1932

Abstract

Many experimental and theoretical advances have recently allowed the study of direct and indirect effects of low-energy electrons (LEEs) on DNA damage. In an effort to explain how LEEs damage the human genome, researchers have focused efforts on LEE interactions with bacterial plasmids, DNA bases, sugar analogs, phosphate groups, and longer DNA moieties. Here, we summarize the current understanding of the fundamental mechanisms involved in LEE-induced damage of DNA and complex biomolecule films. Results obtained by several laboratories on films prepared and analyzed by different methods and irradiated with different electron-beam current densities and fluencies are presented. Despite varied conditions (e.g., film thicknesses and morphologies, intrinsic water content, substrate interactions, and extrinsic atmospheric compositions), comparisons show a striking resemblance in the types of damage produced and their yield functions. The potential of controlling this damage using molecular and nanoparticle targets with high LEE yields in targeted radiation-based cancer therapies is also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040513-103605
2015-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/physchem/66/1/annurev-physchem-040513-103605.html?itemId=/content/journals/10.1146/annurev-physchem-040513-103605&mimeType=html&fmt=ahah

Literature Cited

  1. Hall EJ, Giaccia AJ. 1.  2006. Radiobiology for the Radiologist Philadelphia: Lippincott Williams & Wilkins, 6th ed..
  2. O'Driscoll M, Jeggo PA. 2.  2006. The role of double-strand break repair: insights from human genetics. Nat. Rev. Genet. 7:45–54 [Google Scholar]
  3. Lehnert S. 3.  2008. Biomolecular Action of Ionizing Radiation London: Taylor & Francis
  4. von Sonntag C. 4.  1987. The Chemical Basis of Radiation Biology London: Taylor & Francis
  5. Sevilla MD, Bernhard WA. 5.  2008. Mechanisms of direct radiation damage to DNA. Radiation Chemistry: From Basics to Applications in Material and Life Sciences M Spotheim-Maurizot, M Mostafavi, T Douki, J Belloni 191–201 Les Ulis, Fr.: EDP Sci. [Google Scholar]
  6. Uehara S, Nikjoo H, Goodhead DT. 6.  1999. Comparison and assessment of electron cross sections for Monte Carlo track structure codes. Radiat. Res. 152:202–13 [Google Scholar]
  7. Wishart JF, Rao BMS. 7.  2010. Recent Trends in Radiation Chemistry Singapore: World Sci.
  8. O'Neill P. 8.  2001. Radiation-induced damage in DNA. Radiation Chemistry: Present Status and Future Trends585–622 Amsterdam: Elsevier Sci. [Google Scholar]
  9. Michael BD, O'Neill PA. 9.  2000. A sting in the tail of electron tracks. Science 287:1603–4 [Google Scholar]
  10. Nguyen J, Ma Y, Luo T, Bristow RG, Jaffray DA, Lu QB. 10.  2011. Direct observation of ultrafast-electron-transfer reactions unravels high effectiveness of reductive DNA damage. Proc. Natl. Acad. Sci. USA 108:11778–83 [Google Scholar]
  11. Bald I, Illenberger E, Kopyra I. 11.  2012. Damage of DNA by low energy electrons (<3 eV). J. Phys. Conf. Ser. 373:012008 [Google Scholar]
  12. Märk TD, Hatano Y, Linder F. 12.  1995. Electron collision cross sections. Atomic and Molecular Data for Radiotherapy and Radiation Research163–275 IAEA-TECDOC-799 Vienna: Int. At. Energy Agency [Google Scholar]
  13. von Sonntag C. 13.  2006. Free-Radical-Induced DNA Damage and Its Repair: A Chemical Perspective Berlin: Springer-Verlag
  14. Pimblott SM, LaVerne JA. 14.  2007. Production of low-energy electrons by ionizing radiation. Phys. Chem. 76:1244–47 [Google Scholar]
  15. Boudaïffa B, Cloutier P, Hunting DJ, Huels MA, Sanche L. 15.  2000. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287:1658–60 [Google Scholar]
  16. Huels MA, Boudaïffa B, Cloutier P, Hunting DJ, Sanche L. 16.  2003. Single, double, and multiple double strand breaks induced in DNA by 3–100 eV electrons. J. Am. Chem. Soc. 125:4467–77 [Google Scholar]
  17. Alizadeh E, Sanz AG, Garcia G, Sanche L. 17.  2013. Radiation damage to DNA: the indirect effect of low-energy electrons. J. Phys. Chem. Lett. 4:820–25 [Google Scholar]
  18. Rezaee M, Alizadeh A, Hunting DJ, Sanche L. 18.  2014. A single ultra-low energy electron (0.5 eV) can induce a double strand break in DNA modified by platinum chemotherapeutic drugs. Chem. Med. Chem. 9:1145–49 [Google Scholar]
