1932

Abstract

Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low-temperature combustion and in the oxidation of volatile organic compounds in Earth's atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization makes characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, and master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040215-112151
2017-05-05
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/physchem/68/1/annurev-physchem-040215-112151.html?itemId=/content/journals/10.1146/annurev-physchem-040215-112151&mimeType=html&fmt=ahah

Literature Cited

  1. Peris JF, González VB, Blasco R, Cuartero F, Fluck H. 1.  et al. 2012. The earliest evidence of hearths in Southern Europe: the case of Bolomor Cave (Valencia, Spain). Quat. Int. 247:267–77 [Google Scholar]
  2. Faraday M. 2.  1874. The Chemical History of a Candle New York: Routledge
  3. Core Writing Team, Pachauri RK, Meyer LA. 3. , eds. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC
  4. 4. US Energy Inf. Admin. 2016. International Energy Outlook 2016 Washington, DC: US Energy Inf. Admin.
  5. Chen YY, Ebenstein A, Greenstone M, Li HB. 5.  2013. Evidence on the impact of sustained exposure to air pollution on life expectancy from China's Huai River policy. PNAS 110:12936–41 [Google Scholar]
  6. Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL. 6.  2000. Fine particulate air pollution and mortality in 20 US cities, 1987–1994. N. Engl. J. Med. 343:1742–49 [Google Scholar]
  7. Dec JE. 7.  2009. Advanced compression-ignition engines—understanding the in-cylinder processes. Proc. Combust. Inst. 32:2727–42 [Google Scholar]
  8. 8. Fed. Lab. Consort. 2016. Combustion Research Facility—first diesel engine designed entirely computationally Success Stories, March 21. https://www.federallabs.org/index.php?tray=success_stories&tid=1FLtop77&cid=162DW133
  9. Glassman I, Yetter RA. 9.  2008. Combustion Burlington, MA: Academic
  10. Miller JA, Kee RJ, Westbrook CK. 10.  1990. Chemical kinetics and combustion modeling. Annu. Rev. Phys. Chem. 41:345–87 [Google Scholar]
  11. Finlayson-Pitts BJ, Pitts JN. 11.  2000. Chemistry of the Upper and Lower Atmosphere San Diego, CA: Academic
  12. Warnatz J, Maas U, Dibble RW. 12.  2006. Combustion Berlin: Springer
  13. Westbrook CK. 13.  2000. Chemical kinetics of hydrocarbon ignition in practical combustion systems. Proc. Combust. Inst. 28:1563–77 [Google Scholar]
  14. Zádor J, Taatjes CA, Fernandes RX. 14.  2011. Kinetics of elementary reactions in low-temperature autoignition chemistry. Prog. Energy Combust. Sci. 37:371–421 [Google Scholar]
  15. Jr. Gardiner WC, Olson DB. 15.  1980. Chemical kinetics of high-temperature combustion. Annu. Rev. Phys. Chem. 31:377–99 [Google Scholar]
  16. Michael JV, Sutherland JW, Harding LB, Wagner AF. 16.  2000. Initiation in H2/O2: rate constants for H2 + O2 → H + HO2 at high temperature. Proc. Combust. Inst. 28:1471–78 [Google Scholar]
  17. Srinivasan NK, Michael JV, Harding LB, Klippenstein SJ. 17.  2007. Experimental and theoretical rate constants for CH4 + O2 → CH3 + HO2. Combust. Flame 149:104–11 [Google Scholar]
  18. Pilling MJ. 18.  1997. Low-Temperature Combustion and Autoignition Amsterdam: Elsevier
