1932

Abstract

This article reviews recent progress in the theoretical modeling of excitation energy transfer (EET) processes in natural light harvesting complexes. The iterative partial linearized density matrix path-integral propagation approach, which involves both forward and backward propagation of electronic degrees of freedom together with a linearized, short-time approximation for the nuclear degrees of freedom, provides an accurate and efficient way to model the nonadiabatic quantum dynamics at the heart of these EET processes. Combined with a recently developed chromophore–protein interaction model that incorporates both accurate ab initio descriptions of intracomplex vibrations and chromophore–protein interactions treated with atomistic detail, these simulation tools are beginning to unravel the detailed EET pathways and relaxation dynamics in light harvesting complexes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040215-112252
2016-05-27
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/physchem/67/1/annurev-physchem-040215-112252.html?itemId=/content/journals/10.1146/annurev-physchem-040215-112252&mimeType=html&fmt=ahah

Literature Cited

  1. Blankenship RE. 1.  2014. Molecular Mechanisms of Photosynthesis Chichester, UK: Blackwell
  2. Chenu A, Scholes GD. 2.  2015. Coherence in energy transfer and photosynthesis. Annu. Rev. Phys. Chem. 66:69–96 [Google Scholar]
  3. Engel GS, Calhoun TR, Read EL, Ahn T-K, Mancal T. 3.  et al. 2007. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–86 [Google Scholar]
  4. Panitchayangkoon G, Hayes D, Fransted KA, Caram JR, Harel E. 4.  et al. 2010. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. PNAS 107:12766–70 [Google Scholar]
  5. Panitchayangkoon G, Voronine DV, Abramavicius D, Caram JR, Lewis NHC. 5.  et al. 2011. Direct evidence of quantum transport in photosynthetic light-harvesting complexes. PNAS 108:20908–12 [Google Scholar]
  6. Collini E, Wong CY, Wilk KE. Brumer P, Scholes GD. 6. , Curmi PMG, 2010. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463:644–47 [Google Scholar]
  7. Abramavicius D, Palmieri B, Voronine D, Sanda F, Mukamel S. 7.  2009. Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; quasiparticle versus supermolecule perspectives. Chem. Rev. 109:2350–408 [Google Scholar]
  8. Mukamel S, Abramavicius D, Yang L, Zhuang W, Schweigert IV, Voronine DV. 8.  2009. Coherent multidimensional optical probes for electron correlations and exciton dynamics: from NMR to X-rays. Acc. Chem. Res. 42:553–62 [Google Scholar]
  9. Wong CY, Alvey RM, Turner DB, Wilk KE, Bryant DA. 9.  et al. 2012. Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting. Nat. Chem. 4:396–404 [Google Scholar]
  10. Schlau-Cohen GS, Calhoun TR, Ginsberg NS, Ballottari M, Bassi R, Fleming GR. 10.  2012. Spectroscopic elucidation of uncoupled transition energies in the major photosynthetic light-harvesting complex, LHCII. PNAS 107:13276–81 [Google Scholar]
  11. Schlau-Cohen GS, Calhoun TR, Ginsberg NS, Read EL, Ballottari M. 11.  et al. 2009. Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy. J. Phys. Chem. B 113:15352–63 [Google Scholar]
  12. Schlau-Cohen GS, Ishizaki A, Calhoun TR, Ginsberg NS, Ballottari M. 12.  et al. 2012. Elucidation of the timescales and origins of quantum electronic coherence in LHCII. Nat. Chem. 4:389–95 [Google Scholar]
  13. Harel E, Engel GS. 13.  2012. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2). PNAS 109:706–11 [Google Scholar]
  14. Fidler AF, Singh VP, Long PD, Dahlberg PD, Engel GS. 14.  2013. Time scales of coherent dynamics in the light-harvesting complex 2 (LH2) of Rhodobacter sphaeroides. J. Phys. Chem. Lett. 4:1404–9 [Google Scholar]
