1932

Abstract

Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion–molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040215-112553
2016-05-27
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/physchem/67/1/annurev-physchem-040215-112553.html?itemId=/content/journals/10.1146/annurev-physchem-040215-112553&mimeType=html&fmt=ahah

Literature Cited

  1. Berkowitz J. 1.  1979. Photoabsorption, Photoionization, and Photoelectron Spectroscopy New York: Academic
  2. Ng CY. 2.  2002. Vacuum ultraviolet spectroscopy and chemistry by photoionization and photoelectron methods. Annu. Rev. Phys. Chem. 53:101–40 [Google Scholar]
  3. Ng CY. 3.  1983. Molecular-beam photo-ionization studies of molecules and clusters. Adv. Chem. Phys. 52:263–362 [Google Scholar]
  4. Baer T. 4.  1989. Vacuum UV photophysics and photoionization spectroscopy. Annu. Rev. Phys. Chem. 40:637–69 [Google Scholar]
  5. Hurzeler H, Inghram MG, Morrison JD. 5.  1958. Photon impact studies of molecules using a mass spectrometer. J. Chem. Phys. 28:76–82 [Google Scholar]
  6. Baer T. 6.  2004. Why I love science: a personal statement. J. Phys. Chem. A 108:9627–28 [Google Scholar]
  7. Parr GR. 7.  1973. A photoionization mass spectrometer utilizing a high intensity molecular beam sampling system and synchrotron radiation. Rev. Sci. Instrum. 44:1578–83 [Google Scholar]
  8. Bisling PGF, Ruehl E, Brutschy B, Baumgaertel H. 8.  1987. Photoionization mass spectroscopy with synchrotron radiation of hydrogen-bonded alkylamine clusters produced in supersonic beams. J. Phys. Chem. 91:4310–17 [Google Scholar]
  9. Heimann PA, Koike M, Hsu CW, Blank D, Yang XM. 9.  et al. 1997. Performance of the vacuum ultraviolet high-resolution and high-flux beamline for chemical dynamics studies at the advanced light source. Rev. Sci. Instrum. 68:1945–51 [Google Scholar]
  10. Leone SR, Ahmed M, Wilson KR. 10.  2010. Chemical dynamics, molecular energetics, and kinetics at the synchrotron. Phys. Chem. Chem. Phys. 12:6564–78 [Google Scholar]
  11. Hanley L, Zimmermann R. 11.  2009. Light and molecular ions: the emergence of vacuum UV single-photon ionization in MS. Anal. Chem. 81:4174–82 [Google Scholar]
  12. Cool TA, Nakajima K, Mostefaoui TA, Qi F, McIlroy A. 12.  et al. 2003. Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry. J. Chem. Phys. 119:8356–65 [Google Scholar]
  13. Qi F. 13.  2013. Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry. Proc. Combust. Inst. 34:33–63 [Google Scholar]
  14. Taatjes CA, Hansen N, McIlroy A, Miller JA, Senosiain JP. 14.  et al. 2005. Enols are common intermediates in hydrocarbon oxidation. Science 308:1887–89 [Google Scholar]
  15. Hansen N, Merchant SS, Harper MR, Green WH. 15.  2013. The predictive capability of an automatically generated combustion chemistry mechanism: chemical structures of premixed iso-butanol flames. Combust. Flame 160:2343–51 [Google Scholar]
  16. Hansen N, Klippenstein SJ, Taatjes CA, Miller JA, Wang J. 16.  et al. 2006. Identification and chemistry of C4H3 and C4H5 isomers in fuel-rich flames. J. Phys. Chem. A 110:3670–78 [Google Scholar]
  17. Vasiliou AK, Piech KM, Reed B, Zhang X, Nimlos MR. 17.  et al. 2012. Thermal decomposition of CH3CHO studied by matrix infrared spectroscopy and photoionization mass spectroscopy. J. Chem. Phys. 137:164308 [Google Scholar]
  18. Zhang F, Kaiser RI, Kislov VV, Mebel AM, Golan A, Ahmed M. 18.  2011. A VUV photoionization study of the formation of the indene molecule and its isomers. J. Phys. Chem. Lett. 2:1731–35 [Google Scholar]
