1932

Abstract

Random-phase approximation (RPA) methods are rapidly emerging as cost-effective validation tools for semilocal density functional computations. We present the theoretical background of RPA in an intuitive rather than formal fashion, focusing on the physical picture of screening and simple diagrammatic analysis. A new decomposition of the RPA correlation energy into plasmonic modes leads to an appealing visualization of electron correlation in terms of charge density fluctuations. Recent developments in the areas of beyond-RPA methods, RPA correlation potentials, and efficient algorithms for RPA energy and property calculations are reviewed. The ability of RPA to approximately capture static correlation in molecules is quantified by an analysis of RPA natural occupation numbers. We illustrate the use of RPA methods in applications to small-gap systems such as open-shell - and -element compounds, radicals, and weakly bound complexes, where semilocal density functional results exhibit strong functional dependence.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040215-112308
2017-05-05
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/physchem/68/1/annurev-physchem-040215-112308.html?itemId=/content/journals/10.1146/annurev-physchem-040215-112308&mimeType=html&fmt=ahah

Literature Cited

  1. Pribram-Jones A, Gross DA, Burke K. 1.  2015. DFT: a theory full of holes?. Annu. Rev. Phys. Chem. 66:283–304 [Google Scholar]
  2. Marques MAL, Oliveira MJT, Burnus T. 2.  2012. LIBXC: a library of exchange and correlation functionals for density functional theory. Comput. Phys. Commun. 183:2272–81 [Google Scholar]
  3. Medvedev MG, Bushmarinov IS, Sun J, Perdew JP, Lyssenko KA. 3.  2017. Density functional theory is straying from the path toward the exact functional. Science 355:49–52 [Google Scholar]
  4. Mardirossian N, Pestana LR, Womack JC, Skylaris C-K, Head-Gordon T, Head-Gordon M. 4.  2017. Use of the rVV10 nonlocal correlation functional in the B97M-V density functional: defining B97-rV and related functionals. J. Phys. Chem. Lett. 8:35–40 [Google Scholar]
  5. Furche F, Perdew JP. 5.  2006. The performance of semilocal and hybrid density functionals in 3D transition-metal chemistry. J. Chem. Phys. 124:044103 [Google Scholar]
  6. Dreuw A, Weisman JL, Head-Gordon M. 6.  2003. Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J. Chem. Phys. 119:2943–46 [Google Scholar]
  7. Bohm D, Pines D. 7.  1953. A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys. Rev. 92:609–25 [Google Scholar]
  8. Gell-Mann M, Brueckner KA. 8.  1957. Correlation energy of an electron gas at high density. Phys. Rev. 106:364–68 [Google Scholar]
  9. McLachlan A, Ball M. 9.  1964. Time-dependent Hartree–Fock theory for molecules. Rev. Mod. Phys. 36:844–55 [Google Scholar]
  10. Oddershede J. 10.  1978. Polarization propagator calculations. Adv. Quantum Chem. 11:275–352 [Google Scholar]
  11. Szabo A, Ostlund NS. 11.  1977. The correlation energy in the random phase approximation: intermolecular forces between closed-shell systems. J. Chem. Phys. 67:4351–60 [Google Scholar]
  12. Langreth DC, Perdew JP. 12.  1975. The exchange-correlation energy of a metallic surface. Solid State Commun. 17:1425–29 [Google Scholar]
  13. Harl J, Kresse G. 13.  2009. Accurate bulk properties from approximate many-body techniques. Phys. Rev. Lett. 103:056401 [Google Scholar]
  14. Perdew JP, Schmidt K. 14.  2001. Jacob's ladder of density functional approximations for the exchange-correlation energy. AIP Conf. Proc. 577:1–20 [Google Scholar]
  15. Scuseria GE, Henderson TM, Sorensen DC. 15.  2008. The ground state correlation energy of the random phase approximation from a ring coupled cluster doubles approach. J. Chem. Phys. 129:231101 [Google Scholar]
