1932

Abstract

The gas–liquid interface remains one of the least explored, but nevertheless most practically important, environments in which molecular collisions take place. These molecular-level processes underlie many bulk phenomena of fundamental and applied interest, spanning evaporation, respiration, multiphase catalysis, and atmospheric chemistry. We review here the research that has, during the past decade or so, been unraveling the molecular-level mechanisms of inelastic and reactive collisions at the gas–liquid interface. Armed with the knowledge that such collisions with the outer layers of the interfacial region can be unambiguously distinguished, we show that the scattering of gas-phase projectiles is a promising new tool for the interrogation of liquid surfaces with extreme surface sensitivity. Especially for reactive scattering, this method also offers absolute chemical selectivity for the groups that react to produce a specific observed product.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040215-112355
2016-05-27
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/physchem/67/1/annurev-physchem-040215-112355.html?itemId=/content/journals/10.1146/annurev-physchem-040215-112355&mimeType=html&fmt=ahah

Literature Cited

  1. Pankow JF. 1.  1987. Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere. Atmos. Environ. 21:2275–83 [Google Scholar]
  2. O’Dowd CD, Smith MH, Consterdine IE, Lowe JA. 2.  1997. Marine aerosol, sea-salt, and the marine sulphur cycle: a short review. Atmos. Environ. 31:73–80 [Google Scholar]
  3. Keene WC, Sander R, Pszenny AAP, Vogt R, Crutzen PJ, Galloway JN. 3.  1998. Aerosol pH in the marine boundary layer: a review and model evaluation. J. Aerosol Sci. 29:339–56 [Google Scholar]
  4. Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ. 4.  et al. 2005. Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys. 5:1053–123 [Google Scholar]
  5. Hewick RM, Hunkapiller MW, Hood LE, Dreyer WJ. 5.  1981. A gas–liquid solid phase peptide and protein sequenator. J. Biol. Chem. 256:7990–97 [Google Scholar]
  6. Mehnert CP, Cook RA, Dispenziere NC, Afeworki M. 6.  2002. Supported ionic liquid catalysis—a new concept for homogeneous hydroformylation catalysis. J. Am. Chem. Soc. 124:12932–33 [Google Scholar]
  7. Kulkarni AA, Joshi JB. 7.  2005. Bubble formation and bubble rise velocity in gas–liquid systems: a review. Ind. Eng. Chem. Res. 44:5873–931 [Google Scholar]
  8. Steinbrüchel C. 8.  1982. Gas–surface scattering distributions according to the hard-spheroid model. Surf. Sci. 115:247–58 [Google Scholar]
  9. Rettner CT, Barker JA, Bethune DS. 9.  1991. Angular and velocity distributions characteristic of the transition between the thermal and structure regimes of gas–surface scattering. Phys. Rev. Lett. 67:2183–86 [Google Scholar]
  10. Lahaye RJWE, Kleyn AW, Stolte S, Holloway S. 10.  1995. The scattering of Ar from Ag(111): a molecular dynamics study. Surf. Sci. 338:169–82 [Google Scholar]
  11. King ME, Saecker ME, Nathanson GM. 11.  1994. The thermal roughening of liquid surfaces and its effect on gas–liquid collisions. J. Chem. Phys. 101:2539–47 [Google Scholar]
  12. King ME, Fiehrer KM, Nathanson GM, Minton TK. 12.  1997. Effects of thermal roughening on the angular distributions of trapping and scattering in gas–liquid collisions. J. Phys. Chem. A 101:6556–61 [Google Scholar]
  13. Benjamin I. 13.  1997. Molecular structure and dynamics at liquid–liquid interfaces. Annu. Rev. Phys. Chem. 48:407–51 [Google Scholar]
  14. Benjamin I. 14.  2015. Reaction dynamics at liquid interfaces. Annu. Rev. Phys. Chem. 66:165–88 [Google Scholar]
  15. Muenter AH, DeZwaan JL, Nathanson GM. 15.  2006. Collisions of DCl with pure and salty glycerol: enhancement of interfacial D → H exchange by dissolved NaI. J. Phys. Chem. B 110:4881–91 [Google Scholar]