  19. Urness KN, Guan Q, Golan A, Daily JW, Nimlos MR. 19.  et al. 2013. Pyrolysis of furan in a microreactor. J. Chem. Phys. 139:124305 [Google Scholar]
  20. Buckingham GT, Ormond TK, Porterfield JP, Hemberger P, Kostko O. 20.  et al. 2015. The thermal decomposition of the benzyl radical in a heated micro-reactor. I. Experimental findings. J. Chem. Phys. 142:044307 [Google Scholar]
  21. Ormond TK, Scheer AM, Nimlos MR, Robichaud DJ, Troy TP. 21.  et al. 2015. Pyrolysis of cyclopentadienone: mechanistic insights from a direct measurement of product branching ratios. J. Phys. Chem. A 119:7222–34 [Google Scholar]
  22. Zhang F, Kaiser RI, Golan A, Ahmed M, Hansen N. 22.  2012. A VUV photoionization study of the combustion-relevant reaction of the phenyl radical (C6H5) with propylene (C3H6) in a high temperature chemical reactor. J. Phys. Chem. A 116:3541–46 [Google Scholar]
  23. Golan A, Ahmed M, Mebel AM, Kaiser RI. 23.  2013. A VUV photoionization study of the multichannel reaction of phenyl radicals with 1,3-butadiene under combustion relevant conditions. Phys. Chem. Chem. Phys. 15:341–47 [Google Scholar]
  24. Parker DS, Kaiser RI, Troy TP, Ahmed M. 24.  2014. Hydrogen abstraction/acetylene addition revealed. Angew. Chem. Int. Ed. Engl. 53:7740–44 [Google Scholar]
  25. Parker DS, Kaiser RI, Troy TP, Kostko O, Ahmed M, Mebel AM. 25.  2014. Toward the oxidation of the phenyl radical and prevention of PAH formation in combustion systems. J. Phys. Chem. A 119:7145–54 [Google Scholar]
  26. Parker DS, Kaiser RI, Kostko O, Ahmed M. 26.  2015. Selective formation of indene through the reaction of benzyl radicals with acetylene. Chem. Phys. Chem. 16:2091–93 [Google Scholar]
  27. Parker DS, Kaiser RI, Bandyopadhyay B, Kostko O, Troy TP, Ahmed M. 27.  2015. Unexpected chemistry from the reaction of naphthyl and acetylene at combustion-like temperatures. Angew. Chem. Int. Ed. Engl. 54:5421–24 [Google Scholar]
  28. Ormond TK, Hemberger P, Troy TP, Ahmed M, Stanton JF, Ellison GB. 28.  2015. The ionisation energy of cyclopentadienone: a photoelectron–photoion coincidence study. Mol. Phys. 113:2350–58 [Google Scholar]
  29. Custodis VB, Hemberger P, Ma Z, van Bokhoven JA. 29.  2014. Mechanism of fast pyrolysis of lignin: studying model compounds. J. Phys. Chem. B 118:8524–31 [Google Scholar]
  30. Hemberger P, Trevitt AJ, Ross E, da Silva G. 30.  2013. Direct observation of para-xylylene as the decomposition product of the meta-xylyl radical using VUV synchrotron radiation. J. Phys. Chem. Lett. 4:2546–50 [Google Scholar]
  31. Lang M, Holzmeier F, Hemberger P, Fischer I. 31.  2015. Threshold photoelectron spectra of combustion relevant C4H5 and C4H7 isomers. J. Phys. Chem. A 119:3995–4000 [Google Scholar]
  32. Battin-Leclerc F, Herbinet O, Glaude PA, Fournet R, Zhou Z. 32.  et al. 2010. Experimental confirmation of the low-temperature oxidation scheme of alkanes. Angew. Chem. Int. Ed. Engl. 49:3169–72 [Google Scholar]
  33. Battin-Leclerc F, Herbinet O, Glaude PA, Fournet R, Zhou Z. 33.  et al. 2011. New experimental evidences about the formation and consumption of ketohydroperoxides. Proc. Combust. Inst. 33:325–31 [Google Scholar]
  34. Moshammer K, Jasper AW, Popolan-Vaida DM, Lucassen A, Dievart P. 34.  et al. 2015. Detection and identification of the keto-hydroperoxide (HOOCHOCHO) and other intermediates during low-temperature oxidation of dimethyl ether. J. Phys. Chem. A 119:7361–74 [Google Scholar]