  15. Fidler AF, Singh VP, Long PD, Dahlberg PD, Engel GS. 15.  2014. Dynamic localization of electronic excitation in photosynthetic complexes revealed with chiral two-dimensional spectroscopy. Nat. Comm. 5:3286 [Google Scholar]
  16. Romero E, Augulis R, Novoderezhkin VI, Ferretti M, Thieme J. 16.  et al. 2014. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10:676–82 [Google Scholar]
  17. Hayes D, Wen J, Panitchayangkoon G, Blankenship RE, Engel GS. 17.  2011. Robustness of electronic coherence in the Fenna–Matthews–Olson complex to vibronic and structural modifications. Faraday Discuss. 150:459–69 [Google Scholar]
  18. Turner DB, Dinshaw R, Lee K-K, Belsley MS, Wilk KE. 18.  et al. 2012. Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. Phys. Chem. Chem. Phys. 14:4857–74 [Google Scholar]
  19. Sarovar M, Ishizaki A, Fleming GR, Whaley KB. 19.  2010. Quantum entanglement in photosynthetic light-harvesting complexes. Nat. Phys. 6:462–67 [Google Scholar]
  20. Abramavicius D, Mukamel S. 20.  2010. Quantum oscillatory exciton migration in photosynthetic reaction centers. J. Chem. Phys. 133:064510 [Google Scholar]
  21. Abramavicius D, Mukamel S. 21.  2010. Energy-transfer and charge-separation pathways in the reaction center of photosystem II revealed by coherent two-dimensional optical spectroscopy. J. Chem. Phys. 133:184501 [Google Scholar]
  22. Pachón LA, Brumer P. 22.  2011. Physical basis for long-lived electronic coherence in photosynthetic light-harvesting systems. J. Phys. Chem. Lett. 2:2728–32 [Google Scholar]
  23. Tiwari V, Peters WK, Jonas DM. 23.  2013. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. PNAS 110:1203–8 [Google Scholar]
  24. Christensson N, Kauffmann HF, Pullerits T, Mancal T. 24.  2012. Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116:7449–54 [Google Scholar]
  25. Plenio MB, Almeida J, Huelga SF. 25.  2013. Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: electronic versus vibrational coherence. J. Chem. Phys. 139:235102 [Google Scholar]
  26. Chin AW, Prior J, Rosenbach R, Caycedo-Soler F, Huelga SF, Plenio MB. 26.  2013. The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nat. Phys. 9:113–18 [Google Scholar]
  27. Mohseni M, Omar Y, Engel GS, Plenio MB. 27.  2014. Quantum Effects in Biology Cambridge, UK: Cambridge Univ. Press
  28. Scholes GD. 28.  2010. Quantum-coherent electronic energy transfer: Did nature think of it first?. J. Phys. Chem. Lett. 1:2–8 [Google Scholar]
  29. Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R. 29.  2012. Lessons from nature about solar light harvesting. Nat. Chem. 3:763–74 [Google Scholar]
  30. Strümpfer J, Şener M, Schulten K. 30.  2012. How quantum coherence assists photosynthetic light-harvesting. J. Phys. Chem. Lett. 3:536–42 [Google Scholar]
  31. Huo P, Coker DF. 31.  2011. Theoretical study of coherent excitation energy transfer in cryptophyte phycocyanin 645 at physiological temperature. J. Phys. Chem. Lett. 2:825–33 [Google Scholar]
  32. Moix J, Wu J, Huo P, Coker DF, Cao J. 32.  2011. Efficient energy transfer in light-harvesting systems, III: the influence of the eighth bacteriochlorophyll on the dynamics and efficiency in FMO. J. Phys. Chem. Lett. 2:3045–52 [Google Scholar]
  33. Fassioli F, Dinshaw R, Arpin PC, Scholes GD. 33.  2013. Photosynthetic light harvesting: excitons and coherence. J. R. Soc. Interface 11:20130901 [Google Scholar]
  34. Pachón LA, Brumer P. 34.  2012. Computational methodologies and physical insights into electronic energy transfer in photosynthetic light-harvesting complexes. Phys. Chem. Chem. Phys. 14:10094–108 [Google Scholar]