  16. Oddershede J. 16.  1987. Propagator methods. Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry II KP Lawley 201–39 New York: Wiley [Google Scholar]
  17. Onida G, Reining L, Rubio A. 17.  2002. Electronic excitations: density-functional versus many-body Green's-function approaches. Rev. Mod. Phys. 74:601–59 [Google Scholar]
  18. Dobson JF. 18.  2012. Dispersion (van der Waals) forces and TDDFT. Fundamentals of Time-Dependent Density Functional Theory MAL Marques, NT Maitra, FMS Nogueira, EKU Gross, A Rubio 417–41 Berlin: Springer [Google Scholar]
  19. Heßelmann A, Görling A. 19.  2011. Random-phase approximation correlation methods for molecules and solids. Mol. Phys. 109:2473–500 [Google Scholar]
  20. Eshuis H, Bates JE, Furche F. 20.  2012. Electron correlation methods based on the random phase approximation. Theor. Chem. Acc. 131:1084 [Google Scholar]
  21. Ren X, Rinke P, Joas C, Scheffler M. 21.  2012. Random-phase approximation and its applications in computational chemistry and materials science. J. Mater. Sci. 47:7447–71 [Google Scholar]
  22. Dobson JF, Gould T. 22.  2012. Calculation of dispersion energies. J. Phys. Condens. Matter 24:073201 [Google Scholar]
  23. Scuseria GE, Henderson TM, Bulik IW. 23.  2013. Particle-particle and quasiparticle random phase approximations: connections to coupled cluster theory. J. Chem. Phys. 139:104113 [Google Scholar]
  24. Shepherd JJ, Henderson TM, Scuseria GE. 24.  2014. Coupled cluster channels in the homogeneous electron gas. J. Chem. Phys. 140:124102 [Google Scholar]
  25. van Aggelen H, Yang Y, Yang W. 25.  2014. Exchange-correlation energy from pairing matrix fluctuation and the particle–particle random phase approximation. J. Chem. Phys. 140:18A511 [Google Scholar]
  26. Shenvi N, van Aggelen H, Yang Y, Yang W. 26.  2014. Tensor hypercontracted ppRPA: reducing the cost of the particle–particle random phase approximation from O(r6) to O(r4). J. Chem. Phys. 141:024119 [Google Scholar]
  27. Janesko BG, Henderson TM, Scuseria GE. 27.  2009. Long-range-corrected hybrid density functionals including random phase approximation correlation: application to noncovalent interactions. J. Chem. Phys. 131:034110 [Google Scholar]
  28. Mussard B, Reinhardt P, Ángyán JG, Toulouse J. 28.  2015. Spin-unrestricted random-phase approximation with range separation: benchmark on atomization energies and reaction barrier heights. J. Chem. Phys. 142:154123 [Google Scholar]
  29. Mezei PD, Csonka GI, Ruzsinszky A, Kallay M. 29.  2015. Construction and application of a new dual-hybrid random phase approximation. J. Chem. Theory Comput. 11:4615–26 [Google Scholar]
  30. Grimme S, Steinmetz M. 30.  2016. A computationally efficient double hybrid density functional based on the random phase approximation. Phys. Chem. Chem. Phys. 18:20926–37 [Google Scholar]
  31. Kats D, Manby FR. 31.  2013. The distinguishable cluster approximation. J. Chem. Phys. 139:021102 [Google Scholar]
  32. Shepherd JJ, Henderson TM, Scuseria GE. 32.  2014. Range-separated Brueckner coupled cluster doubles theory. Phys. Rev. Lett. 112:133002 [Google Scholar]
  33. Tkatchenko A, DiStasio RAJ, Car R, Scheffler M. 33.  2012. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett. 108:236402 [Google Scholar]
  34. Odbadrakh TT, Voora V, Jordan KD. 34.  2015. Application of electronic structure methods to coupled Drude oscillators. Chem. Phys. Lett. 630:76–79 [Google Scholar]
  35. Kohn W, Sham LJ. 35.  1965. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140:A1133–38 [Google Scholar]
  36. Gunnarsson O, Lundqvist BI. 36.  1976. Exchange and correlation in atoms, molecules, and solids by spin-density functional formalism. Phys. Rev. B 13:4274–98 [Google Scholar]