  35. Lynch PT, Troy TP, Ahmed M, Tranter RS. 35.  2015. Probing combustion chemistry in a miniature shock tube with synchrotron VUV photo ionization mass spectrometry. Anal. Chem. 87:2345–52 [Google Scholar]
  36. Osswald P, Hemberger P, Bierkandt T, Akyildiz E, Kohler M. 36.  et al. 2014. In situ flame chemistry tracing by imaging photoelectron photoion coincidence spectroscopy. Rev. Sci. Instrum. 85:025101 [Google Scholar]
  37. Kruger J, Garcia GA, Felsmann D, Moshammer K, Lackner A. 37.  et al. 2014. Photoelectron-photoion coincidence spectroscopy for multiplexed detection of intermediate species in a flame. Phys. Chem. Chem. Phys. 16:22791–804 [Google Scholar]
  38. Garcia GA, Tang X, Gil J-F, Nahon L, Ward M. 38.  et al. 2015. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD. J. Chem. Phys. 142:164201 [Google Scholar]
  39. Felsmann D, Moshammer K, Krueger J, Lackner A, Brockhinke A. 39.  et al. 2015. Electron ionization, photoionization and photoelectron/photoion coincidence spectroscopy in mass-spectrometric investigations of a low-pressure ethylene/oxygen flame. Proc. Combust. Inst. 35:779–86 [Google Scholar]
  40. Skeen SA, Michelsen HA, Wilson KR, Popolan DM, Violi A, Hansen N. 40.  2013. Near-threshold photoionization mass spectra of combustion-generated high-molecular-weight soot precursors. J. Aerosol. Sci. 58:86–102 [Google Scholar]
  41. Osborn DL, Zou P, Johnsen H, Hayden CC, Taatjes CA. 41.  et al. 2008. The multiplexed chemical kinetic photoionization mass spectrometer: a new approach to isomer-resolved chemical kinetics. Rev. Sci. Instrum. 79:104103 [Google Scholar]
  42. Meloni G, Zou P, Klippenstein SJ, Ahmed M, Leone SR. 42.  et al. 2006. Energy-resolved photoionization of alkylperoxy radicals and the stability of their cations. J. Am. Chem. Soc. 128:13559–67 [Google Scholar]
  43. Taatjes CA, Meloni G, Selby TM, Trevitt AJ, Osborn DL. 43.  et al. 2008. Direct observation of the gas-phase Criegee intermediate (CH2OO). J. Am. Chem. Soc. 130:11883–85 [Google Scholar]
  44. Welz O, Savee JD, Osborn DL, Vasu SS, Percival CJ. 44.  et al. 2012. Direct kinetic measurements of Criegee intermediate (CH2OO) formed by reaction of CH2I with O2. Science 335:204–7 [Google Scholar]
  45. Taatjes CA, Welz O, Eskola AJ, Savee JD, Scheer AM. 45.  et al. 2013. Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3CHOO. Science 340:177–80 [Google Scholar]
  46. Savee JD, Papajak E, Rotavera B, Huang H, Eskola AJ. 46.  et al. 2015. Direct observation and kinetics of a hydroperoxyalkyl radical (QOOH). Science 347:643–46 [Google Scholar]
  47. Taatjes CA, Shallcross DE, Percival CJ. 47.  2014. Research frontiers in the chemistry of Criegee intermediates and tropospheric ozonolysis. Phys. Chem. Chem. Phys. 16:1704–18 [Google Scholar]
  48. Belau L, Wilson KR, Leone SR, Ahmed M. 48.  2007. Vacuum ultraviolet (VUV) photoionization of small water clusters. J. Phys. Chem. A 111:10075–83 [Google Scholar]
  49. Barth S, Oncak M, Ulrich V, Mucke M, Lischke T. 49.  et al. 2009. Valence ionization of water clusters: from isolated molecules to bulk. J. Phys. Chem. A 113:13519–27 [Google Scholar]
  50. Kamarchik E, Kostko O, Bowman JM, Ahmed M, Krylov AI. 50.  2010. Spectroscopic signatures of proton transfer dynamics in the water dimer cation. J. Chem. Phys. 132:194311 [Google Scholar]
  51. Bodi A, Csontos J, Kállay M, Borkar S, Sztáray B. 51.  2014. On the protonation of water. Chem. Sci. 5:3057–63 [Google Scholar]