  16. Lancaster DK, Johnson AM, Kappes K, Nathanson GM. 16.  2015. Probing gas–liquid interfacial dynamics by helium evaporation from hydrocarbon liquids and jet fuels. J. Phys. Chem. C 119:14613–23 [Google Scholar]
  17. Ryder OS, Campbell NR, Shaloski M, Al-Mashat H, Nathanson GM, Bertram TH. 17.  2015. Role of organics in regulating ClNO2 production at the air–sea interface. J. Phys. Chem. A 119:8519–26 [Google Scholar]
  18. Lu JW, Day BS, Fiegland LR, Davis ED, Alexander WA. 18.  et al. 2012. Interfacial energy exchange and reaction dynamics in collisions of gases on model organic surfaces. Prog. Surf. Sci. 87:221–52 [Google Scholar]
  19. Andersson G, Ridings C. 19.  2014. Ion scattering studies of molecular structure at liquid surfaces with applications in industrial and biological systems. Chem. Rev. 114:8361–87 [Google Scholar]
  20. Lednovich SL, Fenn JB. 20.  1977. Absolute evaporation rates for some polar and nonpolar liquids. AIChE J. 23:454–59 [Google Scholar]
  21. Kenyon AJ, McCaffery AJ, Quintella CM, Zidan MD. 21.  1992. Liquid surface dynamics: a quantum-resolved scattering study. Chem. Phys. Lett. 190:55–58 [Google Scholar]
  22. Kelso H, Kohler SPK, Henderson DA, McKendrick KG. 22.  2003. Dynamics of the gas–liquid interfacial reaction of O(3P) atoms with hydrocarbons. J. Chem. Phys. 119:9985–88 [Google Scholar]
  23. Ziemkiewicz MP, Roscioli JR, Nesbitt DJ. 23.  2011. State-to-state dynamics at the gas–liquid metal interface: rotationally and electronically inelastic scattering of NO [2Π1/2(0.5)] from molten gallium. J. Chem. Phys. 134:234703 [Google Scholar]
  24. Zolot AM, Harper WW, Perkins BG, Dagdigian PJ, Nesbitt DJ. 24.  2006. Quantum-state resolved reaction dynamics at the gas-liquid interface: direct absorption detection of HF(v,J) product from F(2P) + squalane. J. Chem. Phys. 125:021101 [Google Scholar]
  25. Perkins BG, Haber T, Nesbitt DJ. 25.  2005. Quantum state–resolved energy transfer dynamics at gas–liquid interfaces: IR laser studies of CO2 scattering from perfluorinated liquids. J. Phys. Chem. B 109:16396–405 [Google Scholar]
  26. Cohen SR, Naaman R, Sagiv J. 26.  1988. Rotational and state-resolved translational distributions of NO scattered from organized amphiphilic monolayers. J. Chem. Phys. 88:2757–63 [Google Scholar]
  27. Rettner CT, Ashfold MNR. 27.  1991. Dynamics of Gas–Surface Interactions. London: R. Soc. Chem.
  28. Nathanson GM. 28.  2004. Molecular beam studies of gas–liquid interfaces. Annu. Rev. Phys. Chem. 55:231–55 [Google Scholar]
  29. Alexander WA, Zhang J, Murray VJ, Nathanson GM, Minton TK. 29.  2012. Kinematics and dynamics of atomic-beam scattering on liquid and self-assembled monolayer surfaces. Faraday Discuss. 157:355–74 [Google Scholar]
  30. Yan T, Hase WL, Tully JC. 30.  2004. A washboard with moment of inertia model of gas–surface scattering. J. Chem. Phys. 120:1031–43 [Google Scholar]
  31. Kohler SPK, Reed SK, Westacott RE, McKendrick KG. 31.  2006. Molecular dynamics study to identify the reactive sites of a liquid squalane surface. J. Phys. Chem. B 110:11717–24 [Google Scholar]
  32. Tesa-Serrate MA, Marshall BC, Smoll EJ, Purcell SM, Costen ML. 32.  et al. 2015. Ionic liquid–vacuum interfaces probed by reactive atom scattering: influence of alkyl chain length and anion volume. J. Phys. Chem. C 119:5491–505 [Google Scholar]
  33. Lipkin N, Gerber RB, Moiseyev N, Nathanson GM. 33.  1994. Atom scattering studies of liquid structure and dynamics: collisions of Xe with a model of squalane. J. Chem. Phys. 100:8408–17 [Google Scholar]
  34. Benjamin I, Wilson MA, Pohorille A, Nathanson GM. 34.  1995. Scattering of water from the glycerol liquid–vacuum interface. Chem. Phys. Lett. 243:222–28 [Google Scholar]
  35. Szabo TJ, Siavosh-Haghighi A, Adams JE. 35.  2006. Energy transfer at a gas–liquid interface: kinematics in a prototypical system. J. Phys. Chem. B 110:1319–25 [Google Scholar]