  19. Miyoshi A. 19.  2011. Systematic computational study on the unimolecular reactions of alkylperoxy (RO2), hydroperoxyalkyl (QOOH), and hydroperoxyalkylperoxy (O2QOOH) radicals. J. Phys. Chem. A 115:3301–25 [Google Scholar]
  20. Guo H. 20.  2012. Quantum dynamics of complex-forming bimolecular reactions. Int. Rev. Phys. Chem. 31:1–68 [Google Scholar]
  21. Troe J. 21.  2003. Toward a quantitative analysis of association reactions in the atmosphere. Chem. Rev. 103:4565–76 [Google Scholar]
  22. Francisco JS, Muckerman JT, Yu HG. 22.  2010. HOCO radical chemistry. Acc. Chem. Res. 43:1519–26 [Google Scholar]
  23. Hu WP, Rossi I, Corchado JC, Truhlar DG. 23.  1997. Molecular modeling of combustion kinetics. The abstraction of primary and secondary hydrogens by hydroxyl radical. J. Phys. Chem. A 101:6911–21 [Google Scholar]
  24. Zádor J, Jasper AW, Miller JA. 24.  2009. The reaction between propene and hydroxyl. Phys. Chem. Chem. Phys. 11:11040–53 [Google Scholar]
  25. Zádor J, Miller JA. 25.  2015. Adventures on the C3H5O potential energy surface: OH + propyne, OH + allene and related reactions. Proc. Combust. Inst. 35:181–88 [Google Scholar]
  26. Yang X. 26.  2007. State-to-state dynamics of elementary bimolecular reactions. Annu. Rev. Phys. Chem. 58:433–59 [Google Scholar]
  27. Balucani N, Capozza G, Leonori F, Segoloni E, Casavecchia P. 27.  2006. Crossed molecular beam reactive scattering: from simple triatomic to multichannel polyatomic reactions. Int. Rev. Phys. Chem. 25:109–63 [Google Scholar]
  28. Casavecchia P, Leonori F, Balucani N, Petrucci R, Capozza G, Segoloni E. 28.  2009. Probing the dynamics of polyatomic multichannel elementary reactions by crossed molecular beam experiments with soft electron-ionization mass spectrometric detection. Phys. Chem. Chem. Phys. 11:46–65 [Google Scholar]
  29. Cvetanović RJ. 29.  1987. Evaluated chemical kinetic data for the reactions of atomic oxygen O(3P) with unsaturated hydrocarbons. J. Phys. Chem. Ref. Data 16:261–326 [Google Scholar]
  30. Cvetanović RJ, Singleton DL. 30.  1984. Reaction of oxygen atoms with olefins. Rev. Chem. Intermed. 5:183–226 [Google Scholar]
  31. Yao MF, Zheng ZL, Liu HF. 31.  2009. Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Prog. Energy Combust. Sci. 35:398–437 [Google Scholar]
  32. Bianchi F, Tröstl J, Junninen H, Frege C, Henne S. 32.  et al. 2016. New particle formation in the free troposphere: a question of chemistry and timing. Science 352:1109–12 [Google Scholar]
  33. Crounse JD, Nielsen LB, Jorgensen S, Kjaergaard HG, Wennberg PO. 33.  2013. Autoxidation of organic compounds in the atmosphere. J. Phys. Chem. Lett. 4:3513–20 [Google Scholar]
  34. Tröstl J, Chuang WK, Gordon H, Heinritzi M, Yan C. 34.  et al. 2016. The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature 533:527–31 [Google Scholar]
  35. Eskola AJ, Welz O, Savee JD, Osborn DL, Taatjes CA. 35.  2013. Synchrotron photoionization mass spectrometry measurements of product formation in low-temperature n-butane oxidation: toward a fundamental understanding of autoignition chemistry and n-C4H9 + O2/s-C4H9 + O2 reactions. J. Phys. Chem. A 117:12216–35 [Google Scholar]
  36. Sharma S, Raman S, Green WH. 36.  2010. Intramolecular hydrogen migration in alkylperoxy and hydroperoxyalkylperoxy radicals: accurate treatment of hindered rotors. J. Phys. Chem. A 114:5689–701 [Google Scholar]