  37. Hohenberg P, Kohn W. 37.  1964. Inhomogeneous electron gas. Phys. Rev. 136:B864–71 [Google Scholar]
  38. Görling A, Levy M. 38.  1993. Correlation-energy functional and its high-density limit obtained from a coupling-constant perturbation expansion. Phys. Rev. B 47:13105–13 [Google Scholar]
  39. Callen HB, Welton TA. 39.  1951. Irreversibility and generalized noise. Phys. Rev. 83:34–40 [Google Scholar]
  40. Langreth D, Perdew J. 40.  1977. Exchange-correlation energy of a metallic surface: wave-vector analysis. Phys. Rev. B 15:2884–901 [Google Scholar]
  41. Runge E, Gross EKU. 41.  1984. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52:997–1000 [Google Scholar]
  42. Ullrich CA. 42.  2011. Time-Dependent Density-Functional Theory: Concepts and Applications Oxford, UK: Oxford Univ. Press
  43. Linderberg J, Öhrn Y. 43.  1973. Propagators in Quantum Chemistry London: Academic
  44. Casida ME. 44.  1995. Time-dependent density functional response theory for molecules. Recent Advances in Density Functional Methods Part I, ed. DA Chong 155–92 Singapore: World Sci. [Google Scholar]
  45. Bauernschmitt R, Ahlrichs R. 45.  1996. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 256:454–64 [Google Scholar]
  46. Furche F. 46.  2001. On the density matrix based approach to time-dependent density functional response theory. J. Chem. Phys. 114:5982–92 [Google Scholar]
  47. Fetter AL, Walecka JD. 47.  1971. Quantum Theory of Many-Particle Systems New York: McGraw-Hill
  48. Petersilka M, Gossmann U, Gross E. 48.  1996. Excitation energies from time-dependent density-functional theory. Phys. Rev. Lett. 76:1212–15 [Google Scholar]
  49. Pines D. 49.  1963. Elementary Excitations in Solids New York: Benjamin
  50. Dobson JF, Wang J, Dinte BP, McLennan K, Le HM. 50.  2005. Soft cohesive forces. Int. J. Quantum Chem. 101:579–98 [Google Scholar]
  51. Jeziorski B, Moszynski R, Szalewicz K. 51.  1994. Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem. Rev. 94:1887–930 [Google Scholar]
  52. Heßelmann A, Jansen G. 52.  2002. Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn–Sham density functional theory. Chem. Phys. Lett. 362:319–25 [Google Scholar]
  53. Misquitta AJ, Szalewicz K. 53.  2005. Symmetry-adapted perturbation-theory calculations of intermolecular forces employing density-functional description of monomers. J. Chem. Phys. 122:214109 [Google Scholar]
  54. Furche F. 54.  2008. Developing the random phase approximation into a practical post-Kohn–Sham correlation model. J. Chem. Phys. 129:114105 [Google Scholar]
  55. Krauter CM, Bernadotte S, Jacob CR, Pernpointner M, Dreuw A. 55.  2015. Identification of plasmons in molecules with scaled ab initio approaches. J. Phys. Chem. C 119:24564–73 [Google Scholar]
  56. Furche F. 56.  2001. Molecular tests of the random phase approximation to the exchange-correlation energy functional. Phys. Rev. B 64:195120 [Google Scholar]
  57. Wang J, Wang G, Zhao J. 57.  2003. Structures and electronic properties of Cu20, Ag20, and Au20 clusters with density functional method. Chem. Phys. Lett. 380:716–20 [Google Scholar]
  58. Weigend F, Ahlrichs R. 58.  2005. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7:3297–305 [Google Scholar]
  59. Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H. 59.  1990. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 77:123–41 [Google Scholar]
  60. Tao J, Perdew J, Staroverov V, Scuseria GE. 60.  2003. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91:146401 [Google Scholar]
  61. Treutler O, Ahlrichs R. 61.  1995. Efficient molecular numerical integration schemes. J. Chem. Phys. 102:346–54 [Google Scholar]