  52. Shinohara H, Nishi N, Washida N. 52.  1986. Photoionization of water clusters at 11.83 eV: observation of unprotonated cluster ions (H2O)n+ (2 ≤ n ≤ 10). J. Chem. Phys. 84:5561–67 [Google Scholar]
  53. Jongma RT, Huang Y, Shi S, Wodtke AM. 53.  1998. Rapid evaporative cooling suppresses fragmentation in mass spectrometry: synthesis of “unprotonated” water cluster ions. J. Phys. Chem. A 102:8847–54 [Google Scholar]
  54. Mizuse K, Kuo J-L, Fujii A. 54.  2011. Structural trends of ionized water networks: infrared spectroscopy of water cluster radical cations (H2O)n+ (n = 3–11). Chem. Sci. 2:868–76 [Google Scholar]
  55. Golan A, Ahmed M. 55.  2012. Ionization of water clusters mediated by exciton energy transfer from argon clusters. J. Phys. Chem. Lett. 3:458–62 [Google Scholar]
  56. Wormer J, Guzielski V, Stapelfeldt J, Zimmerer G, Moller T. 56.  1990. Optical properties of argon clusters in the VUV. Phys. Scr. 41:490–94 [Google Scholar]
  57. Jahnke T. 57.  2015. Interatomic and intermolecular Coulombic decay: the coming of age story. J. Phys. B 48:082001 [Google Scholar]
  58. Kocisek J, Lengyel J, Farnik M, Slavicek P. 58.  2013. Energy and charge transfer in ionized argon coated water clusters. J. Chem. Phys. 139:214308 [Google Scholar]
  59. de Vries MS, Hobza P. 59.  2007. Gas-phase spectroscopy of biomolecular building blocks. Annu. Rev. Phys. Chem. 58:585–612 [Google Scholar]
  60. Pan Y, Zhang L, Guo H, Deng L, Qi F. 60.  2010. Photoionisation and photodissociation studies of nonvolatile organic molecules by synchrotron VUV photoionisation mass spectrometry and theoretical calculations. Int. Rev. Phys. Chem. 29:369–401 [Google Scholar]
  61. Schwell M, Hochlaf M. 61.  2015. Photoionization spectroscopy of nucleobases and analogues in the gas phase using synchrotron radiation as excitation light source. Top. Curr. Chem. 355:155–208 [Google Scholar]
  62. Bravaya KB, Kostko O, Ahmed M, Krylov AI. 62.  2010. The effect of pi-stacking, H-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine-adenine, thymine-thymine and adenine-thymine dimers. Phys. Chem. Chem. Phys. 12:2292–307 [Google Scholar]
  63. Kostko O, Bravaya K, Krylov A, Ahmed M. 63.  2010. Ionization of cytosine monomer and dimer studied by VUV photoionization and electronic structure calculations. Phys. Chem. Chem. Phys. 12:2860–72 [Google Scholar]
  64. Bravaya KB, Kostko O, Dolgikh S, Landau A, Ahmed M, Krylov AI. 64.  2010. Electronic structure and spectroscopy of nucleic acid bases: ionization energies, ionization-induced structural changes, and photoelectron spectra. J. Phys. Chem. A 114:12305–17 [Google Scholar]
  65. Zadorozhnaya AA, Krylov AI. 65.  2010. Ionization-induced structural changes in uracil dimers and their spectroscopic signatures. J. Chem. Theory Comput. 6:705–17 [Google Scholar]
  66. Zadorozhnaya AA, Krylov AI. 66.  2010. Zooming into pi-stacked manifolds of nucleobases: ionized states of dimethylated uracil dimers. J. Phys. Chem. A 114:2001–9 [Google Scholar]
  67. Golan A, Bravaya KB, Kudirka R, Kostko O, Leone SR. 67.  et al. 2012. Ionization of dimethyluracil dimers leads to facile proton transfer in the absence of hydrogen bonds. Nature Chem. 4:323–29 [Google Scholar]
  68. Yoder BL, Bravaya KB, Bodi A, West AHC, Sztaray B, Signorell R. 68.  2015. Barrierless proton transfer across weak CH⋅⋅⋅O hydrogen bonds in dimethyl ether dimer. J. Chem. Phys. 142:114303 [Google Scholar]
  69. Mahjoub A, Hochlaf M, Garcia GA, Nahon L, Poisson L. 69.  2012. State-selected unimolecular decomposition of delta-valerolactam+ and delta-valerolactam2+ cations: theory and experiment. J. Phys. Chem. A 116:8706–12 [Google Scholar]