  36. Peng Y, Liu L, Cao Z, Li S, Mazyar OA. 36.  et al. 2008. Chemical dynamics simulation of Ne atom scattering off a squalane surface. J. Phys. Chem. C 112:20340–46 [Google Scholar]
  37. Bosio SBM, Hase WL. 37.  1997. Energy transfer in rare gas collisions with self-assembled monolayers. J. Chem. Phys. 107:9677–86 [Google Scholar]
  38. Day BS, Morris JR, Troya D. 38.  2005. Classical trajectory study of collisions of Ar with alkanethiolate self-assembled monolayers: potential-energy surface effects on dynamics. J. Chem. Phys. 122:214712 [Google Scholar]
  39. Alexander WA, Troya D. 39.  2006. Theoretical study of the Ar–, Kr–, and Xe–CH4, –CF4 intermolecular potential-energy surfaces. J. Phys. Chem. A 110:10834–43 [Google Scholar]
  40. Martínez-Núñez E, Rahaman A, Hase WL. 40.  2007. Chemical dynamics simulations of CO2 scattering off a fluorinated self-assembled monolayer surface. J. Phys. Chem. C 111:354–64 [Google Scholar]
  41. Sun L, Hase WL. 41.  2003. Born–Oppenheimer direct dynamics classical trajectory simulations. Rev. Comput. Chem. 19:79–146 [Google Scholar]
  42. Wiens JP, Nathanson GM, Alexander WA, Minton TK, Lakshmi S, Schatz GC. 42.  2014. Collisions of sodium atoms with liquid glycerol: insights into solvation and ionization. J. Am. Chem. Soc. 136:3065–74 [Google Scholar]
  43. Troya D, Pascual RZ, Garton DJ, Minton TK, Schatz GC. 43.  2003. Theoretical studies of the O(3P) + ethane reaction. J. Phys. Chem. A 107:7161–69 [Google Scholar]
  44. Troya D, Pascual RZ, Schatz GC. 44.  2003. Theoretical studies of the O(3P) + methane reaction. J. Phys. Chem. A 107:10497–506 [Google Scholar]
  45. Troya D, Schatz GC. 45.  2004. Hyperthermal chemistry in the gas phase and on surfaces: theoretical studies. Int. Rev. Phys. Chem. 23:341–73 [Google Scholar]
  46. Troya D, Schatz GC. 46.  2004. Theoretical studies of hyperthermal O(3P) collisions with hydrocarbon self-assembled monolayers. J. Chem. Phys. 120:7696–707 [Google Scholar]
  47. Kim D, Schatz GC. 47.  2007. Theoretical investigation of hyperthermal reactions at the gas–liquid interface: O(3P) and squalane. J. Phys. Chem. A 111:5019–31 [Google Scholar]
  48. Radak BK, Yockel S, Kim D, Schatz GC. 48.  2009. Modeling reactive scattering of F(2P) at a liquid squalane interface: a hybrid QM/MM molecular dynamics study. J. Phys. Chem. A 113:7218–26 [Google Scholar]
  49. Yockel S, Schatz GC. 49.  2010. Modeling O(3P) and Ar scattering from the ionic liquid [emim][NO3] at 5 eV with hybrid QM/MM molecular dynamics. J. Phys. Chem. B 114:14241–48 [Google Scholar]
  50. Li X, Schatz GC, Nesbitt DJ. 50.  2012. Anion effects in the scattering of CO2 from the room-temperature ionic liquids [bmim][BF4] and [bmim][Tf2N]: insights from quantum mechanics/molecular mechanics trajectories. J. Phys. Chem. B 116:3587–602 [Google Scholar]
  51. Yockel S, Schatz G. 51.  2012. Dynamic QM/MM: a hybrid approach to simulating gas-liquid interactions. Multiscale Molecular Methods in Applied Chemistry B Kirchner, J Vrabec 43–67 Berlin: Springer [Google Scholar]
  52. Saecker ME, Govoni ST, Kowalski DV, King ME, Nathanson GM. 52.  1991. Molecular beam scattering from liquid surfaces. Science 252:1421–24 [Google Scholar]
  53. Saecker ME, Nathanson GM. 53.  1993. Collisions of protic and aprotic gases with hydrogen-bonding and hydrocarbon liquids. J. Chem. Phys. 99:7056–75 [Google Scholar]
  54. King ME, Nathanson GM, Hanninglee MA, Minton TK. 54.  1993. Probing the microscopic corrugation of liquid surfaces with gas–liquid collisions. Phys. Rev. Lett. 70:1026–29 [Google Scholar]
  55. Saecker ME, Nathanson GM. 55.  1994. Collisions of protic and aprotic gases with a perfluorinated liquid. J. Chem. Phys. 100:3999–4005 [Google Scholar]