  62. Sottile F, Olevano V, Reining L. 62.  2003. Parameter-free calculation of response functions in time-dependent density-functional theory. Phys. Rev. Lett. 91:056402 [Google Scholar]
  63. Salpeter EE, Bethe HA. 63.  1951. A relativistic equation for bound-state problems. Phys. Rev. 84:1232–42 [Google Scholar]
  64. Feynman RP. 64.  1949. Space-time approach to quantum electrodynamics. Phys. Rev. 76:769–89 [Google Scholar]
  65. Dyson FJ. 65.  1949. The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev. 75:486–502 [Google Scholar]
  66. Goldstone J. 66.  1957. Derivation of the Brueckner many-body theory. Proc. R. Soc. A 239:267–79 [Google Scholar]
  67. Singwi K, Tosi M, Land R, Sjölander A. 67.  1968. Electron correlations at metallic densities. Phys. Rev. 176:589–99 [Google Scholar]
  68. Bates JE, Furche F. 68.  2013. Random phase approximation renormalized many-body perturbation theory. J Chem. Phys. 139:171103 [Google Scholar]
  69. Grüneis A, Marsman M, Harl J, Schimka L, Kresse G. 69.  2009. Making the random phase approximation to electronic correlation accurate. J. Chem. Phys. 131:154115 [Google Scholar]
  70. Freeman DL. 70.  1977. Coupled-cluster expansion applied to the electron gas: inclusion of ring and exchange effects. Phys. Rev. B 15:5512–21 [Google Scholar]
  71. Ángyán JG, Liu RF, Toulouse J, Jansen G. 71.  2011. Correlation energy expressions from the adiabatic-connection fluctuation–dissipation theorem approach. J. Chem. Theory Comput. 7:3116–30 [Google Scholar]
  72. Paier J, Janesko BG, Henderson TM, Scuseria GE, Grüneis A, Kresse G. 72.  2010. Hybrid functionals including random phase approximation correlation and second-order screened exchange. J. Chem. Phys. 132:094103 [Google Scholar]
  73. Shavitt I, Bartlett RJ. 73.  2009. Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory Cambridge, UK: Cambridge Univ. Press
  74. Talman J, Shadwick W. 74.  1976. Optimized effective atomic central potential. Phys. Rev. A 14:36–40 [Google Scholar]
  75. Bleiziffer P, Heßelmann A, Görling A. 75.  2012. Resolution of identity approach for the Kohn–Sham correlation energy within the exact-exchange random-phase approximation. J. Chem. Phys. 136:134102 [Google Scholar]
  76. Görling A, Levy M. 76.  1994. Exact Kohn–Sham scheme based on perturbation theory. Phys. Rev. A 50:196–204 [Google Scholar]
  77. Hellgren M, von Barth U. 77.  2007. Correlation potential in density functional theory at the GWA level: spherical atoms. Phys. Rev. B 76:075107 [Google Scholar]
  78. Hellgren M, Rohr DR, Gross EKU. 78.  2012. Correlation potentials for molecular bond dissociation within the self-consistent random phase approximation. J. Chem. Phys. 136:034106 [Google Scholar]
  79. Verma P, Bartlett RJ. 79.  2012. Increasing the applicability of density functional theory. II. Correlation potentials from the random phase approximation and beyond. J. Chem. Phys. 136:044105 [Google Scholar]
  80. Bleiziffer P, Krug M, Görling A. 80.  2015. Self-consistent Kohn–Sham method based on the adiabatic-connection fluctuation-dissipation theorem and the exact-exchange kernel. J. Chem. Phys. 142:244108 [Google Scholar]
  81. Hirata S, Ivanov S, Grabowski I, Bartlett RJ. 81.  2002. Time-dependent density functional theory employing optimized effective potentials. J. Chem. Phys. 116:6468–81 [Google Scholar]
  82. Shigeta Y, Hirao K, Hirata S. 82.  2006. Exact-exchange time-dependent density-functional theory with the frequency-dependent kernel. Phys. Rev. A 73:010502 [Google Scholar]
  83. Staroverov VN, Scuseria GE, Davidson ER. 83.  2006. Optimized effective potentials yielding Hartree–Fock energies and densities. J. Chem. Phys. 124:141103 [Google Scholar]
  84. Heßelmann A, Ipatov A, Görling A. 84.  2009. Charge-transfer excitation energies with a time-dependent density-functional method suitable for orbital-dependent exchange-correlation kernels. Phys. Rev. A 80:012507 [Google Scholar]