  35. Jang S, Newton MD, Silbey RJ. 35.  2004. Multichromophoric Förster resonance energy transfer. Phys. Rev. Lett. 92:218301 [Google Scholar]
  36. Heijs DJ, Malyshev VA, Knoester J. 36.  2005. Decoherence of excitons in multichromophore systems: thermal line broadening and destruction of superradiant emission. Phys. Rev. Lett. 95:177402 [Google Scholar]
  37. Jang S, Newton MD, Silbey RJ. 37.  2007. Multichromophoric Förster resonance energy transfer from B800 to B850 in the light harvesting complex 2: evidence for subtle energetic optimization by purple bacteria. J. Phys. Chem. B 111:6807–14 [Google Scholar]
  38. Ishizaki A, Fleming GR. 38.  2009. On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer. J. Chem. Phys. 130:234110 [Google Scholar]
  39. Ishizaki A, Fleming GR. 39.  2009. Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. J. Chem. Phys. 130:234111 [Google Scholar]
  40. Palmieri B, Abramavicius D, Mukamel S. 40.  2009. Lindblad equations for strongly coupled populations and coherences in photosynthetic complexes. J. Chem. Phys. 130:204512 [Google Scholar]
  41. Rebentrost P, Chakraborty R, Aspuru-Guzik A. 41.  2009. Non-Markovian quantum jumps in excitonic energy transfer. J. Chem. Phys. 131:184102 [Google Scholar]
  42. Berkelbach TC, Markland TE, Reichman DR. 42.  2012. Reduced density matrix hybrid approach: application to electronic energy transfer. J. Chem. Phys. 136:084104 [Google Scholar]
  43. Berkelbach TC, Reichman DR, Markland TE. 43.  2012. Reduced density matrix hybrid approach: an efficient and accurate method for adiabatic and non-adiabatic quantum dynamics. J. Chem. Phys. 136:034113 [Google Scholar]
  44. Ishizaki A, Tanimura Y. 44.  2005. Quantum dynamics of system strongly coupled to low-temperature colored noise bath: reduced hierarchy equations approach. J. Phys. Soc. Jpn. 74:3131–34 [Google Scholar]
  45. Shi Q, Chen LP, Nan GJ, Xu RX, Yan YJ. 45.  2009. Efficient hierarchical Liouville space propagator to quantum dissipative dynamics. J. Chem. Phys. 130:084105 [Google Scholar]
  46. Ishizaki A, Fleming GR. 46.  2009. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. PNAS 106:17255–60 [Google Scholar]
  47. Zhu J, Kais S, Rebentrost P, Aspuru-Guzik A. 47.  2011. Modified scaled hierarchical equation of motion approach for the study of quantum coherence in photosynthetic complexes. J. Phys. Chem. B 115:1531–37 [Google Scholar]
  48. Makri N, Makarov DE. 48.  1995. Tensor propagator for iterative quantum time evolution of reduced density matrices. I. Theory. J. Chem. Phys. 102:4600–10 [Google Scholar]
  49. Makri N, Makarov DE. 49.  1995. Tensor propagator for iterative quantum time evolution of reduced density matrices. II. Numerical methodology. J. Chem. Phys. 102:4611–18 [Google Scholar]
  50. Nalbach P, Braun D, Thorwart M. 50.  2011. Exciton transfer dynamics and quantumness of energy transfer in the Fenna–Matthews–Olson complex. Phys. Rev. E 84:041926 [Google Scholar]
  51. Nalbach P, Ishizaki A, Fleming GR, Thorwart M. 51.  2011. Iterative path-integral algorithm versus cumulant time-nonlocal master equation approach for dissipative biomolecular exciton transport. New J. Phys. 13:063040 [Google Scholar]
  52. Tao G, Miller WH. 52.  2010. Semiclassical description of electronic excitation population transfer in a model photosynthetic system. J. Phys. Chem. Lett. 1:891–94 [Google Scholar]
  53. Kim HW, Kelly A, Park JW, Rhee YM. 53.  2012. All-atom semiclassical dynamics study of quantum coherence in photosynthetic Fenna–Matthews–Olson complex. J. Am. Chem. Soc. 134:11640–51 [Google Scholar]