  56. Nathanson GM, Davidovits P, Worsnop DR, Kolb CE. 56.  1996. Dynamics and kinetics at the gas–liquid interface. J. Phys. Chem. 100:13007–20 [Google Scholar]
  57. Rettner CT, Auerbach DJ, Tully JC, Kleyn AW. 57.  1996. Chemical dynamics at the gas–surface interface. J. Phys. Chem. 100:13021–33 [Google Scholar]
  58. Kenyon AJ, McCaffery AJ, Quintella CM, Zidan MD. 58.  1993. Investigation of dynamical processes at liquid surfaces by molecular scattering. J. Chem. Soc. Faraday Trans. 89:3877–84 [Google Scholar]
  59. Perkins BG Jr., Nesbitt DJ. 59.  2006. Quantum-state-resolved CO2 scattering dynamics at the gas–liquid interface: incident collision energy and liquid dependence. J. Phys. Chem. B 110:17126–37 [Google Scholar]
  60. Bagot PAJ, Waring C, Costen ML, McKendrick KG. 60.  2008. Dynamics of inelastic scattering of OH radicals from reactive and inert liquid surfaces. J. Phys. Chem. C 112:10868–77 [Google Scholar]
  61. Allan M, Bagot PAJ, Costen ML, McKendrick KG. 61.  2007. Temperature dependence of OH yield, translational energy, and vibrational branching in the reaction of O(3P) (g) with liquid squalane. J. Phys. Chem. C 111:14833–42 [Google Scholar]
  62. Cohen SR, Naaman R, Balint-Kurti GG. 62.  1988. Energy distribution between spin-orbit states in NO scattered from organized amphiphilic monolayers. Chem. Phys. Lett. 152:269–73 [Google Scholar]
  63. Quintella CM, McCaffery AJ, Zidan MD. 63.  1993. Direct observation of the kinetics and dynamics of molecular desorption from liquid surfaces. Chem. Phys. Lett. 214:563–68 [Google Scholar]
  64. Perkins BG Jr., Nesbitt DJ. 64.  2007. Quantum-state-resolved CO2 scattering dynamics at the gas–liquid interface: dependence on incident angle. J. Phys. Chem. A 111:7420–30 [Google Scholar]
  65. Perkins BG Jr., Nesbitt DJ. 65.  2008. Correlated angular and quantum state–resolved CO2 scattering dynamics at the gas–liquid interface. J. Phys. Chem. A 112:9324–35 [Google Scholar]
  66. Perkins BG Jr., Nesbitt DJ. 66.  2008. Quantum state–resolved CO2 collisions at the gas–liquid interface: surface temperature–dependent scattering dynamics. J. Phys. Chem. B 112:507–19 [Google Scholar]
  67. Perkins BG Jr., Nesbitt DJ. 67.  2008. Stereodynamics in state-resolved scattering at the gas–liquid interface. PNAS 105:12684–89 [Google Scholar]
  68. Perkins BG Jr., Nesbitt DJ. 68.  2009. Toward three-dimensional quantum state–resolved collision dynamics at the gas–liquid interface: theoretical investigation of incident angle. J. Phys. Chem. A 113:4613–25 [Google Scholar]
  69. Perkins BG Jr., Nesbitt DJ. 69.  2010. Stereodynamics at the gas–liquid interface: orientation and alignment of CO2 scattered from perfluorinated liquid surfaces. J. Phys. Chem. A 114:1398–410 [Google Scholar]
  70. Nogueira JJ, Vázquez SA, Mazyar OA, Hase WL, Perkins BG Jr.. 70.  2009. Dynamics of CO2 scattering off a perfluorinated self-assembled monolayer. Influence of the incident collision energy, mass effects, and use of different surface models. J. Phys. Chem. A 113:3850–65 [Google Scholar]
  71. Nogueira JJ, Vázquez SA, Lourderaj U, Hase WL, Martínez-Núñez E. 71.  2010. Chemical dynamics simulations of CO2 in the ground and first excited bend states colliding with a perfluorinated self-assembled monolayer. J. Phys. Chem. C 114:18455–64 [Google Scholar]
  72. Yan T, Hase WL, Barker JR. 72.  2000. Identifying trapping desorption in gas–surface scattering. Chem. Phys. Lett. 329:84–91 [Google Scholar]
  73. Yan T, Isa N, Gibson K, Sibener S, Hase WL. 73.  2003. Role of surface intramolecular dynamics in the efficiency of energy transfer in Ne atom collisions with a n-hexylthiolate self-assembled monolayer. J. Phys. Chem. A 107:10600–7 [Google Scholar]
  74. Isa N, Gibson KD, Yan T, Hase W, Sibener SJ. 74.  2004. Experimental and simulation study of neon collision dynamics with a 1-decanethiol monolayer. J. Chem. Phys. 120:2417–33 [Google Scholar]