  85. Ryabinkin IG, Kohut SV, Staroverov VN. 85.  2015. Reduction of electronic wave functions to Kohn–Sham effective potentials. Phys. Rev. Lett. 115:083001 [Google Scholar]
  86. Weigend F, Häser M. 86.  1997. RI-MP2: first derivatives and global consistency. Theor. Chim. Acta 97:331–40 [Google Scholar]
  87. Dunlap BI, Conolly JWD, Sabin JR. 87.  1979. Some approximations in applications of X-alpha theory. J. Chem. Phys. 71:3396–402 [Google Scholar]
  88. Weigend F, Köhn A, Hättig C. 88.  2002. Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J. Chem. Phys. 116:3175–83 [Google Scholar]
  89. Eshuis H, Yarkony J, Furche F. 89.  2010. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration. J. Chem. Phys. 132:234114 [Google Scholar]
  90. Heßelmann A. 90.  2012. Random-phase-approximation correlation method including exchange interactions. Phys. Rev. A 85:012517 [Google Scholar]
  91. Boyd JP. 91.  1987. Exponentially convergent Fourier–Chebshev quadrature schemes on bounded and infinite intervals. J. Sci. Comput. 2:99–109 [Google Scholar]
  92. Kaltak M, Klimeš J, Kresse G. 92.  2014. Low scaling algorithms for the random phase approximation: imaginary time and Laplace transformations. J. Chem. Theory Comput. 10:2498–507 [Google Scholar]
  93. Schurkus HF, Ochsenfeld C. 93.  2016. An effective linear-scaling atomic-orbital reformulation of the random-phase approximation using a contracted double-Laplace transformation. J. Chem. Phys. 144:031101 [Google Scholar]
  94. Moussa JE. 94.  2014. Cubic-scaling algorithm and self-consistent field for the random-phase approximation with second-order screened exchange. J. Chem. Phys. 140:014107 [Google Scholar]
  95. Baerends EJ, Ellis DE, Ros P. 95.  1973. Self-consistent molecular Hartree–Fock–Slater calculations I. The computational procedure. Chem. Phys. 2:41–51 [Google Scholar]
  96. Hohenstein EG, Parrish RM, Martínez TJ. 96.  2012. Tensor hypercontraction density fitting. I. Quartic scaling second- and third-order Møller–Plesset perturbation theory. J. Chem. Phys. 137:044103 [Google Scholar]
  97. Kallay M. 97.  2015. Linear-scaling implementation of the direct random-phase approximation. J. Chem. Phys. 142:204105 [Google Scholar]
  98. Risthaus T, Grimme S. 98.  2013. Benchmarking of London dispersion-accounting density functional theory methods on very large molecular complexes. J. Chem. Theory Comput. 9:1580–91 [Google Scholar]
  99. Perdew JP, Burke K, Ernzerhof M. 99.  1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77:3865–68 Erratum. Phys. Rev. Lett. 78:1396 [Google Scholar]
  100. Perdew JP, Burke K, Ernzerhof M. 100.  1998. Perdew, Burke, and Ernzerhof reply. Phys. Rev. Lett. 80:891 [Google Scholar]
  101. Pulay P. 101.  2007. Analytical derivative methods in quantum chemistry. Adv. Chem. Phys. 69:241–86 [Google Scholar]
  102. Helgaker T, Jørgensen P, Handy NC. 102.  1989. A numerically stable procedure for calculating Møller–Plesset energy derivatives, derived using the theory of Lagrangians. Theor. Chim. Acta 76:227–45 [Google Scholar]
  103. Jørgensen P, Helgaker T. 103.  1988. Møller–Plesset energy derivatives. J. Chem. Phys. 89:1560–70 [Google Scholar]
  104. Burow AM, Bates JE, Furche F, Eshuis H. 104.  2014. Analytical first-order molecular properties and forces within the adiabatic connection random phase approximation. J. Chem. Theory Comput. 10:180–94 [Google Scholar]
  105. Pople JA, Krishnan R, Schlegel HB, Binkley JS. 105.  1979. Derivative studies in Hartree–Fock and Møller–Plesset theories. Int. J. Quantum Chem. 16:225–41 [Google Scholar]