  70. Mahjoub A, Hochlaf M, Poisson L, Nieuwjaer N, Lecomte F. 70.  et al. 2011. Slow photoelectron spectroscopy of delta-valerolactam and its dimer. Chem. Phys. Chem. 12:1822–32 [Google Scholar]
  71. Khistyaev K, Golan A, Bravaya KB, Orms N, Krylov AI, Ahmed M. 71.  2013. Proton transfer in nucleobases is mediated by water. J. Phys. Chem. A 117:6789–97 [Google Scholar]
  72. Li W, Hu Y, Guan J, Liu F, Shan X, Sheng L. 72.  2013. Site-selective ionization of ethanol dimer under the tunable synchrotron VUV radiation and its subsequent fragmentation. J. Chem. Phys. 139:024307 [Google Scholar]
  73. Bodi A. 73.  2013. Internal energy selection in vacuum ultraviolet photoionization of ethanol and ethanol dimers. J. Chem. Phys. 139:144306 [Google Scholar]
  74. Xiao WZ, Hu YJ, Li WX, Guan JW, Liu FY. 74.  et al. 2015. Unexpected methyl migrations of ethanol dimer under synchrotron VUV radiation. J. Chem. Phys. 142:024306 [Google Scholar]
  75. Bell F, Ruan QN, Golan A, Horn PR, Ahmed M. 75.  et al. 2013. Dissociative photoionization of glycerol and its dimer occurs predominantly via a ternary hydrogen-bridged ion-molecule complex. J. Am. Chem. Soc. 135:14229–39 [Google Scholar]
  76. Daly S, Powis I, Tia M, Garcia GA, Nahon L. 76.  2015. Dissociative VUV photoionization of butanediol isomers. Int. J. Mass Spectrom. 376:46–53 [Google Scholar]
  77. Bandyopadhyay B, Kostko O, Fang Y, Ahmed M. 77.  2015. Probing methanol cluster growth by vacuum ultraviolet ionization. J. Phys. Chem. A 119:4083–92 [Google Scholar]
  78. Kostko O, Belau L, Wilson KR, Ahmed M. 78.  2008. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. J. Phys. Chem. A 112:9555–62 [Google Scholar]
  79. Donald WA, Williams ER. 79.  2008. Evaluation of different implementations of the Thomson liquid drop model: comparison to monovalent and divalent cluster ion experimental data. J. Phys. Chem. A 112:3515–22 [Google Scholar]
  80. Bera PP, Head-Gordon M, Lee TJ. 80.  2013. Association mechanisms of unsaturated C2 hydrocarbons with their cations: acetylene and ethylene. Phys. Chem. Chem. Phys. 15:2012–23 [Google Scholar]
  81. Duncan MA. 81.  2012. Invited review article: laser vaporization cluster sources. Rev. Sci. Instrum. 83:041101 [Google Scholar]
  82. Yin S, Bernstein ER. 82.  2012. Gas phase chemistry of neutral metal clusters: distribution, reactivity and catalysis. Int. J. Mass Spectrom.321–32249–65
  83. Ng CY. 83.  2014. State-to-state spectroscopy and dynamics of ions and neutrals by photoionization and photoelectron methods. Annu. Rev. Phys. Chem. 65:197–224 [Google Scholar]
  84. Belau L, Wheeler SE, Ticknor BW, Ahmed M, Leone SR. 84.  et al. 2007. Ionization thresholds of small carbon clusters: tunable VUV experiments and theory. J. Am. Chem. Soc. 129:10229–43 [Google Scholar]
  85. Kostko O, Zhou J, Sun BJ, Shiuan Lie J, Chang AHH. 85.  et al. 2010. Determination of ionization energies of CnN (n = 4–12): vacuum ultraviolet photoionization experiments and theoretical calculations. Astrophys. J. 717:674–82 [Google Scholar]
  86. Kaiser RI, Sun BJ, Lin HM, Chang AHH, Mebel AM. 86.  et al. 2010. An experimental and theoretical study on the ionization energies of polyynes (H–(C≡C)n–H; n = 1–9). Astrophys. J. 719:1884–89 [Google Scholar]
  87. Kaiser RI, Maksyutenko P, Ennis C, Zhang F, Gu X. 87.  et al. 2010. Untangling the chemical evolution of Titan's atmosphere and surface—from homogeneous to heterogeneous chemistry. Faraday Discuss. 147:429–78 [Google Scholar]