  75. Waring C, King KL, Bagot PAJ, Costen ML, McKendrick KG. 75.  2011. Collision dynamics and reactive uptake of OH radicals at liquid surfaces of atmospheric interest. Phys. Chem. Chem. Phys. 13:8457–69 [Google Scholar]
  76. King KL, Paterson G, Rossi GE, Iljina M, Westacott RE. 76.  et al. 2013. Inelastic scattering of OH radicals from organic liquids: isolating the thermal desorption channel. Phys. Chem. Chem. Phys. 15:12852–63 [Google Scholar]
  77. Troya D. 77.  2012. Dynamics of collisions of hydroxyl radicals with fluorinated self-assembled monolayers. Theor. Chem. Acc. 131:1072 [Google Scholar]
  78. Garton DJ, Minton TK, Alagia M, Balucani N, Casavecchia P, Volpi GG. 78.  1997. Reactive scattering of ground-state and electronically excited oxygen atoms on a liquid hydrocarbon surface. Faraday Discuss. 108:387–99 [Google Scholar]
  79. Waring C, King KL, Costen ML, McKendrick KG. 79.  2011. Dynamics of the gas–liquid interfacial reaction of O(1D) with a liquid hydrocarbon. J. Phys. Chem. A 115:7210–19 [Google Scholar]
  80. Garton DJ, Minton TK, Alagia M, Balucani N, Casavecchia P, Volpi GG. 80.  2000. Comparative dynamics of Cl(2P) and O(3P) interactions with a hydrocarbon surface. J. Chem. Phys. 112:5975–84 [Google Scholar]
  81. Zhang JM, Garton DJ, Minton TK. 81.  2002. Reactive and inelastic scattering dynamics of hyperthermal oxygen atoms on a saturated hydrocarbon surface. J. Chem. Phys. 117:6239–51 [Google Scholar]
  82. Zhang JM, Upadhyaya HP, Brunsvold AL, Minton TK. 82.  2006. Hyperthermal reactions of O and O2 with a hydrocarbon surface: direct C–C bond breakage by O and H-atom abstraction by O2. J. Phys. Chem. B 110:12500–11 [Google Scholar]
  83. Ausfelder F, McKendrick KG. 83.  2000. The dynamics of reactions of O(3P) atoms with saturated hydrocarbons and related compounds. Prog. React. Kinet. Mech. 25:299–370 [Google Scholar]
  84. Kohler SPK, Allan M, Kelso H, Henderson DA, McKendrick KG. 84.  2005. The effects of surface temperature on the gas–liquid interfacial reaction dynamics of O(3P) plus squalane. J. Chem. Phys. 122:024712 [Google Scholar]
  85. Kohler SPK, Allan M, Costen ML, McKendrick KG. 85.  2006. Direct gas–liquid interfacial dynamics: the reaction between O(3P) and a liquid hydrocarbon. J. Phys. Chem. B 110:2771–76 [Google Scholar]
  86. Allan M, Bagot PAJ, Koehler SPK, Reed SK, Westacott RE. 86.  et al. 2007. Dynamics of interfacial reactions between O(3P) atoms and long-chain liquid hydrocarbons. Phys. Scr. 76:C42–47 [Google Scholar]
  87. Andresen P, Luntz AC. 87.  1980. The chemical dynamics of the reactions of O(3P) with saturated hydrocarbons. I. Experiment. J. Chem. Phys. 72:5842–50 [Google Scholar]
  88. Smith JD, Kroll JH, Cappa CD, Che DL, Liu CL. 88.  et al. 2009. The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols. Atmos. Chem. Phys. 9:3209–22 [Google Scholar]
  89. Bertram AK, Ivanov AV, Hunter M, Molina LT, Molina MJ. 89.  2001. The reaction probability of OH on organic surfaces of tropospheric interest. J. Phys. Chem. A 105:9415–21 [Google Scholar]
  90. Rudich Y. 90.  2003. Laboratory perspectives on the chemical transformations of organic matter in atmospheric particles. Chem. Rev. 103:5097–124 [Google Scholar]
  91. Molina MJ, Ivanov AV, Trakhtenberg S, Molina LT. 91.  2004. Atmospheric evolution of organic aerosol. Geophys. Res. Lett. 31:L22104 [Google Scholar]
  92. Renbaum LH, Smith GD. 92.  2011. Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption. Atmos. Chem. Phys. 11:6881–93 [Google Scholar]
  93. Wilson EW, Hamilton WA, Kennington HR, Evans B, Scott NW, DeMore WB. 93.  2006. Measurement and estimation of rate constants for the reactions of hydroxyl radical with several alkanes and cycloalkanes. J. Phys. Chem. A 110:3593–604 [Google Scholar]
  94. Atkinson R, Arey J. 94.  2003. Atmospheric degradation of volatile organic compounds. Chem. Rev. 103:4605–38 [Google Scholar]