  106. Fuchs M, Niquet YM, Gonze X, Burke K. 106.  2005. Describing static correlation in bond dissociation by Kohn–Sham density functional theory. J. Chem. Phys. 122:094116 [Google Scholar]
  107. Henderson TM, Scuseria GE. 107.  2010. The connection between self-interaction and static correlation: a random phase approximation perspective. Mol. Phys. 108:2511–17 [Google Scholar]
  108. Woon DE, Dunning TH Jr. 108.  1994. Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J. Chem. Phys. 100:2975–88 [Google Scholar]
  109. Deglmann P, Furche F, Ahlrichs R. 109.  2002. An efficient implementation of second analytical derivatives for density functional methods. Chem. Phys. Lett. 362:511–18 [Google Scholar]
  110. Furche F, Krull BT, Nguyen BD, Kwon J. 110.  2016. Accelerating molecular property calculations with nonorthonormal Krylov space methods. J. Chem. Phys. 144:174105 [Google Scholar]
  111. Rekkedal J, Coriani S, Iozzi MF, Teale AM, Helgaker T, Pedersen TB. 111.  2013. Analytic gradients in the random-phase approximation. J. Chem. Phys. 139:081101 [Google Scholar]
  112. Mussard B, Szalay PG, Ángyán JG. 112.  2014. Analytical energy gradients in range-separated hybrid density functional theory with random phase approximation. J. Chem. Theory. Comput. 10:1968–79 [Google Scholar]
  113. Hammer B, Norskov JK. 113.  1995. Why gold is the noblest of all the metals. Nature 376:238–40 [Google Scholar]
  114. Haruta M, Daté M. 114.  2001. Advances in the catalysis of Au nanoparticles. Appl. Catal. A 222:427–37 [Google Scholar]
  115. Liu X, He L, Liu YM, Cao Y. 115.  2014. Supported gold catalysis: from small molecule activation to green chemical synthesis. Acc. Chem. Res. 47:793–804 [Google Scholar]
  116. Zhang C, Yoon B, Landman U. 116.  2007. Predicted oxidation of Co catalyzed by Au nanoclusters on a thin defect-free MgO film supported on a Mo(100) surface. J. Am. Chem. Soc. 129:2228–29 [Google Scholar]
  117. Gilb S, Weis P, Furche F, Ahlrichs R, Kappes MM. 117.  2002. Structures of small gold cluster cations (Aun+, n < 14): ion mobility measurements versus density functional calculations. J. Chem. Phys. 116:4094–101 [Google Scholar]
  118. Johansson MP, Lechtken A, Schooss D, Kappes MM, Furche F. 118.  2008. 2D–3D transition transition of gold cluster anions resolved. Phys. Rev. A 77:053202 [Google Scholar]
  119. Gruene P, Rayner DM, Redlich B, van der Meer AFG, Lyon JT. 118a.  et al. 2008. Structures of neutral Au7, Au19, and Au20 clusters in the gas phase. Science 321:674–76 [Google Scholar]
  120. Gruene P, Butschke B, Lyon JT, Rayner DM, Fielicke A.119.  2014. Far-IR spectra of small neutral gold clusters in the gas phase. Z. Phys. Chem. 228:337–50 [Google Scholar]
  121. Wang J, Wang G, Zhao J.119a.  2002. Density-functional study of Aun (n=2–20) clusters: lowest-energy structures and electronic properties. Phys. Rev. B 66:035418 [Google Scholar]
  122. Dong Y, Springborg M. 120.  2007. Global structure optimization study on Au2–20. Eur. Phys. J. D 43:15–18 [Google Scholar]
  123. Assadollahzadeh B, Schwerdtfeger P. 121.  2009. A systematic search for minimum structures of small gold clusters Aun (n=2–20) and their electronic properties. J. Chem. Phys. 131:064306 [Google Scholar]
  124. Hansen JA, Piecuch P, Levine BG. 122.  2013. Determining the lowest-energy isomer of Au8: 2D, or not 2D. J. Chem. Phys. 139:091101 [Google Scholar]
  125. Johnston RL. 123.  2003. Evolving better nanoparticles: genetic algorithms for optimising cluster geometries. Dalton Trans. 2003:4193–207 [Google Scholar]
  126. Johansson MP, Warnke I, Le A, Furche F. 124.  2014. At what size do neutral gold clusters turn three-dimensional?. J. Phys. Chem. C 118:29370–77 [Google Scholar]