  37. Westbrook CK, Mizobuchi Y, Poinsot TJ, Smith PJ, Warnatz E. 37.  2005. Computational combustion. Proc. Combust. Inst. 30:125–57 [Google Scholar]
  38. Kiprijanov KS. 38.  2016. Chaos and beauty in a beaker: the early history of the Belousov–Zhabotinsky reaction. Ann. Phys. 528:233–37 [Google Scholar]
  39. Knepp AM, Meloni G, Jusinski LE, Taatjes CA, Cavallotti C, Klippenstein SJ. 39.  2007. Theory, measurements, and modeling of OH and HO2 formation in the reaction of cyclohexyl radicals with O2. Phys. Chem. Chem. Phys. 9:4315–31 [Google Scholar]
  40. Taatjes CA. 40.  2006. Uncovering the fundamental chemistry of alkyl plus O2 reactions via measurements of product formation. J. Phys. Chem. A 110:4299–312 [Google Scholar]
  41. Jones ITN, Bayes KD. 41.  1972. Detection of steady-state free-radical concentrations by photoionization. J. Am. Chem. Soc. 94:6869–71 [Google Scholar]
  42. Slagle IR, Gutman D. 42.  1985. Kinetics of polyatomic free radicals produced by laser photolysis. 5. Study of the equilibrium CH3 + O2⇄ CH3O2 between 421 and 538°C. J. Am. Chem. Soc. 107:5342–47 [Google Scholar]
  43. Slagle IR, Yamada F, Gutman D. 43.  1981. Kinetics of free radicals produced by infrared multiphoton-induced decompositions. 1. Reactions of allyl radicals with nitrogen dioxide and bromine. J. Am. Chem. Soc. 103:149–53 [Google Scholar]
  44. Fockenberg C, Bernstein HJ, Hall GE, Muckerman JT, Preses JM. 44.  et al. 1999. Repetitively sampled time-of-flight mass spectrometry for gas-phase kinetics studies. Rev. Sci. Instrum. 70:3259–64 [Google Scholar]
  45. Blitz MA, Goddard A, Ingham T, Pilling MJ. 45.  2007. Time-of-flight mass spectrometry for time-resolved measurements. Rev. Sci. Instrum. 78:034103 [Google Scholar]
  46. Meloni G, Zou P, Klippenstein SJ, Ahmed M, Leone SR. 46.  et al. 2006. Energy-resolved photoionization of alkylperoxy radicals and the stability of their cations. J. Am. Chem. Soc. 128:13559–67 [Google Scholar]
  47. Osborn DL, Zou P, Johnsen H, Hayden CC, Taatjes CA. 47.  et al. 2008. The multiplexed chemical kinetic photoionization mass spectrometer: a new approach to isomer-resolved chemical kinetics. Rev. Sci. Instrum. 79:104103 [Google Scholar]
  48. Taatjes CA, Hansen N, Osborn DL, Kohse-Hoeinghaus K, Cool TA, Westmoreland PR. 48.  2008. “Imaging” combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry. Phys. Chem. Chem. Phys. 10:20–34 [Google Scholar]
  49. Walker RW, Morley C. 49.  1997. Basic chemistry of combustion. Low-Temperature Combustion and Autoignition MJ Pilling 1–124 Amsterdam: Elsevier [Google Scholar]
  50. Zádor J, Huang HF, Welz O, Zetterberg J, Osborn DL, Taatjes CA. 50.  2013. Directly measuring reaction kinetics of QOOH—a crucial but elusive intermediate in hydrocarbon autoignition. Phys. Chem. Chem. Phys. 15:10753–60 [Google Scholar]
  51. Savee JD, Papajak E, Rotavera B, Huang HF, Eskola AJ. 51.  et al. 2015. Direct observation and kinetics of a hydroperoxyalkyl radical (QOOH). Science 347:643–46 [Google Scholar]
  52. Sarathy SM, Vranckx S, Yasunaga K, Mehl M, Osswald P. 52.  et al. 2012. A comprehensive chemical kinetic combustion model for the four butanol isomers. Combust. Flame 159:2028–55 [Google Scholar]
  53. Goldsmith CF, Green WH, Klippenstein SJ. 53.  2012. Role of O2 + QOOH in low-temperature ignition of propane. 1. Temperature and pressure dependent rate coefficients. J. Phys. Chem. A 116:3325–46 [Google Scholar]