  54. Jang S, Cheng Y-C, Reichman DR, Eaves JD. 54.  2008. Theory of coherent resonance energy transfer. J. Chem. Phys. 129:101104 [Google Scholar]
  55. Jang S. 55.  2009. Theory of coherent resonance energy transfer for coherent initial condition. J. Chem. Phys. 131:164101 [Google Scholar]
  56. Jang S. 56.  2011. Theory of multichromophoric coherent resonance energy transfer: a polaronic quantum master equation approach. J. Chem. Phys. 135:034105 [Google Scholar]
  57. Kolli A, O’Reilly E, Scholes GD, Olaya-Castro A. 57.  2012. The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae. J. Chem. Phys. 137:174109 [Google Scholar]
  58. Strümpfer J, Schulten K. 58.  2012. Open quantum dynamics calculations with the hierarchy equations of motion on parallel computers. J. Chem. Theory Comput. 8:2808–16 [Google Scholar]
  59. Kreisbeck C, Kramer T, Aspuru-Guzik A. 59.  2014. Scalable high-performance algorithm for the simulation of exciton dynamics. Application to the light-harvesting complex II in the presence of resonant vibrational modes. J. Chem. Theory Comput. 10:4045–54 [Google Scholar]
  60. Kelly A, Rhee YM. 60.  2011. Mixed quantum–classical description of excitation energy transfer in a model Fenna–Matthews–Olsen complex. J. Phys. Chem. Lett. 2:808–12 [Google Scholar]
  61. Kim HW, Lee W-G, Rhee YM. 61.  2014. Improving long time behavior of Poisson bracket mapping equation: a mapping variable scaling approach. J. Chem. Phys. 141:124107 [Google Scholar]
  62. Kim HW, Rhee YM. 62.  2014. Improving long time behavior of Poisson bracket mapping equation: a non-Hamiltonian approach. J. Chem. Phys. 140:184106 [Google Scholar]
  63. Jurinovich S, Viani L, Curutchet C, Mennucci B. 63.  2015. Limits and potentials of quantum chemical methods in modelling photosynthetic antennae. Phys. Chem. Chem. Phys. 17:30783–92 [Google Scholar]
  64. Sisto A, Glowacki DR, Martinez TJ. 64.  2014. Ab initio nonadiabatic dynamics of multichromophore complexes: a scalable graphical-processing-unit-accelerated exciton framework. Acc. Chem. Res. 47:2857–66 [Google Scholar]
  65. Olbrich C, Kleinekathfer U. 65.  2010. Time-dependent atomistic view on the electronic relaxation in light-harvesting system II. J. Phys. Chem. B. 114:12427–37 [Google Scholar]
  66. Olbrich C, Strümpfer J, Schulten K, Kleinekathöfer U. 66.  2011. Quest for spatially correlated fluctuations in the FMO light-harvesting complex. J. Phys. Chem. B 115:758–64 [Google Scholar]
  67. Shim S, Rebentrost P, Valleau S, Aspuru-Guzik A. 67.  2012. Atomistic study of the long-lived quantum coherences in the Fenna–Matthews–Olson complex. Biophys. J. 102:649–60 [Google Scholar]
  68. Damjanovic A, Kosztin I, Kleinekathöfer U, Schulten K. 68.  2002. Excitons in a photosynthetic light-harvesting system: a combined molecular dynamics, quantum chemistry, and polaron model study. Phys. Rev. E 65:031919 [Google Scholar]
  69. Olbrich C, Strümpfer J, Schulten K, Kleinekathöfer U. 69.  2011. Theory and simulation of the environmental effects on FMO electronic transitions. J. Phys. Chem. Lett. 2:1771–76 [Google Scholar]
  70. Valleau S, Eisfeld A, Aspuru-Guzik A. 70.  2012. On the alternatives for bath correlators and spectral densities from mixed quantum–classical simulations. J. Chem. Phys. 137:224103 [Google Scholar]
  71. Aghtar M, Strmpfer J, Olbrich C, Schulten K, Kleinekathöfer U. 71.  2014. Different types of vibrations interacting with electronic excitations in phycoerythrin 545 and Fenna–Matthews–Olson antenna systems. J. Phys. Chem. Lett. 5:3131–37 [Google Scholar]
  72. Viani L, Corbella M, Curutchet C, O’Reilly EJ, Olaya-Castro A, Mennucci B. 72.  2014. Molecular basis of the exciton–phonon interactions in the PE545 light-harvesting complex. Phys. Chem. Chem. Phys. 16:16302–11 [Google Scholar]