  127. Perdew JP, Ruzsinszky A, Csonka GI, Constantin LA, Sun J. 125.  2009. Workhorse semilocal density functional for condensed matter physics and quantum chemistry. Phys. Rev. Lett. 103:026403 [Google Scholar]
  128. Fernández EM, Soler JM, Garzón IL, Balbás LC. 126.  2004. Trends in the structure and bonding of noble metal clusters. Phys. Rev. B 70:165403 [Google Scholar]
  129. Fieser ME, Mueller TJ, Bates JE, Ziller JW, Furche F, Evans WJ. 127.  2014. Differentiating chemically similar Lewis acid sites in heterobimetallic complexes: the rare-earth bridged hydride (C5Me5)2Ln(μ-H)2Ln′(C5Me5)2 and tuckover hydride (C5Me5)2Ln(μ-H)(μ-η1:η5-CH2C5Me4)-Ln′(C5Me5) systems. Organometallics 33:3882–90 [Google Scholar]
  130. Grimme S, Antony J, Ehrlich S, Krieg H. 128.  2010. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Comput. Chem. 132:154104 [Google Scholar]
  131. MacDonald MR, Fieser ME, Bates JE, Ziller JW, Furche F, Evans WJ. 129.  2013. Identification of the +2 oxidation state for uranium in a crystalline molecular complex, [K(2.2.2-cryptand)][(C5H4SiMe3)3U]. J. Am. Chem. Soc. 135:13310–13 [Google Scholar]
  132. Bates JE. 130.  2013. First principles studies of heavy-metal chemistry and RPA-renormalized perturbation theory Ph.D. Thesis, Univ. Calif., Irvine
  133. Becke AD. 131.  1993. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98:5648–52 [Google Scholar]
  134. Lee C, Yang W, Parr RG. 132.  1988. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37:785–89 [Google Scholar]
  135. Tao DJ, Muuronen M, Slutskyy Y, Le A, Furche F, Overman LE. 133.  2016. Diastereoselective coupling of chiral acetonide trisubstituted radicals with alkenes. Chem. Eur. J. 22:8786–90 [Google Scholar]
  136. Tao DJ, Slutskyy Y, Overman LE. 133a.  Total synthesis of (–)-chromodorolide B. J. Am. Chem. Soc. 138:2186–89 [Google Scholar]
  137. Staroverov VN, Scuseria GE. 134.  2003. Comparative assessment of a new nonempirical density functional: molecules and hydrogen-bonded complexes. J. Chem. Phys. 119:12129–37 [Google Scholar]
  138. Hartley MK, Vine S, Walsh E, Avrantinis S, Daub GW, Cave RJ. 135.  2016. Comparison of relative activation energies obtained by density functional theory and the random phase approximation for several Claisen rearrangements. J. Phys. Chem. B 120:1486–96 [Google Scholar]
  139. Fukutome H. 136.  1981. Unrestricted Hartree–Fock theory and its applications to molecules and chemical reactions. Int. J. Quantum Chem. 20:955–1065 [Google Scholar]
  140. Thouless DJ. 137.  2013. The Quantum Mechanics of Many-Body Systems Mineola, NY: Dover
  141. Stanton JF, Gauss J. 138.  2003. A discussion of some problems associated with the quantum mechanical treatment of open-shell molecules. Adv. Chem. Phys. 125:101–46 [Google Scholar]
  142. Huber KP, Herzberg G. 139.  2013. Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules New York: Springer
  143. Graner G, Kuchitsu K. 140.  2001. Structure Data of Free Polyatomic Molecules. Landolt–Börnstein: Molecules and Radicals Berlin: Springer
  144. Harmony MD, Laurie VW, Kuczkowski RL, Schwendeman RH, Ramsay DA. 141.  et al. 1979. Molecular structures of gas-phase polyatomic molecules determined by spectroscopic methods. J. Phys. Chem. Ref. Data 8:619–722 [Google Scholar]
  145. Tuckett RP, Dale AR, Jaffey DM, Jarrett PS, Kelly T. 142.  1983. The electronic emission spectrum of the fluorine molecular ion F2+ studied in a supersonic beam. Mol. Phys. 49:475–86 [Google Scholar]
  146. Eshuis H, Furche F. 143.  2012. Basis set convergence of molecular correlation energy differences within the random phase approximation. J. Chem. Phys. 136:084105 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040215-112308
Loading
/content/journals/10.1146/annurev-physchem-040215-112308
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error