  54. Cox RA, Cole JA. 54.  1985. Chemical aspects of the autoignition of hydrocarbon-air mixtures. Combust. Flame 60:109–23 [Google Scholar]
  55. Battin-Leclerc F, Herbinet O, Glaude PA, Fournet R, Zhou ZY. 55.  et al. 2010. Experimental confirmation of the low-temperature oxidation scheme of alkanes. Angew. Chem. Int. Ed. 49:3169–72 [Google Scholar]
  56. Eskola AJ, Welz O, Zádor J, Antonov IO, Sheps L. 56.  et al. 2015. Probing the low-temperature chain-branching mechanism of n-butane autoignition chemistry via time-resolved measurements of ketohydroperoxide formation in photolytically initiated n-C4H10 oxidation. Proc. Combust. Inst 35:291–98 [Google Scholar]
  57. Gilbert RG, Smith SC. 57.  1990. Theory of Unimolecular and Recombination Reactions Oxford, UK: Blackwell
  58. Baer T, Hase WL. 58.  1996. Unimolecular Reaction Dynamics, Theory and Experiments New York: Oxford Univ. Press
  59. Pilling MJ, Robertson SH. 59.  2003. Master equation models for chemical reactions of importance in combustion. Annu. Rev. Phys. Chem. 54:245–75 [Google Scholar]
  60. Venkatesh PK, Dean AM, Cohen MH, Carr RW. 60.  1999. Master equation analysis of intermolecular energy transfer in multiple-well, multiple-channel unimolecular reactions. II. Numerical methods and application to the mechanism of the C2H5 + O2 reaction. J. Chem. Phys. 111:8313–29 [Google Scholar]
  61. Barker JR. 61.  2001. Multiple-well, multiple-path unimolecular reaction systems. I. MultiWell computer program suite. Int. J. Chem. Kinet. 33:232–45 [Google Scholar]
  62. Truhlar DG, Garrett BC, Klippenstein SJ. 62.  1996. Current status of transition-state theory. J. Phys. Chem. 100:12771–800 [Google Scholar]
  63. Miller JA, Klippenstein SJ. 63.  2006. Master equation methods in gas phase chemical kinetics. J. Phys. Chem. A 110:10528–44 [Google Scholar]
  64. Glowacki DR, Liang CH, Morley C, Pilling MJ, Robertson SH. 64.  2012. MESMER: an open-source master equation solver for multi-energy well reactions. J. Phys. Chem. A 116:9545–60 [Google Scholar]
  65. Georgievskii Y, Miller JA, Burke MP, Klippenstein SJ. 65.  2013. Reformulation and solution of the master equation for multiple-well chemical reactions. J. Phys. Chem. A 117:12146–54 [Google Scholar]
  66. Barker JR, Frenklach M, Golden DM. 66.  2015. When rate constants are not enough. J. Phys. Chem. A 119:7451–61 [Google Scholar]
  67. Miller JA, Klippenstein SJ, Robertson SH, Pilling MJ, Shannon R. 67.  et al. 2016. Comment on “When rate constants are not enough”. J. Phys. Chem. A 120:306–12 [Google Scholar]
  68. Barker JR, Frenklach M, Golden DM. 68.  2016. Reply to “Comment on ‘When rate constants are not enough’”. J. Phys. Chem. A 120:313–17 [Google Scholar]
  69. Widom B. 69.  1965. Molecular transitions and chemical reaction rates—stochastic model relates rate of a chemical reaction to underlying transition probabilities. Science 148:1555–60 [Google Scholar]
  70. Miller JA, Klippenstein SJ. 70.  2013. Determining phenomenological rate coefficients from a time-dependent, multiple-well master equation: “species reduction” at high temperatures. Phys. Chem. Chem. Phys. 15:4744–53 [Google Scholar]