  73. Kim CW, Park JW, Rhee YM. 73.  2015. Effect of chromophore potential model on the description of exciton–phonon interactions. J. Phys. Chem. Lett. 6:2875–80 [Google Scholar]
  74. Renger T, Klinger A, Steinecker F, Schmidt am Busch M, Numata J, Müh F. 74.  2012. Normal mode analysis of the spectral density of the Fenna–Matthews–Olson light-harvesting protein: how the protein dissipates the excess energy of excitons. J. Phys. Chem. B 116:14565–80 [Google Scholar]
  75. Chandrasekaran S, Aghtar M, Valleau S, Aspuru-Guzik A, Kleinekathöfer U. 75.  2015. Influence of force fields and quantum chemistry approach on spectral densities of BChl a in solution and in FMO proteins. J. Phys. Chem. B. 119:9995–10004 [Google Scholar]
  76. Wang X, Ritschel G, Wuster S, Eisfeld A. 76.  2015. Open quantum system parameters for light harvesting complexes from molecular dynamics. Phys. Chem. Chem. Phys. 17:25629–41 [Google Scholar]
  77. Huo P, Coker DF. 77.  2011. Partial linearized density matrix dynamics for dissipative, non-adiabatic quantum evolution. J. Chem. Phys. 135:201101 [Google Scholar]
  78. Huo P, Coker DF. 78.  2012. Semi-classical path integral non-adiabatic dynamics: a partial linearized classical mapping Hamiltonian approach. Mol. Phys. 110:1035–52 [Google Scholar]
  79. Huo P, Coker DF. 79.  2012. Consistent schemes for non-adiabatic dynamics derived from partial linearized density matrix propagation. J. Chem. Phys. 137:22A535 [Google Scholar]
  80. Rivera E, Montemayor D, Masia M, Coker DF. 80.  2013. Influence of site-dependent pigment–protein interactions on excitation energy transfer in photosynthetic light harvesting. J. Phys. Chem. B 117:5510–21 [Google Scholar]
  81. Jing Y, Zheng R, Li H-X, Shi Q. 81.  2012. Theoretical study of the electronic–vibrational coupling in the Qy states of the photosynthetic reaction center in purple bacteria. J. Phys. Chem. B. 116:1164–71 [Google Scholar]
  82. Adolphs J, Renger T. 82.  2006. How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophys. J. 91:2778–97 [Google Scholar]
  83. Miller WH. 83.  2001. The semiclassical initial value representation: a potentially practical way for adding quantum effects to classical molecular dynamics simulations. J. Phys. Chem. A 105:2942–55 [Google Scholar]
  84. Miller WH. 84.  2012. Quantum or classical coherence?. J. Chem. Phys. 136:210901 [Google Scholar]
  85. Sun X, Wang H, Miller WH. 85.  1998. Semiclassical theory of electronically nonadiabatic dynamics: results of a linearized approximation to the initial value representation. J. Chem. Phys. 109:7064–74 [Google Scholar]
  86. Kelly A, van Zon R, Schofield J, Kapral R. 86.  2012. Mapping quantum–classical Liouville equation: projectors and trajectories. J. Chem. Phys. 136:084101 [Google Scholar]
  87. Kim H, Nassimi A, Kapral R. 87.  2008. Quantum–classical Liouville dynamics in the mapping basis. J. Chem. Phys. 129:084102 [Google Scholar]
  88. Stock G, Thoss M. 88.  1997. Semiclassical description of nonadiabatic quantum dynamics. Phys. Rev. Lett. 78:578–81 [Google Scholar]
  89. Stock G, Thoss M. 89.  1999. Mapping approach to the semiclassical description of nonadiabatic quantum dynamics. Phys. Rev. A 59:64–79 [Google Scholar]
  90. Miller WH, McCurdy CW. 90.  1978. Classical trajectory model for electronically nonadiabatic collision phenomena. A classical analog for electronic degrees of freedom. J. Chem. Phys. 69:5163–73 [Google Scholar]
  91. Meyer H-D, Miller WH. 91.  1979. A classical analog for electronic degrees of freedom in nonadiabatic collision processes. J. Chem. Phys. 70:3214–23 [Google Scholar]
