  80. Stafford AJ, Walker DM, Webb LJ. 80.  2012. Electrostatic effects of mutations of Ras glutamine 61 measured using vibrational spectroscopy of a thiocyanate probe. Biochemistry 51:2757–67 [Google Scholar]
  81. Ghosh A, Remorino A, Tucker MJ, Hochstrasser RM. 81.  2009. 2D IR photon echo spectroscopy reveals hydrogen bond dynamics of aromatic nitriles. Chem. Phys. Lett. 469:325–30 [Google Scholar]
  82. Waegele MM, Culik RM, Gai F. 82.  2011. Site-specific spectroscopic reporters of the local electric field, hydration, structure, and dynamics of biomolecules. J. Phys. Chem. Lett. 2:2598–609 [Google Scholar]
  83. Pazos IM, Gai F. 83.  2012. Solute's perspective on how trimethylamine oxide, urea, and guanidine hydrochloride affect water's hydrogen bonding ability. J. Phys. Chem. B 116:12473–78 [Google Scholar]
  84. Ma J, Pazos IM, Gai F. 84.  2014. Microscopic insights into the protein-stabilizing effect of trimethylamine N-oxide (TMAO). Proc. Natl. Acad. Sci. USA 111:8476–81 [Google Scholar]
  85. Cho SS, Reddy G, Straub JE, Thirumalai D. 85.  2011. Entropic stabilization of proteins by TMAO. J. Phys. Chem. B 115:13401–7 [Google Scholar]
  86. Levinson NM, Fried SD, Boxer SG. 86.  2012. Solvent-induced infrared frequency shifts in aromatic nitriles are quantitatively described by the vibrational Stark effect. J. Phys. Chem. B 116:10470–76 [Google Scholar]
  87. Bagchi S, Fried SD, Boxer SG. 87.  2012. A solvatochromic model calibrates nitriles' vibrational frequencies to electrostatic fields. J. Am. Chem. Soc. 134:10373–76 [Google Scholar]
  88. Ragain CM, Newberry RW, Ritchie AW, Webb LJ. 88.  2012. Role of electrostatics in differential binding of RaIGDS to Rap mutations E30D and K31E investigated by vibrational spectroscopy of thiocyanate probes. J. Phys. Chem. B 116:9326–36 [Google Scholar]
  89. Sigala PA, Fafarman AT, Bogard PE, Boxer SG, Herschlag D. 89.  2007. Do ligand binding and solvent exclusion alter the electrostatic character within the oxyanion hole of an enzymatic active site?. J. Am. Chem. Soc. 129:12104–5 [Google Scholar]
  90. Liu CT, Layfield JP, Stewart RJ, French JB, Hanoian P. 90.  et al. 2014. Probing the electrostatics of active site microenvironments along the catalytic cycle for Escherichia coli dihydrofolate reductase. J. Am. Chem. Soc. 136:10349–60 [Google Scholar]
  91. Fang C, Bauman JD, Das K, Remorino A, Arnold E, Hochstrasser RM. 91.  2008. Two-dimensional infrared spectra reveal relaxation of the nonnucleoside inhibitor TMC278 complexed with HIV-1 reverse transcriptase. Proc. Natl. Acad. Sci. USA 105:1472–77 [Google Scholar]
  92. Ghosh A, Wang J, Moroz YS, Korendovych IV, Zanni M. 92.  et al. 2014. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel. J. Chem. Phys. 140:235105 [Google Scholar]
  93. Urbanek DC, Vorobyev DY, Serrano AL, Gai F, Hochstrasser RM. 93.  2010. The two-dimensional vibrational echo of a nitrile probe of the Villin HP35 protein. J. Phys. Chem. Lett. 1:3311–15 [Google Scholar]
  94. Fafarman AT, Boxer SG. 94.  2010. Nitrile bonds as infrared probes of electrostatics in ribonuclease S. J. Phys. Chem. B 114:13536–44 [Google Scholar]
  95. Chung JK, Thielges MC, Fayer MD. 95.  2011. Dynamics of the folded and unfolded villin headpiece (HP35) measured with ultrafast 2D IR vibrational echo spectroscopy. Proc. Natl. Acad. Sci. USA 108:3578–83 [Google Scholar]
  96. Jha SK, Ji M, Gaffney KJ, Boxer SG. 96.  2011. Direct measurement of the protein response to an electrostatic perturbation that mimics the catalytic cycle in ketosteroid isomerase. Proc. Natl. Acad. Sci. USA 108:16612–17 [Google Scholar]
  97. Bagchi S, Boxer SG, Fayer MD. 97.  2012. Ribonuclease S dynamics measured using a nitrile label with 2D IR vibrational echo spectroscopy. J. Phys. Chem. B 116:4034–42 [Google Scholar]