  71. Blitz MA, Hughes KJ, Pilling MJ, Robertson SH. 71.  2006. Combined experimental and master equation investigation of the multiwell reaction H + SO2. J. Phys. Chem. A 110:2996–3009 [Google Scholar]
  72. Antonov IO, Kwok J, Zádor J, Sheps L. 72.  2015. A combined experimental and theoretical study of the reaction OH + 2-butene in the 400–800 K temperature range. J. Phys. Chem. A 119:7742–52 [Google Scholar]
  73. Burke MP, Goldsmith CF, Klippenstein SJ, Welz O, Huang HF. 73.  et al. 2015. Multiscale informatics for low-temperature propane oxidation: further complexities in studies of complex reactions. J. Phys. Chem. A 119:7095–115 [Google Scholar]
  74. Welz O, Burke MP, Antonov IO, Goldsmith CF, Savee JD. 74.  et al. 2015. New insights into low-temperature oxidation of propane from synchrotron photoionization mass spectrometry and multiscale informatics modeling. J. Phys. Chem. A 119:7116–29 [Google Scholar]
  75. Clifford EP, Farrell JT, DeSain JD, Taatjes CA. 75.  2000. Infrared frequency-modulation probing of product formation in alkyl + O2 reactions: I. The reaction of C2H5 with O2 between 295 and 698 K. J. Phys. Chem. A 104:11549–60 [Google Scholar]
  76. 76. IUPAC (Int. Union Pure Appl. Chem.). 2014. Compendium of Chemical Terminology Version 2.3.3 Oxford, UK: Blackwell
  77. Jasper AW, Oana CM, Miller JA. 77.  2015. “Third-body” collision efficiencies for combustion modeling: hydrocarbons in atomic and diatomic baths. Proc. Combust. Inst. 35:197–204 [Google Scholar]
  78. Jasper AW, Pelzer KM, Miller JA, Kamarchik E, Harding LB, Klippenstein SJ. 78.  2014. Predictive a priori pressure-dependent kinetics. Science 346:1212–15 [Google Scholar]
  79. Criegee R, Wenner G. 79.  1949. Die Ozonisierung des 9,10-Oktalins. Liebigs Ann. Chem. 564:9–15 [Google Scholar]
  80. Criegee R. 80.  1957. The course of ozonization of unsaturated compounds. Rec. Chem. Prog. 18:111–20 [Google Scholar]
  81. Asatryan R, Bozzelli JW. 81.  2008. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide. Phys. Chem. Chem. Phys. 10:1769–80 [Google Scholar]
  82. Taatjes CA, Meloni G, Selby TM, Trevitt AJ, Osborn DL, Percival CJ, Shallcross DE. 82.  2008. Direct observation of the gas-phase Criegee intermediate (CH2OO). J. Am. Chem. Soc. 130:11883–85 [Google Scholar]
  83. Eskola AJ, Wojcik-Pastuszka D, Ratajczak E, Timonen RS. 83.  2006. Kinetics of the reactions of CH2Br and CH2I radicals with molecular oxygen at atmospheric temperatures. Phys. Chem. Chem. Phys. 8:1416–24 [Google Scholar]
  84. Welz O, Savee JD, Osborn DL, Vasu SS, Percival CJ. 84.  et al. 2012. Direct kinetic measurements of Criegee intermediate (CH2OO) formed by reaction of CH2I with O2. Science 335:204–7 [Google Scholar]
  85. Osborn DL, Taatjes CA. 85.  2015. The physical chemistry of Criegee intermediates in the gas phase. Int. Rev. Phys. Chem. 34:309–60 [Google Scholar]
  86. Taatjes CA. 86.  2017. Criegee intermediates: what direct production and detection can teach us about reactions of carbonyl oxides. Annu. Rev. Phys. Chem. 68:183–207 [Google Scholar]
  87. Hatakeyama S, Kobayashi H, Lin ZY, Takagi H, Akimoto H. 87.  1986. Mechanism for the reaction of CH2OO with SO2. J. Phys. Chem. 90:4131–35 [Google Scholar]
  88. Johnson D, Lewin AG, Marston G. 88.  2001. The effect of Criegee-intermediate scavengers on the OH yield from the reaction of ozone with 2-methylbut-2-ene. J. Phys. Chem. A 105:2933–35 [Google Scholar]