  92. Herman MF, Kluk E. 92.  1984. A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations. Chem. Phys. 91:27–34 [Google Scholar]
  93. Miller WH. 93.  2002. An alternate derivation of the Herman–Kluk (coherent state) semiclassical initial value representation of the time evolution operator. Mol. Phys. 100:397–400 [Google Scholar]
  94. Bonella S, Coker DF. 94.  2003. Semiclassical implementation of the mapping Hamiltonian approach for nonadiabatic dynamics using focused initial distribution sampling. J. Chem. Phys. 118:4370–85 [Google Scholar]
  95. Bonella S, Coker DF. 95.  2005. LAND-map, a linearized approach to nonadiabatic dynamics using the mapping formalism. J. Chem. Phys. 122:194102 [Google Scholar]
  96. Bonella S, Montemayor D, Coker DF. 96.  2005. Linearized path integral approach for calculating nonadiabatic time correlation functions. PNAS 102:6715–19 [Google Scholar]
  97. Makri N. 97.  2011. Forward–backward semiclassical and quantum trajectory methods for time correlation functions. Phys. Chem. Chem. Phys. 13:14442–52 [Google Scholar]
  98. Poulsen JA, Nyman G, Rossky PJ. 98.  2003. Practical evaluation of condensed phase quantum correlation functions: a Feynman–Kleinert variational linearized path integral method. J. Chem. Phys. 119:12179–93 [Google Scholar]
  99. Poulsen JA, Nyman G. 99.  2004. Determination of the Van Hove spectrum of liquid He(4): an application of the Feynman–Kleinert linearized path integral methodology. J. Phys. Chem. A 108:8743–51 [Google Scholar]
  100. Poulsen JA, Nyman G, Rossky PJ. 100.  2005. Static and dynamic quantum effects in molecular liquids: a linearized path integral description of water. PNAS 102:6709–14 [Google Scholar]
  101. Shi Q, Geva E. 101.  2003. Semiclassical theory of vibrational energy relaxation in the condensed phase. J. Phys. Chem. A 107:9059–69 [Google Scholar]
  102. Shi Q, Geva E. 102.  2004. Nonradiative electronic relaxation rate constants from approximations based on linearizing the path-integral forward–backward action. J. Phys. Chem. A 108:6109–16 [Google Scholar]
  103. Shi Q, Geva E. 103.  2003. Vibrational energy relaxation rate constants from linear response theory. J. Chem. Phys. 118:7562–71 [Google Scholar]
  104. Hsieh C-Y, Kapral R. 104.  2012. Nonadiabatic dynamics in open quantum–classical systems: forward–backward trajectory solution. J. Chem. Phys. 137:22A507 [Google Scholar]
  105. Hsieh C-Y, Kapral R. 105.  2013. Analysis of the forward–backward trajectory solution for the mixed quantum–classical Liouville equation. J. Chem. Phys. 138:134110 [Google Scholar]
  106. Kapral R. 106.  2015. Quantum dynamics in open quantum–classical systems. J. Phys. Condens. Matter 27:073201 [Google Scholar]
  107. Dunkel ER, Bonella S, Coker DF. 107.  2008. Iterative linearized approach to nonadiabatic dynamics. J. Chem. Phys. 129:114106 [Google Scholar]
  108. Davydov AS. 108.  1971. Theory of Molecular Excitons New York: Plenum
  109. Olbrich C, Jansen TLC, Liebers J, Aghtar M, Strümpfer J. 109.  et al. 2011. From atomistic modeling to excitation transfer and two-dimensional spectra of the FMO light-harvesting complex. J. Phys. Chem. B 115:8609–21 [Google Scholar]
  110. Cole DJ, Chin AW, Hine NDM, Haynes PD, Payne MC. 110.  2013. Toward ab initio optical spectroscopy of the Fenna–Matthews–Olson complex. J. Phys. Chem. Lett. 4:4206–12 [Google Scholar]
  111. Gao J, Shi W-J, Ye J, Wang X, Hirao H, Zhao Y. 111.  2013. QM/MM modeling of environmental effects on electronic transitions of the FMO complex. J. Phys. Chem. B 117:3488–95 [Google Scholar]