  88. Kaiser RI, Krishtal SP, Mebel AM, Kostko O, Ahmed M. 88.  2012. An experimental and theoretical study of the ionization energies of SiC2Hx (x = 0, 1, 2) isomers. Astrophys. J. 761:178 [Google Scholar]
  89. Kostko O, Ahmed M, Metz RB. 89.  2009. Vacuum-ultraviolet photoionization measurement and ab initio calculation of the ionization energy of gas-phase SiO2. J. Phys. Chem. A 113:1225–30 [Google Scholar]
  90. Kostko O, Leone SR, Duncan MA, Ahmed M. 90.  2010. Determination of ionization energies of small silicon clusters with vacuum ultraviolet radiation. J. Phys. Chem. A 114:3176–81 [Google Scholar]
  91. Metz RB. 91.  2008. Spectroscopy of the potential energy surfaces for C–H and C–O bond activation by transition metal and metal oxide cations. Adv. Chem. Phys. 138:331–73 [Google Scholar]
  92. Metz RB, Nicolas C, Ahmed M, Leone SR. 92.  2005. Direct determination of the ionization energies of FeO and CuO with VUV radiation. J. Chem. Phys. 123:114313–16 [Google Scholar]
  93. Pavlov M, Blomberg MRA, Siegbahn PEM, Wesendrup R, Heinemann C, Schwarz H. 93.  1997. Pt+ catalyzed oxidation of methane: theory and experiment. J. Phys. Chem. A 101:1567–79 [Google Scholar]
  94. Irikura KK, Beauchamp JL. 94.  1991. Electronic structure considerations for methane activation by third-row transition metal ions. J. Phys. Chem. 95:8344–51 [Google Scholar]
  95. Citir M, Metz RB, Belau L, Ahmed M. 95.  2008. Direct determination of the ionization energies of PtO, PtO2 and PtC with VUV radiation. J. Phys. Chem. A 112:9584–90 [Google Scholar]
  96. Zhang XG, Armentrout PB. 96.  2003. Activation of O2 and CO2 by Pt+: the thermochemistry of PtO2+. J. Phys. Chem. A 107:8915–22 [Google Scholar]
  97. Zhang XG, Armentrout PB. 97.  2003. Activation of O2, CO and CO2 by Pt+: the thermochemistry of PtO+. J. Phys. Chem. A 107:8904–14 [Google Scholar]
  98. Perera M, Roenitz KM, Metz RB, Kostko O, Ahmed M. 98.  2014. Photoionization measurements and electronic structure calculations of the ionization energies of gas-phase tantalum oxides TaOx (x = 3–6). J. Spectrosc. Dyn. 4:21–31 [Google Scholar]
  99. Carroll JJ, Weisshaar JC, Siegbahn PEM, Wittborn CAM, Blomberg MRA. 99.  1995. Experimental and theoretical study of the gas-phase reactions between small linear alkanes and the platinum and iridium atoms. J. Phys. Chem. 99:14388–96 [Google Scholar]
  100. Carroll JJ, Weisshaar JC. 100.  1996. Gas phase kinetics of neutral transition metal atoms: reactions of Hf, Ta, Ir, Pt, and Au with alkanes and alkenes. J. Phys. Chem. 100:12355–63 [Google Scholar]
  101. Campbell ML. 101.  1998. Gas-phase kinetics of ground state platinum with O2, NO, N2O and CH4. J. Chem. Soc. Faraday Trans. 94:353–58 [Google Scholar]
  102. Zhang XG, Liyanage R, Armentrout PB. 102.  2001. Potential energy surface for activation of methane by Pt+: a combined guided ion beam and DFT study. J. Am. Chem. Soc. 123:5563–75 [Google Scholar]
  103. Perera M, Metz RB, Kostko O, Ahmed M. 103.  2013. Vacuum ultraviolet photoionization studies of PtCH2 and H–Pt–CH3: a potential energy surface for the Pt + CH4 reaction. Ang. Chem. Int. Ed. Engl. 52:888–91 [Google Scholar]
  104. Tang X, Zhou X, Niu M, Liu S, Sun J. 104.  et al. 2009. A threshold photoelectron-photoion coincidence spectrometer with double velocity imaging using synchrotron radiation. Rev. Sci. Instrum. 80:113101 [Google Scholar]
  105. Bodi A, Hemberger P, Gerber T, Sztaray B. 105.  2012. A new double imaging velocity focusing coincidence experiment: i2PEPICO. Rev. Sci. Instrum. 83:083105 [Google Scholar]