  89. Aplincourt P, Ruiz-López MF. 89.  2000. Theoretical study of formic acid anhydride formation from carbonyl oxide in the atmosphere. J. Phys. Chem. A 104:380–88 [Google Scholar]
  90. Taatjes CA, Welz O, Eskola AJ, Savee JD, Scheer AM. 90.  et al. 2013. Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3CHOO. Science 340:177–80 [Google Scholar]
  91. Sheps L, Scully AM, Au K. 91.  2014. UV absorption probing of the conformer-dependent reactivity of a Criegee intermediate CH3CHOO. Phys. Chem. Chem. Phys. 16:26701–6 [Google Scholar]
  92. Ryzhkov AB, Ariya PA. 92.  2004. A theoretical study of the reactions of parent and substituted Criegee intermediates with water and the water dimer. Phys. Chem. Chem. Phys. 6:5042–50 [Google Scholar]
  93. Kidwell NM, Li HW, Wang XH, Bowman JM, Lester MI. 93.  2016. Unimolecular dissociation dynamics of vibrationally activated CH3CHOO Criegee intermediates to OH radical products. Nat. Chem. 8:509–14 [Google Scholar]
  94. Fang Y, Liu F, Barber VP, Klippenstein SJ, McCoy AB, Lester MI. 94.  2016. Real time observation of unimolecular decay of Criegee intermediates to OH radical products. J. Chem. Phys. 144:061102 [Google Scholar]
  95. FitzPatrick BL, Alligood BW, Butler LJ, Lee SH, Lin JJM. 95.  2010. Primary photodissociation pathways of epichlorohydrin and analysis of the C–C bond fission channels from an O(3P) + allyl radical intermediate. J. Chem. Phys. 133:094306 [Google Scholar]
  96. FitzPatrick BL, Lau KC, Butler LJ, Lee SH, Lin JJM. 96.  2008. Investigation of the O + allyl addition/elimination reaction pathways from the OCH2CHCH2 radical intermediate. J. Chem. Phys. 129:084301 [Google Scholar]
  97. Jacox ME. 97.  2002. The spectroscopy of molecular reaction intermediates trapped in the solid rare gases. Chem. Soc. Rev. 31:108–15 [Google Scholar]
  98. Zack LN, Maier JP. 98.  2014. Laboratory spectroscopy of astrophysically relevant carbon species. Chem. Soc. Rev. 43:4602–14 [Google Scholar]
  99. Winkler M, Sander W. 99.  2010. Matrix isolation and electronic structure of di- and tridehydrobenzenes. Aust. J. Chem. 63:1013–47 [Google Scholar]
  100. Schreiner PR, Reisenauer HP, Pickard FC, Simmonett AC, Allen WD. 100.  et al. 2008. Capture of hydroxymethylene and its fast disappearance through tunnelling. Nature 453:906–9 [Google Scholar]
  101. Wenthold PG, Lineberger WC. 101.  1999. Negative ion photoelectron spectroscopy studies of organic reactive intermediates. Acc. Chem. Res. 32:597–604 [Google Scholar]
  102. Ervin KM, Ho J, Lineberger WC. 102.  1989. A study of the singlet and triplet-states of vinylidene by photoelectron-spectroscopy of H2C=C, D2C=C, and HDC=C. Vinylidene acetylene isomerization. J. Chem. Phys. 91:5974–92 [Google Scholar]
  103. Osborn DL, Vogelhuber KM, Wren SW, Miller EM, Lu YJ. 103.  et al. 2014. Electronic states of the quasilinear molecule propargylene (HCCCH) from negative ion photoelectron spectroscopy. J. Am. Chem. Soc. 136:10361–72 [Google Scholar]
  104. Continetti RE, Cyr DR, Osborn DL, Leahy DJ, Neumark DM. 104.  1993. Photodissociation dynamics of the N3 radical. J. Chem. Phys. 99:2616–31 [Google Scholar]
  105. Osborn DL, Leahy DJ, Neumark DM. 105.  1997. Photodissociation spectroscopy and dynamics of CH3O and CD3O. J. Phys. Chem. A 101:6583–92 [Google Scholar]