  112. List NH, Curutchet C, Knecht S, Mennucci B, Kongsted J. 112.  2013. Toward reliable prediction of the energy ladder in multichromophoric systems: a benchmark study on the FMO light-harvesting complex. J. Chem. Theory Comput. 9:4928–38 [Google Scholar]
  113. Hayes D, Engel GS. 113.  2011. Extracting the excitonic Hamiltonian of the Fenna–Matthews–Olson complex using three-dimensional third-order electronic spectroscopy. Biophys. J. 100:2043–52 [Google Scholar]
  114. Raszewski G, Saenger W, Renger T. 114.  2005. Theory of optical spectra of photosystem II reaction centers: location of the triplet state and the identity of the primary electron donor. Biophys. J. 88:986–98 [Google Scholar]
  115. Raszewski G, Diner BA, Schlodder E, Renger T. 115.  2008. Spectroscopic properties of reaction center pigments in photosystem II core complexes: revision of the multimer model. Biophys. J. 95:105–19 [Google Scholar]
  116. Novoderezhkin VI, Romero E, Dekker JP, van Grondelle R. 116.  2011. Multiple charge-separation pathways in photosystem II: modeling of transient absorption kinetics. ChemPhysChem 12:681–88 [Google Scholar]
  117. Novoderezhkin VI, Dekker JP, van Grondelle R. 117.  2007. Mixing of exciton and charge-transfer states in photosystem II reaction centers: modeling of Stark spectra with modified Redfield theory. Biophys. J. 93:1293–311 [Google Scholar]
  118. Krueger BP, Scholes GD, Fleming GR. 118.  1998. Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J. Phys. Chem. B. 102:5378–86 [Google Scholar]
  119. Madjet ME, Abdurahman A, Renger T. 119.  2006. Intermolecular Coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers. J. Phys. Chem. B 110:17268–81 [Google Scholar]
  120. Rätsep M, Freiberg A. 120.  2007. Electron–phonon and vibronic couplings in the FMO bacteriochlorophyll a antenna complex studied by difference fluorescence line narrowing. J. Lumin. 127:251–59 [Google Scholar]
  121. Wendling M, Pullerits T, Przyjalgowski MA, Vulto SIE, Aartsma TJ. 121.  et al. 2000. Electron-vibrational coupling in the Fenna–Matthews–Olson complex of Prosthecochloris aestuarii determined by temperature-dependent absorption and fluorescence line-narrowing measurements. J. Phys. Chem. B. 104:5825–31 [Google Scholar]
  122. Kell A, Feng X, Reppert M, Jankowiak R. 122.  2013. On the shape of the phonon spectral density in photosynthetic complexes. J. Phys. Chem. B. 117:7317–23 [Google Scholar]
  123. Nitzan A. 123.  2006. Chemical Dynamics in Condensed Phases New York: Oxford Univ. Press
  124. Lee M, Coker DF. 124.  2016. Modeling electronic-nuclear interactions for excitation energy transfer in light-harvesting. J. Phys. Chem. Lett. Submitted
  125. Moret M-E, Tavernelli I, Rothlisberger U. 125.  2009. Combined QM/MM and classical molecular dynamics study of [Ru(bpy)3]2+ in water. J. Phys. Chem. B 113:7737–44 [Google Scholar]
  126. Laino T, Mohamed F, Laio A, Parrinello M. 126.  2005. An efficient real space multigrid QM/MM electrostatic coupling. J. Chem. Theory Comput. 1:1176–84 [Google Scholar]
  127. Ananth N, Venkataraman C, Miller WH. 127.  2007. Semiclassical description of electronically nonadiabatic dynamics via the initial value representation. J. Chem. Phys. 127:084114 [Google Scholar]
  128. Wang H, Thoss M, Sorge KL, Gelabert R, Giménez X, Miller WH. 128.  2001. Semiclassical description of quantum coherence effects and their quenching: a forward–backward initial value representation study. J. Chem. Phys. 114:2562–71 [Google Scholar]
  129. Huo P, Miller TF III, Coker DF. 129.  2013. Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics. J. Chem. Phys. 139:151103 [Google Scholar]