  98. Fafarman AT, Sigala PA, Schwans JP, Fenn TD, Herschlag D, Boxer SG. 98.  2012. Quantitative, directional measurement of electric field heterogeneity in the active site of ketosteroid isomerase. Proc. Natl. Acad. Sci. USA 109:E299–308 [Google Scholar]
  99. Choi JH, Oh KI, Lee H, Lee C, Cho M. 99.  2008. Nitrile and thiocyanate IR probes: quantum chemistry calculation studies and multivariate least-square fitting analysis. J. Chem. Phys. 128:134506 [Google Scholar]
  100. Lindquist BA, Corcelli SA. 100.  2008. Nitrile groups as vibrational probes: calculations of the C≡N infrared absorption line shape of acetonitrile in water and tetrahydrofuran. J. Phys. Chem. B 112:6301–3 [Google Scholar]
  101. Lindquist BA, Furse KE, Corcelli SA. 101.  2009. Nitrile groups as vibrational probes of biomolecular structure and dynamics: an overview. Phys. Chem. Chem. Phys. 11:8119–32 [Google Scholar]
  102. Tucker MJ, Oyola R, Gai F. 102.  2006. A novel fluorescent probe for protein binding and folding studies: p-cyano-phenylalanine. Biopolymers 83:571–76 [Google Scholar]
  103. Tang J, Yin H, Qiu J, Tucker MJ, DeGrado WF, Gai F. 103.  2009. Using two fluorescent probes to dissect the binding, insertion, and dimerization kinetics of a model membrane peptide. J. Am. Chem. Soc. 131:3816–17 [Google Scholar]
  104. Serrano AL, Troxler T, Tucker MJ, Gai F. 104.  2010. Photophysics of a fluorescent non-natural amino acid: p-cyanophenylalanine. Chem. Phys. Lett. 487:303–6 [Google Scholar]
  105. Taskent-Sezgin H, Marek P, Thomas R, Goldberg D, Chung J. 105.  et al. 2010. Modulation of p-cyanophenylalanine fluorescence by amino acid side chains and rational design of fluorescence probes of α-helix formation. Biochemistry 49:6290–95 [Google Scholar]
  106. Goldberg JM, Batjargal S, Petersson EJ. 106.  2010. Thioamides as fluorescence quenching probes: minimalist chromophores to monitor protein dynamics. J. Am. Chem. Soc. 132:14718–20 [Google Scholar]
  107. Tucker MJ, Kim YS, Hochstrasser RM. 107.  2009. 2D IR photon echo study of the anharmonic coupling in the OCN region of phenyl cyanate. Chem. Phys. Lett. 470:80–84 [Google Scholar]
  108. Park KH, Jeon J, Park Y, Lee S, Kwon HJ. 108.  et al. 2013. Infrared probes based on nitrile-derivatized prolines: thermal insulation effect and enhanced dynamic range. J. Phys. Chem. Lett. 4:2105–10 [Google Scholar]
  109. Tucker MJ, Gai XS, Fenlon EE, Brewer SH, Hochstrasser RM. 109.  2011. 2D IR photon echo of azido-probes for biomolecular dynamics. Phys. Chem. Chem. Phys. 13:2237–41 [Google Scholar]
  110. Thielges MC, Axup JY, Wong D, Lee HS, Chung JK. 110.  et al. 2011. Two-dimensional IR spectroscopy of protein dynamics using two vibrational labels: a site-specific genetically encoded unnatural amino acid and an active site ligand. J. Phys. Chem. B 115:11294–304 [Google Scholar]
  111. Choi J-H, Raleigh D, Cho M. 111.  2011. Azido homoalanine is a useful infrared probe for monitoring local electrostatistics and side-chain solvation in proteins. J. Phys. Chem. Lett. 2:2158–62 [Google Scholar]
  112. Gai XS, Coutifaris BA, Brewer SH, Fenlon EE. 112.  2011. A direct comparison of azide and nitrile vibrational probes. Phys. Chem. Chem. Phys. 13:5926–30 [Google Scholar]
  113. Wolfshorndl MP, Baskin R, Dhawan I, Londergan CH. 113.  2012. Covalently bound azido groups are very specific water sensors, even in hydrogen-bonding environments. J. Phys. Chem. B 116:1172–79 [Google Scholar]
  114. Bloem R, Koziol K, Waldauer SA, Buchli B, Walser R. 114.  et al. 2012. Ligand binding studied by 2D IR spectroscopy using the azidohomoalanine label. J. Phys. Chem. B 116:13705–12 [Google Scholar]
  115. Bazewicz CG, Liskov MT, Hines KJ, Brewer SH. 115.  2013. Sensitive, site-specific, and stable vibrational probe of local protein environments: 4-azidomethyl-L-phenylalanine. J. Phys. Chem. B 117:8987–93 [Google Scholar]