  95. Zolot AM, Dagdigian PJ, Nesbitt DJ. 95.  2008. Quantum-state resolved reactive scattering at the gas–liquid interface: F + squalane (C30H62) dynamics via high-resolution infrared absorption of nascent HF(v,J). J. Chem. Phys. 129:194705 [Google Scholar]
  96. Layfield JP, Troya D. 96.  2010. Theoretical study of the dynamics of F + alkanethiol self-assembled monolayer hydrogen-abstraction reactions. J. Chem. Phys. 132:134307 [Google Scholar]
  97. Tesa-Serrate MA, King KL, Paterson G, Costen ML, McKendrick KG. 97.  2014. Site and bond-specific dynamics of reactions at the gas–liquid interface. Phys. Chem. Chem. Phys. 16:173–83 [Google Scholar]
  98. Kanofsky JR, Lucas D, Gutman D. 98.  1973. Direct identification of free-radical products of O-atom reactions with olefins, using high-intensity molecular beams. Symp. Int. Combust. 14:285–94 [Google Scholar]
  99. Blumenberg B, Hoyermann K, Sievert R. 99.  1977. Primary products in the reactions of oxygen atoms with simple and substituted hydrocarbons. Symp. Int. Combust. 16:841–52 [Google Scholar]
  100. Adusei GY, Fontijn A. 100.  1994. Comparison of the kinetics of O(3P) reactions with the four butenes over wide temperature ranges. J. Phys. Chem. 98:3732–39 [Google Scholar]
  101. Quandt R, Min Z, Wang X, Bersohn R. 101.  1998. Reactions of O(3P) with alkenes: H, CH2CHO, CO, and OH channels. J. Phys. Chem. A 102:60–64 [Google Scholar]
  102. Min ZY, Wong TH, Su HM, Bersohn R. 102.  2000. Reaction of O(3P) with alkenes: side chain versus double bond attack. J. Phys. Chem. A 104:9941–43 [Google Scholar]
  103. Ringeisen BR, Muenter AH, Nathanson GM. 103.  2002. Collisions of DCl with liquid glycerol: evidence for rapid, near-interfacial D → H exchange and desorption. J. Phys. Chem. B 106:4999–5010 [Google Scholar]
  104. Ringeisen BR, Muenter AH, Nathanson GM. 104.  2002. Collisions of HCl, DCl, and HBr with liquid glycerol: gas uptake, D → H exchange, and solution thermodynamics. J. Phys. Chem. B 106:4988–98 [Google Scholar]
  105. Muenter AH, DeZwaan JL, Nathanson GM. 105.  2007. Interfacial interactions of DO with salty glycerol solutions of KI, NaI, LiI, and NaBr. J. Phys. Chem. C 111:15043–52 [Google Scholar]
  106. DeZwaan JL, Brastad SM, Nathanson GM. 106.  2008. The roles of salt concentration and cation charge in collisions of Ar and DCl with salty glycerol solutions of NaI and CaI2. J. Phys. Chem. C 112:3008–17 [Google Scholar]
  107. Brastad SM, Albert DR, Huang M, Nathanson GM. 107.  2009. Collisions of DCl with a solution covered with hydrophobic and hydrophilic ions: tetrahexylammonium bromide in glycerol. J. Phys. Chem. A 113:7422–30 [Google Scholar]
  108. Faust JA, Dempsey LP, Nathanson GM. 108.  2013. Surfactant-promoted reactions of Cl2 and Br2 with Br in glycerol. J. Phys. Chem. B 117:12602–12 [Google Scholar]
  109. DeZwaan JL, Brastad SM, Nathanson GM. 109.  2008. Evidence for interfacial [FDCl] in collisions between DCl and F in KF–glycerol solutions. J. Phys. Chem. C 112:15449–57 [Google Scholar]
  110. Brastad SM, Nathanson GM. 110.  2011. Molecular beam studies of HCl dissolution and dissociation in cold salty water. Phys. Chem. Chem. Phys. 13:8284–95 [Google Scholar]
  111. Alexander WA, Wiens JP, Minton TK, Nathanson GM. 111.  2012. Reactions of solvated electrons initiated by sodium atom ionization at the vacuum–liquid interface. Science 335:1072–75 [Google Scholar]
  112. Waclawik ER, Goh MC, Donaldson DJ. 112.  1999. Inelastic scattering of atoms and molecules from liquid crystal surfaces. J. Chem. Phys. 110:8098–103 [Google Scholar]
  113. Allan M, Bagot PAJ, Westacott RE, Costen ML, McKendrick KG. 113.  2008. Influence of molecular and supramolecular structure on the gas–liquid interfacial reactivity of hydrocarbon liquids with O(3P) atoms. J. Phys. Chem. C 112:1524–32 [Google Scholar]