  130. Huo P, Miller TF. 130.  2015. Electronic coherence and the kinetics of inter-complex energy transfer in light-harvesting systems. Phys. Chem. Chem. Phys. 17:30914–24 [Google Scholar]
  131. Caruso F, Chin AW, Datta A, Huelga SF, Plenio MB. 131.  2009. Highly efficient energy excitation transfer in light-harvesting complexes: the fundamental role of noise-assisted transport. J. Chem. Phys. 131:105106 [Google Scholar]
  132. Chin AW, Datta A, Caruso F, Huelga SF, Plenio MB. 132.  2010. Noise-assisted energy transfer in quantum networks and light-harvesting complexes. New J. Phys. 12:065002 [Google Scholar]
  133. Rebentrost P, Mohseni M, Aspuru-Guzik A. 133.  2009. Role of quantum coherence and environmental fluctuations in chromophoric energy transport. J. Phys. Chem. B. 113:9942–47 [Google Scholar]
  134. Rebentrost P, Mohseni M, Kassal I, Lloyd S, Aspuru-Guzik A. 134.  2009. Environment-assisted quantum transport. New J. Phys. 11:033003 [Google Scholar]
  135. Cao J, Silbey RJ. 135.  2009. Optimization of exciton trapping in energy transfer processes. J. Phys. Chem. A 113:13825–38 [Google Scholar]
  136. Ishizaki A, Fleming GR. 136.  2011. On the interpretation of quantum coherent beats observed in two-dimensional electronic spectra of photosynthetic light harvesting complexes. J. Phys. Chem. B 115:6227–33 [Google Scholar]
  137. Nalbach P, Thorwart M. 137.  2012. The role of discrete molecular modes in the coherent exciton dynamics in FMO. J. Phys. B 45:154009 [Google Scholar]
  138. Kelly A, Brackbill NJ, Markland TE. 138.  2015. Accurate nonadiabatic quantum dynamics on the cheap: making the most of mean field theory with master equations. J. Chem. Phys. 142:094110 [Google Scholar]
  139. O’Reilly EJ, Olaya-Castro A. 139.  2014. Non-classicality of the molecular vibrations assisting exciton energy transfer at room temperature. Nat. Comm. 5:3012 [Google Scholar]
  140. Heyd J, Scuseria GE, Ernzerhof M. 140.  2003. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118:8207–15 [Google Scholar]
  141. Higashi M, Kosugi T, Hayashi S, Saito S. 141.  2014. Theoretical study on excited states of bacteriochlorophyll a in solutions with density functional assessment. J. Phys. Chem. B. 118:10906–18 [Google Scholar]
  142. Mühlbacher L, Kleinekathöfer U. 142.  2012. Preparational effects on the excitation energy transfer in the FMO complex. J. Phys. Chem. B. 116:3900–6 [Google Scholar]
  143. McKemmish LK, McKenzie RH, Hush NS, Reimers JR. 143.  2011. Quantum entanglement between electronic and vibrational degrees of freedom in molecules. J. Chem. Phys. 135:244110 [Google Scholar]
  144. Wu J, Tang Z, Gong Z, Cao J, Mukamel S. 144.  2015. Minimal model of quantum kinetic clusters for the energy-transfer network of a light-harvesting protein complex. J. Phys. Chem. Lett. 6:1240–45 [Google Scholar]
  145. Ritschel G, Roden J, Strunz WT, Aspuru-Guzik A, Eisfeld A. 145.  2011. Absence of quantum oscillations and dependence on site energies in electronic excitation transfer in the Fenna–Matthews–Olson trimer. J. Phys. Chem. Lett. 2:2912–17 [Google Scholar]
  146. Ritschel G, Roden J, Strunz WT, Eisfeld A. 146.  2011. An efficient method to calculate excitation energy transfer in light-harvesting systems: application to the Fenna–Matthews–Olson complex. New J. Phys. 13:113034 [Google Scholar]
  147. Schmidt am Busch M, Müh F, Madjet ME-A, Renger T. 147.  2011. The eighth bacteriochlorophyll completes the excitation energy funnel in the FMO protein. J. Phys. Chem. Lett. 2:93–98 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040215-112252
Loading
/content/journals/10.1146/annurev-physchem-040215-112252
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error