  106. Bodi A, Hemberger P, Osborn DL, Sztáray B. 106.  2013. Mass-resolved isomer-selective chemical analysis with imaging photoelectron photoion coincidence spectroscopy. J. Phys. Chem. Lett. 4:2948–52 [Google Scholar]
  107. Garcia GA, de Miranda BKC, Tia M, Daly S, Nahon L. 107.  2013. Delicious III: a multipurpose double imaging particle coincidence spectrometer for gas phase vacuum ultraviolet photodynamics studies. Rev. Sci. Instrum. 84:053112 [Google Scholar]
  108. Hemberger P, Bodi A, Berthel JH, Radius U. 108.  2015. Intramolecular C–N bond activation and ring-expansion reactions of N-heterocyclic carbenes. Chem. Eur. J. 21:1434–38 [Google Scholar]
  109. Hemberger P, Bodi A, Gerber T, Wurtemberger M, Radius U. 109.  2013. Unimolecular reaction mechanism of an imidazolin-2-ylidene: an iPEPICO study on the complex dissociation of an Arduengo-type carbene. Chem. Eur. J. 19:7090–99 [Google Scholar]
  110. Brechignac P, Garcia GA, Falvo C, Joblin C, Kokkin D. 110.  et al. 2014. Photoionization of cold gas phase coronene and its clusters: autoionization resonances in monomer, dimer, and trimer and electronic structure of monomer cation. J. Chem. Phys. 141:164325 [Google Scholar]
  111. Tia M, de Miranda BC, Daly S, Gaie-Levrel F, Garcia GA. 111.  et al. 2014. VUV photodynamics and chiral asymmetry in the photoionization of gas phase alanine enantiomers. J. Phys. Chem. A 118:2765–79 [Google Scholar]
  112. Kostko O, Kim SK, Leone SR, Ahmed M. 112.  2009. Mass-analyzed threshold ionization (MATI) spectroscopy of atoms and molecules using VUV synchrotron radiation. J. Phys. Chem. A 113:14206–11 [Google Scholar]
  113. Qian X-M, Kung AH, Zhang T, Lau KC, Ng CY. 113.  2003. Rovibrational-state-selected photoionization of acetylene by the two-color IR + VUV scheme: observation of rotationally resolved Rydberg transitions. Phys. Rev. Lett. 91:233001 [Google Scholar]
  114. Lee Y-Y, Dung T-Y, Hsieh R-M, Yuh J-Y, Song Y-F. 114.  et al. 2008. Autoionizing Rydberg series (np′,nf′) of Ar investigated by stepwise excitations with lasers and synchrotron radiation. Phys. Rev. A 78:022509 [Google Scholar]
  115. Kostko O, Takahashi LK, Ahmed M. 115.  2011. Desorption dynamics, internal energies, and imaging of organic molecules from surfaces with laser desorption and vacuum ultraviolet (VUV) photoionization. Chem. Asian J. 6:3066–76 [Google Scholar]
  116. Liu SY, Kleber M, Takahashi LK, Nico P, Keiluweit M, Ahmed M. 116.  2013. Synchrotron-based mass spectrometry to investigate the molecular properties of mineral-organic associations. Anal. Chem. 85:6100–6 [Google Scholar]
  117. Liu SY, Shawkey MD, Parkinson D, Troy TP, Ahmed M. 117.  2014. Elucidation of the chemical composition of avian melanin. RSC Adv. 4:40396–99 [Google Scholar]
  118. Ubachs W, Salumbides EJ, Eikema KSE, de Oliveira N, Nahon L. 118.  2014. Novel techniques in VUV high-resolution spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 196:159–64 [Google Scholar]
  119. Mills AK, Hammond TJ, Lam MHC, Jones DJ. 119.  2012. XUV frequency combs via femtosecond enhancement cavities. J. Phys. B 45:142001 [Google Scholar]
  120. Couprie ME. 120.  2014. New generation of light sources: present and future. J. Electron. Spectrosc. Relat. Phenom. 196:3–13 [Google Scholar]
  121. Chaoyang L, Shen W, Xuewei D, Liangliang D, Qiuping W. 121.  et al. 2015. On-line spectral diagnostic system for Dalian Coherent Light Source. Nucl. Instr. Meth. Phys. Res. 783:65–67 [Google Scholar]