  106. Collins MA. 106.  2002. Molecular potential-energy surfaces for chemical reaction dynamics. Theor. Chem. Acc. 108:313–24 [Google Scholar]
  107. Dawes R, Thompson DL, Wagner AF, Minkoff M. 107.  2008. Interpolating moving least-squares methods for fitting potential energy surfaces: a strategy for efficient automatic data point placement in high dimensions. J. Chem. Phys. 128:084107 [Google Scholar]
  108. Braams BJ, Bowman JM. 108.  2009. Permutationally invariant potential energy surfaces in high dimensionality. Int. Rev. Phys. Chem. 28:577–606 [Google Scholar]
  109. Fukui K. 109.  1981. The path of chemical-reactions—the IRC approach. Acc. Chem. Res. 14:363–68 [Google Scholar]
  110. Schlegel HB. 110.  1982. Optimization of equilibrium geometries and transition structures. J. Comput. Chem. 3:214–18 [Google Scholar]
  111. Varnek A, Baskin II. 111.  2011. Chemoinformatics as a theoretical chemistry discipline. Mol. Inform. 30:20–32 [Google Scholar]
  112. Zimmerman PM. 112.  2015. Navigating molecular space for reaction mechanisms: an efficient, automated procedure. Mol. Simul. 41:43–54 [Google Scholar]
  113. Welz O, Klippenstein SJ, Harding LB, Taatjes CA, Zádor J. 113.  2013. Unconventional peroxy chemistry in alcohol oxidation: the water elimination pathway. J. Phys. Chem. Lett. 4:350–54 [Google Scholar]
  114. Suleimanov YV, Green WH. 114.  2015. Automated discovery of elementary chemical reaction steps using freezing string and Berny optimization methods. J. Chem. Theory Comput. 11:4248–59 [Google Scholar]
  115. Zimmerman PM. 115.  2013. Growing string method with interpolation and optimization in internal coordinates: method and examples. J. Chem. Phys. 138:184102 [Google Scholar]
  116. Behn A, Zimmerman PM, Bell AT, Head-Gordon M. 116.  2011. Efficient exploration of reaction paths via a freezing string method. J. Chem. Phys. 135:224108 [Google Scholar]
  117. Jalan A, Alecu IM, Meana-Pañeda R, Aguilera-Iparraguirre J, Yang KR. 117.  et al. 2013. New pathways for formation of acids and carbonyl products in low-temperature oxidation: the Korcek decomposition of γ-ketohydroperoxides. J. Am. Chem. Soc. 135:11100–14 [Google Scholar]
  118. Maeda S, Ohno K, Morokuma K. 118.  2013. Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods. Phys. Chem. Chem. Phys. 15:3683–701 [Google Scholar]
  119. Wang LP, Titov A, McGibbon R, Liu F, Pande VS, Martínez TJ. 119.  2014. Discovering chemistry with an ab initio nanoreactor. Nat. Chem. 6:1044–48 [Google Scholar]
  120. Miller SL Urey HC. 120.  1959. Organic compound synthesis on the primitive Earth. Science 130:245–51 [Google Scholar]
  121. Asatryan R, da Silva G, Bozzelli JW. 121.  2010. Quantum chemical study of the acrolein (CH2CHCHO) + OH + O2 reactions. J. Phys. Chem. A 114:8302–11 [Google Scholar]
  122. Bohn B, Siese M, Zetzschn C. 122.  1996. Kinetics of the OH + C2H2 reaction in the presence of O2. J. Chem. Soc. Faraday Trans. 92:1459–66 [Google Scholar]
  123. da Silva G. 123.  2012. Reaction of methacrolein with the hydroxyl radical in air: incorporation of secondary O2 addition into the MACR plus OH master equation. J. Phys. Chem. A 116:5317–24 [Google Scholar]
  124. Glowacki DR, Lockhart J, Blitz MA, Klippenstein SJ, Pilling MJ. 124.  et al. 2012. Interception of excited vibrational quantum states by O2 in atmospheric association reactions. Science 337:1066–69 [Google Scholar]