  116. Garcia-Viloca M, Nam K, Alhambra C, Gao JL. 116.  2004. Solvent and protein effects on the vibrational frequency shift and energy relaxation of the azide ligand in carbonic anhydrase. J. Phys. Chem. B 108:13501–12 [Google Scholar]
  117. Ye S, Huber T, Vogel R, Sakmar TP. 117.  2009. FTIR analysis of GPCR activation using azido probes. Nat. Chem. Biol. 5:397–99 [Google Scholar]
  118. Lipkin JS, Song R, Fenlon EE, Brewer SH. 118.  2011. Modulating accidental Fermi resonance: what a difference a neutron makes. J. Phys. Chem. Lett. 2:1672–76 [Google Scholar]
  119. Taskent-Sezgin H, Chung J, Banerjee PS, Nagarajan S, Dyer RB. 119.  et al. 2010. Azidohomoalanine: a conformationally sensitive IR probe of protein folding, protein structure, and electrostatics. Angew. Chem. Int. Ed. Engl. 49:7473–75 [Google Scholar]
  120. Ye S, Zaitseva E, Caltabiano G, Schertler GFX, Sakmar TP. 120.  et al. 2010. Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. Nature 464:1386–89 [Google Scholar]
  121. Bandaria JN, Dutta S, Hill SE, Kohen A, Cheatum CM. 121.  2007. Fast enzyme dynamics at the active site of formate dehydrogenase. J. Am. Chem. Soc. 130:22–23 [Google Scholar]
  122. Choi J-H, Cho M. 122.  2011. Vibrational solvatochromism and electrochromism of infrared probe molecules containing C≡O, C≡N, C=O, or C–F vibrational chromophore. J. Chem. Phys. 134:154513 [Google Scholar]
  123. Nie B, Stutzman J, Xie A. 123.  2005. A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues. Biophys. J. 88:2833–47 [Google Scholar]
  124. Bagchi S, Falvo C, Mukamel S, Hochstrasser RM. 124.  2009. 2D-IR experiments and simulations of the coupling between amide-I and ionizable side chains in proteins: application to the Villin headpiece. J. Phys. Chem. B 113:11260–73 [Google Scholar]
  125. Culik RM, Annavarapu S, Nanda V, Gai F. 125.  2013. Using D-amino acids to delineate the mechanism of protein folding: application to Trp-cage. Chem. Phys. 422:131–34 [Google Scholar]
  126. Fried SD, Bagchi S, Boxer SG. 126.  2013. Measuring electrostatic fields in both hydrogen-bonding and non-hydrogen-bonding environments using carbonyl vibrational probes. J. Am. Chem. Soc. 135:11181–92 [Google Scholar]
  127. Pazos IM, Ghosh A, Tucker MJ, Gai F. 127.  2014. Ester carbonyl vibration as a sensitive probe of protein local electric field. Angew. Chem. Int. Ed. Engl. 53:6080–84 [Google Scholar]
  128. Fried SD, Wang L-P, Boxer SG, Ren P, Pande VS. 128.  2013. Calculations of the electric fields in liquid solutions. J. Phys. Chem. B 117:16236–48 [Google Scholar]
  129. Kumar K, Sinks LE, Wang JP, Kim YS, Hochstrasser RM. 129.  2006. Coupling between C–D and C=O motions using dual-frequency 2D IR photon echo spectroscopy. Chem. Phys. Lett. 432:122–27 [Google Scholar]
  130. Zimmermann J, Gundogdu K, Cremeens ME, Bandaria JN, Hwang GT. 130.  et al. 2009. Efforts toward developing probes of protein dynamics: vibrational dephasing and relaxation of carbon-deuterium stretching modes in deuterated leucine. J. Phys. Chem. B 113:7991–94 [Google Scholar]
  131. Cremeens ME, Zimmermann J, Yu W, Dawson PE, Romesberg FE. 131.  2009. Direct observation of structural heterogeneity in a β-sheet. J. Am. Chem. Soc. 131:5726–27 [Google Scholar]
  132. Naraharisetty SRG, Kasyanenko VM, Zimmermann J, Thielges MC, Romesberg FE, Rubtsov IV. 132.  2009. C–D modes of deuterated side chain of leucine as structural reporters via dual-frequency two-dimensional infrared spectroscopy. J. Phys. Chem. B 113:4940–46 [Google Scholar]
  133. Stillwell WG, Bouwsma OJ, Horning MG. 133.  1978. Formation in vivo of deuterated methylthio metabolites of naphthalene from l-methionine (methyl-d-3). Res. Commun. Chem. Pathol. Pharmacol. 22:329–43 [Google Scholar]