  122. Eriksson M, van der Veen JF, Quitmann C. 122.  2014. Diffraction-limited storage rings—a window to the science of tomorrow. J. Synchrotron Radiat. 21:837–42 [Google Scholar]
  123. Isaacman G, Wilson KR, Chan AWH, Worton DR, Kimmel JR. 123.  et al. 2012. Improved resolution of hydrocarbon structures and constitutional isomers in complex mixtures using gas chromatography-vacuum ultraviolet-mass spectrometry. Anal. Chem. 84:2335–42 [Google Scholar]
  124. Isaacman G, Chan AWH, Nah T, Worton DR, Ruehl CR. 124.  et al. 2012. Heterogeneous OH oxidation of motor oil particles causes selective depletion of branched and less cyclic hydrocarbons. Environ. Sci. Technol. 46:10632–40 [Google Scholar]
  125. Nah T, Zhang HF, Worton DR, Ruehl CR, Kirk BB. 125.  et al. 2014. Isomeric product detection in the heterogeneous reaction of hydroxyl radicals with aerosol composed of branched and linear unsaturated organic molecules. J. Phys. Chem. A 118:11555–71 [Google Scholar]
  126. Worton DR, Isaacman G, Gentner DR, Dallmann TR, Chan AWH. 126.  et al. 2014. Lubricating oil dominates primary organic aerosol emissions from motor vehicles. Environ. Sci. Technol. 48:3698–706 [Google Scholar]
  127. Gentner DR, Isaacman G, Worton DR, Chan AWH, Dallmann TR. 127.  et al. 2012. Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions. PNAS 109:18318–23 [Google Scholar]
  128. Giuliani A, Milosavljevic AR, Canon F, Nahon L. 128.  2014. Contribution of synchrotron radiation to photoactivation studies of biomolecular ions in the gas phase. Mass Spectrom. Rev. 33:424–41 [Google Scholar]
  129. Schramm T, Ganteför G, Bodi A, Hemberger P, Gerber T, von Issendorff B. 129.  2014. Photoelectron spectroscopy of size-selected cluster ions using synchrotron radiation. Appl. Phys. A 115:771–79 [Google Scholar]
  130. Kasigkeit C, Hirsch K, Langenberg A, Möller T, Probst J. 130.  et al. 2015. Higher ionization energies from sequential vacuum-ultraviolet multiphoton ionization of size-selected silicon cluster cations. J. Phys. Chem. C 119:11148–52 [Google Scholar]
  131. Bari S, Gonzalez-Magana O, Reitsma G, Werner J, Schippers S. 131.  et al. 2011. Photodissociation of protonated leucine-enkephalin in the VUV range of 8–40 eV. J. Chem. Phys. 134:024314 [Google Scholar]
  132. Milosavljevic AR, Nicolas C, Lemaire J, Dehon C, Thissen R. 132.  et al. 2011. Photoionization of a protein isolated in vacuo. Phys. Chem. Chem. Phys. 13:15432–36 [Google Scholar]
  133. Brunet C, Antoine R, Allouche AR, Dugourd P, Canon F. 133.  et al. 2011. Gas phase photo-formation and vacuum UV photofragmentation spectroscopy of tryptophan and tyrosine radical-containing peptides. J. Phys. Chem. A 115:8933–39 [Google Scholar]
  134. Brunet C, Antoine R, Dugourd P, Canon F, Giuliani A, Nahon L. 134.  2013. Photo-induced electron detachment of protein polyanions in the VUV range. J. Chem. Phys. 138:064301 [Google Scholar]
  135. Brunet C, Antoine R, Dugourd P, Duflot D, Canon F. 135.  et al. 2013. Valence shell direct double photodetachment in polyanions. New J. Phys. 15:063024 [Google Scholar]
  136. Gozem S, Gunina AO, Ichino T, Osborn DL, Stanton JF, Krylov AI. 136.  2015. Photoelectron wave function in photoionization: plane wave or Coulomb wave?. J. Phys. Chem. Lett. 6:4532–40 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040215-112553
Loading
/content/journals/10.1146/annurev-physchem-040215-112553
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error