  125. Burke MP, Goldsmith CF, Georgievskii Y, Klippenstein SJ. 125.  2015. Towards a quantitative understanding of the role of non-Boltzmann reactant distributions in low temperature oxidation. Proc. Combust. Inst. 35:205–13 [Google Scholar]
  126. Goldsmith CF, Burke MP, Georgievskii Y, Klippenstein SJ. 126.  2015. Effect of non-thermal product energy distributions on ketohydroperoxide decomposition kinetics. Proc. Combust. Inst. 35:283–90 [Google Scholar]
  127. Wang ZD, Zhang LD, Moshammer K, Popolan-Vaida DM, Shankar VSB. 127.  et al. 2016. Additional chain-branching pathways in the low-temperature oxidation of branched alkanes. Combust. Flame 164:386–96 [Google Scholar]
  128. Ehn M, Thornton JA, Kleist E, Sipila M, Junninen H. 128.  et al. 2014. A large source of low-volatility secondary organic aerosol. Nature 506:476–79 [Google Scholar]
  129. Lynch PT, Troy TP, Ahmed M, Tranter RS. 129.  2015. Probing combustion chemistry in a miniature shock tube with synchrotron VUV photo ionization mass spectrometry. Anal. Chem. 87:2345–52 [Google Scholar]
  130. Brown GG, Dian BC, Douglass KO, Geyer SM, Shipman ST, Pate BH. 130.  2008. A broadband Fourier transform microwave spectrometer based on chirped pulse excitation. Rev. Sci. Instrum. 79:053103 [Google Scholar]
  131. Abeysekera C, Joalland B, Ariyasingha N, Zack LN, Sims IR. 131.  et al. 2015. Product branching in the low temperature reaction of CN with propyne by chirped-pulse microwave spectroscopy in a uniform supersonic flow. J. Phys. Chem. Lett. 6:1599–604 [Google Scholar]
  132. Bodi A, Hemberger P, Osborn DL, Sztaray B. 132.  2013. Mass-resolved isomer-selective chemical analysis with imaging photoelectron photoion coincidence spectroscopy. J. Phys. Chem. Lett. 4:2948–52 [Google Scholar]
  133. Garcia GA, Tang XF, Gil JF, Nahon L, Ward M. 133.  et al. 2015. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD. J. Chem. Phys. 142:164201 [Google Scholar]
  134. Felsmann D, Moshammer K, Krüger J, Lackner A, Brockhinke A. 134.  et al. 2015. Electron ionization, photoionization and photoelectron/photoion coincidence spectroscopy in mass-spectrometric investigations of a low-pressure ethylene/oxygen flame. Proc. Combust. Inst. 35:779–86 [Google Scholar]
  135. Oßwald P, Hemberger P, Bierkandt T, Akyildiz E, Köhler M. 135.  et al. 2014. In situ flame chemistry tracing by imaging photoelectron photoion coincidence spectroscopy. Rev. Sci. Instrum. 85:025101 [Google Scholar]
  136. Osborn DL, Hayden CC, Hemberger P, Bodi A, Voronova K, Sztáray B. 136.  2016. Breaking through the false coincidence barrier in electron-ion coincidence experiments. J. Chem. Phys. 145:164202 [Google Scholar]
  137. Luther K, Oum K, Sekiguchi K, Troe J. 137.  2004. Recombination of benzyl radicals: dependence on the bath gas, temperature, and pressure. Phys. Chem. Chem. Phys. 6:4133–41 [Google Scholar]
  138. Klippenstein SJ, Harding LB, Davis MJ, Tomlin AS, Skodje RT. 138.  2011. Uncertainty driven theoretical kinetics studies for CH3OH ignition: HO2 + CH3OH and O2 + CH3OH. Proc. Combust. Inst. 33:351–57 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040215-112151
Loading
/content/journals/10.1146/annurev-physchem-040215-112151
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error