  134. Chin JK, Jimenez R, Romesberg FE. 134.  2001. Direct observation of protein vibrations by selective incorporation of spectroscopically observable carbon-deuterium bonds in cytochrome c. J. Am. Chem. Soc. 123:2426–27 [Google Scholar]
  135. Yu W, Dawson PE, Zimmermann J, Romesberg FE. 135.  2012. Carbon-deuterium bonds as probes of protein thermal unfolding. J. Phys. Chem. B 116:6397–403 [Google Scholar]
  136. Ghosh A, Tucker MJ, Gai F. 136.  2014. 2D IR spectroscopy of histidine: probing side-chain structure and dynamics via backbone amide vibrations. J. Phys. Chem. B 118:7799–805 [Google Scholar]
  137. Hoffman KW, Romei MG, Londergan CH. 137.  2013. A new Raman spectroscopic probe of both the protonation state and noncovalent interactions of histidine residues. J. Phys. Chem. A 117:5987–96 [Google Scholar]
  138. Barth A. 138.  2000. The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol. 74:141–73 [Google Scholar]
  139. Koziński M, Garrett-Roe S, Hamm P. 139.  2008. 2D-IR spectroscopy of the sulfhydryl band of cysteines in the hydrophobic core of proteins. J. Phys. Chem. B 112:7645–50 [Google Scholar]
  140. Levinson NM, Bolte EE, Miller CS, Corcelli SA, Boxer SG. 140.  2011. Phosphate vibrations probe local electric fields and hydration in biomolecules. J. Am. Chem. Soc. 133:13236–39 [Google Scholar]
  141. Suydam IT, Boxer SG. 141.  2003. Vibrational Stark effects calibrate the sensitivity of vibrational probes for electric fields in proteins. Biochemistry 42:12050–55 [Google Scholar]
  142. Baiz CR, McRobbie PL, Anna JM, Geva E, Kubarych KJ. 142.  2009. Two-dimensional infrared spectroscopy of metal carbonyls. Acc. Chem. Res. 42:1395–404 [Google Scholar]
  143. King JT, Kubarych KJ. 143.  2012. Site-specific coupling of hydration water and protein flexibility studied in solution with ultrafast 2D-IR spectroscopy. J. Am. Chem. Soc. 134:18705–12 [Google Scholar]
  144. King JT, Arthur EJ, Brooks CL, Kubarych KJ. 144.  2012. Site-specific hydration dynamics of globular proteins and the role of constrained water in solvent exchange with amphiphilic cosolvents. J. Phys. Chem. B 116:5604–11 [Google Scholar]
  145. Osborne DG, Dunbar JA, Lapping JG, White AM, Kubarych KJ. 145.  2013. Site-specific measurements of lipid membrane interfacial water dynamics with multidimensional infrared spectroscopy. J. Phys. Chem. B 117:15407–14 [Google Scholar]
  146. Woys AM, Mukherjee SS, Skoff DR, Moran SD, Zanni MT. 146.  2013. A strongly absorbing class of non-natural labels for probing protein electrostatics and solvation with FTIR and 2D IR spectroscopies. J. Phys. Chem. B 117:5009–18 [Google Scholar]
  147. Peran I, Oudenhoven T, Woys AM, Watson MD, Zhang TO. 147.  et al. 2014. General strategy for the bioorthogonal incorporation of strongly absorbing, solvation-sensitive infrared probes into proteins. J. Phys. Chem. B 118:7946–53 [Google Scholar]
  148. Fafarman AT, Webb LJ, Chuang JI, Boxer SG. 148.  2006. Site-specific conversion of cysteine thiols into thiocyanate creates an IR probe for electric fields in proteins. J. Am. Chem. Soc. 128:13356–57 [Google Scholar]
  149. Dutta S, Li Y-L, Rock W, Houtman JCD, Kohen A, Cheatum CM. 149.  2011. 3-Picolyl azide adenine dinucleotide as a probe of femtosecond to picosecond enzyme dynamics. J. Phys. Chem. B 116:542–48 [Google Scholar]
  150. Barth A, Zscherp C. 150.  2002. What vibrations tell us about proteins. Q. Rev. Biophys. 35:369–430 [Google Scholar]
  151. Zimmermann J, Thielges MC, Yu W, Dawson PE, Romesberg FE. 151.  2011. Carbon-deuterium bonds as site-specific and nonperturbative probes for time-resolved studies of protein dynamics and folding. J. Phys. Chem. Lett. 2:412–16 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040214-121802
Loading
/content/journals/10.1146/annurev-physchem-040214-121802
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error