  114. Ocko BM, Wu XZ, Sirota EB, Sinha SK, Gang O, Deutsch M. 114.  1997. Surface freezing in chain molecules: normal alkanes. Phys. Rev. E 55:3164–82 [Google Scholar]
  115. Gisler AW, Nesbitt DJ. 115.  2012. On probing ions at the gas–liquid interface by quantum state–resolved molecular beam scattering: the curious incident of the cation in the night time. Faraday Discuss. 157:297–305 [Google Scholar]
  116. Lawrence JR, Glass SV, Park S-C, Nathanson GM. 116.  2005. Surfactant control of gas uptake: effect of butanol films on HCl and HBr entry into supercooled sulfuric acid. J. Phys. Chem. A 109:7458–65 [Google Scholar]
  117. Glass SV, Park S-C, Nathanson GM. 117.  2006. Evaporation of water and uptake of HCl and HBr through hexanol films at the surface of supercooled sulfuric acid. J. Phys. Chem. A 110:7593–601 [Google Scholar]
  118. Burden DK, Johnson AM, Krier JM, Nathanson GM. 118.  2014. The entry of HCl through soluble surfactants on sulfuric acid: effects of chain branching. J. Phys. Chem. B 118:7993–8001 [Google Scholar]
  119. Park S-C, Burden DK, Nathanson GM. 119.  2009. Surfactant control of gas transport and reactions at the surface of sulfuric acid. Acc. Chem. Res. 42:379–87 [Google Scholar]
  120. Plechkova NV, Seddon KR. 120.  2008. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37:123–50 [Google Scholar]
  121. Lovelock KRJ. 121.  2012. Influence of the ionic liquid/gas surface on ionic liquid chemistry. Phys. Chem. Chem. Phys. 14:5071–89 [Google Scholar]
  122. Grenoble Z, Baldelli S. 122.  2014. Ionic liquids at the gas–liquid and solid–liquid interface—characterization and properties. Supported Ionic Liquids R Fehrmann, A Riisager, M Haumann 145–76 Weinheim, Ger: Wiley-VCH Verlag [Google Scholar]
  123. Iwahashi T, Nishi T, Yamane H, Miyamae T, Kanai K. 123.  et al. 2009. Surface structural study on ionic liquids using metastable atom electron spectroscopy. J. Phys. Chem. C 113:19237–43 [Google Scholar]
  124. Lovelock KRJ, Kolbeck C, Cremer T, Paape N, Schulz PS. 124.  et al. 2009. Influence of different substituents on the surface composition of ionic liquids studied using ARXPS. J. Phys. Chem. B 113:2854–64 [Google Scholar]
  125. Santos CS, Baldelli S. 125.  2009. Alkyl chain interaction at the surface of room temperature ionic liquids: systematic variation of alkyl chain length (R=C1–C4, C8) in both cation and anion of [RMIM][R–OSO3] by sum frequency generation and surface tension. J. Phys. Chem. B 113:923–33 [Google Scholar]
  126. Hammer T, Reichelt M, Morgner H. 126.  2010. Influence of the aliphatic chain length of imidazolium based ionic liquids on the surface structure. Phys. Chem. Chem. Phys. 12:11070–80 [Google Scholar]
  127. Maier F, Cremer T, Kolbeck C, Lovelock KRJ, Paape N. 127.  et al. 2010. Insights into the surface composition and enrichment effects of ionic liquids and ionic liquid mixtures. Phys. Chem. Chem. Phys. 12:1905–15 [Google Scholar]
  128. Ziemkiewich MP, Zutz A, Nesbitt DJ. 128.  2012. Inelastic scattering of radicals at the gas–ionic liquid interface: probing surface dynamics of BMIM–Cl, BMIM–BF4, and BMIM–Tf2N by rovibronic scattering of NO [2Π1/2(0.5)]. J. Phys. Chem. C 116:14284–94 [Google Scholar]
  129. Roscioli JR, Nesbitt DJ. 129.  2010. State-resolved scattering at room-temperature ionic liquid–vacuum interfaces: anion dependence and the role of dynamic versus equilibrium effects. J. Phys. Chem. Lett. 1:674–78 [Google Scholar]
  130. Wu B, Zhang J, Minton TK, McKendrick KG, Slattery JM. 130.  et al. 2010. Scattering dynamics of hyperthermal oxygen atoms on ionic liquid surfaces: [emim][NTf2] and [C12mim][NTf2]. J. Phys. Chem. C 114:4015–27 [Google Scholar]
  131. Roscioli JR, Nesbitt DJ. 131.  2011. Quantum state resolved scattering from room-temperature ionic liquids: the role of cation versus anion structure at the interface. J. Phys. Chem. A 115:9764–73 [Google Scholar]
  132. Waring C, Bagot PAJ, Slattery JM, Costen ML, McKendrick KG. 132.  2010. O(3P) atoms as a probe of surface ordering in 1-alkyl-3-methylimidazolium-based ionic liquids. J. Phys. Chem. Lett. 1:429–33 [Google Scholar]
  133. Waring C, Bagot PAJ, Slattery JM, Costen ML, McKendrick KG. 133.  2010. O(3P) atoms as a chemical probe of surface ordering in ionic liquids. J. Phys. Chem. A 114:4896–904 [Google Scholar]
  134. Waring C, Bagot PAJ, Costen ML, McKendrick KG. 134.  2011. Reactive scattering as a chemically specific analytical probe of liquid surfaces. J. Phys. Chem. Lett. 2:12–18 [Google Scholar]
  135. Waring C, Bagot PAJ, Bebbington MWP, Raisanen MT, Buck M. 135.  et al. 2010. How penetrable are thioalkyl self-assembled monolayers?. J. Phys. Chem. Lett. 1:1917–21 [Google Scholar]
  136. Ridings C, Lockett V, Andersson G. 136.  2011. Effect of the aliphatic chain length on electrical double layer formation at the liquid/vacuum interface in the [Cnmim][BF4] ionic liquid series. Phys. Chem. Chem. Phys. 13:17177–84 [Google Scholar]
  137. Davidovits P, Kolb CE, Williams LR, Jayne JT, Worsnop DR. 137.  2006. Mass accommodation and chemical reactions at gas–liquid interfaces. Chem. Rev. 106:1323–54 [Google Scholar]
  138. Winter B, Faubel M. 138.  2006. Photoemission from liquid aqueous solutions. Chem. Rev. 106:1176–211 [Google Scholar]
  139. Yang L, Yu X-Y, Zhu Z, Thevuthasan T, Cowin JP. 139.  2011. Making a hybrid microfluidic platform compatible for in situ imaging by vacuum-based techniques. J. Vac. Sci. Technol. A 29:061101 [Google Scholar]
  140. Lancaster DK, Johnson AM, Burden DK, Wiens JP, Nathanson GM. 140.  2013. Inert gas scattering from liquid hydrocarbon microjets. J. Phys. Chem. Lett. 4:3045–49 [Google Scholar]
  141. Johnson AM, Lancaster DK, Faust JA, Hahn C, Reznickova A, Nathanson GM. 141.  2014. Ballistic evaporation and solvation of helium atoms at the surfaces of protic and hydrocarbon liquids. J. Phys. Chem. Lett. 5:3914–18 [Google Scholar]
  142. Roscioli JR, Nesbitt DJ. 142.  2011. Quantum state resolved velocity-map imaging spectroscopy: a new tool for collision dynamics at gas/self-assembled monolayer interfaces. Faraday Discuss. 150:471–79 [Google Scholar]
  143. Martinez IS, Baldelli S. 143.  2010. On the arrangement of ions in imidazolium-based room temperature ionic liquids at the gas–liquid interface, using sum frequency generation, surface potential, and surface tension measurements. J. Phys. Chem. C 114:11564–75 [Google Scholar]
  144. Bowers J, Vergara-Gutierrez MC, Webster JRP. 144.  2004. Surface ordering of amphiphilic ionic liquids. Langmuir 20:309–12 [Google Scholar]
  145. Jeon Y, Sung J, Bu W, Vaknin D, Ouchi Y, Kim D. 145.  2008. Interfacial restructuring of ionic liquids determined by sum-frequency generation spectroscopy and X-ray reflectivity. J. Phys. Chem. C 112:19649–54 [Google Scholar]
  146. Villar-Garcia IJ, Fearn S, De Gregorio GF, Ismail NL, Gschwend FJV. 146.  et al. 2014. The ionic liquid–vacuum outer atomic surface: a low-energy ion scattering study. Chem. Sci. 5:4404–18 [Google Scholar]
  147. Law G, Watson PR, Carmichael AJ, Seddon KR. 147.  2001. Molecular composition and orientation at the surface of room-temperature ionic liquids: effect of molecular structure. Phys. Chem. Chem. Phys. 3:2879–85 [Google Scholar]
  148. Nakajima K, Ohno A, Hashimoto H, Suzuki M, Kimura K. 148.  2010. Observation of surface structure of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide using high-resolution Rutherford backscattering spectroscopy. J. Chem. Phys. 133:044702 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040215-112355
Loading
/content/journals/10.1146/annurev-physchem-040215-112355
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error