  19. Kopyra J, Keller A, Bald I. 19.  2014. On the role of fluoro-substituted nucleosides in DNA radiosensitization for tumor radiation therapy. RSC Adv. 4:6825–29 [Google Scholar]
  20. Zheng Y, Cloutier P, Hunting DJ, Sanche L. 20.  2008. Radiosensitization by gold nanoparticles: comparison of DNA damage induced by low and high-energy electrons. J. Biomed. Nanotechnol. 4:469–73 [Google Scholar]
  21. Sanche L. 21.  2009. Role of secondary low energy electrons in radiobiology and chemoradiation therapy of cancer. Chem. Phys. Lett. 474:1–6 [Google Scholar]
  22. Zheng Y, Hunting DJ, Ayotte P, Sanche L. 22.  2008. Role of secondary low-energy electrons in the concomitant chemoradiation therapy of cancer. Phys. Rev. Lett. 100:198101 [Google Scholar]
  23. Rezaee M, Hunting DJ, Sanche L. 23.  2013. New insights into the mechanism underlying the synergistic action of ionizing radiation with platinum chemotherapeutic drugs: the role of low-energy electrons. Int. J. Radiat. Oncol. Biol. Phys. 87:847–53 [Google Scholar]
  24. Rezaee M, Sanche L, Hunting DJ. 24.  2013. Cisplatin enhances the formation of DNA single- and double-strand breaks by hydrated electrons and hydroxyl radicals. Radiat. Res. 179:323–31 [Google Scholar]
  25. Tippayamontri T, Kobt R, Paquette B, Sanche L. 25.  2011. Cellular uptake and cytoplasm/DNA distribution of cisplatin and oxaliplatin and their liposomal formulation in human colorectal cancer cell HCT116. Investig. New Drugs 29:1321–27 [Google Scholar]
  26. Alizadeh E, Sanche L. 26.  2012. Precursors of solvated electrons in radiobiological physics and chemistry. Chem. Rev. 112:5578–602 [Google Scholar]
  27. Baccarelli I, Bald I, Gianturco FA, Illenberger E, Kopyra J. 27.  2011. Electron-induced damage of DNA and its components: experiments and theoretical models. Phys. Rep. 508:1–44 [Google Scholar]
  28. Sanche L. 28.  2009. Low-energy electron interaction with DNA: bond dissociation and formation of transient anions, radicals, and radical anions. Radical and Radical Ion Reactivity in Nucleic Acid Chemistry MM Greenberg 239–95 New York: Wiley [Google Scholar]
  29. Sanche L. 29.  2005. Low energy electron-driven damage in biomolecules. Eur. Phys. J. D 35:367–90 [Google Scholar]
  30. Gu J, Leszczynski J, Schaefer HF. 30.  2012. Interactions of electrons with bare and hydrated biomolecules: from nucleic acid bases to DNA segments. Chem. Rev. 112:5603–40 [Google Scholar]
  31. Arumainayagam CR, Lee H, Nelson RB, Haines DR, Gunawardane R. 31.  2010. Low-energy electron-induced reactions in condensed matter. Surf. Sci. Rep. 65:1–44 [Google Scholar]
  32. Zheng Y, Sanche L. 32.  2013. Low energy electrons in nanoscale radiation physics: relationship to radiosensitization and chemoradiation therapy. Rev. Nanosci. Nanotechnol. 2:1–28 [Google Scholar]
  33. Allan M. 33.  2007. Absolute angle-differential elastic and vibrational excitation cross sections for electron collisions with tetrahydrofuran. J. Phys. B 40:3531–44 [Google Scholar]
  34. Lévesque PL, Michaud M, Cho W, Sanche L. 34.  2005. Absolute electronic excitation cross sections for low-energy electron (5–12 eV) scattering from condensed thymine. J. Chem. Phys. 122:224704 [Google Scholar]
  35. Bazin M, Michaud M, Sanche L. 35.  2010. Absolute cross sections for electronic excitations of cytosine by low energy electron impact. J. Chem. Phys. 133:155104 [Google Scholar]
  36. Panajotović R, Michaud M, Sanche LL. 36.  2007. Cross sections for low-energy electron scattering from adenine in the condensed phase. Phys. Chem. Chem. Phys. 9:138–48 [Google Scholar]
  37. Keller A, Bald I, Rotaru A, Cauët E, Gothelf KV, Besenbacher F. 37.  2012. Probing electron-induced bond cleavage at the single-molecule level using DNA origami templates. ACS Nano 6:4392–99 [Google Scholar]
  38. Sidorov AN, Orlando TM. 38.  2013. Monolayer graphene platform for the study of DNA damage by low-energy electron irradiation. J. Phys. Chem. Lett. 4:2328–33 [Google Scholar]
  39. Han X, Klas M, Liu Y, Stack MS, Ptasińska S. 39.  2013. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets. Appl. Phys. Lett. 102:233703 [Google Scholar]
  40. Alizadeh E, Sanche L. 40.  2014. Low-energy-electron interactions with DNA: approaching cellular conditions with atmospheric experiments. Eur. Phys. J. D 68:97–110 [Google Scholar]
  41. Rosenberg RA, Symonds JM, Vijayalakshima K, Mishra D, Orlando TM, Naaman R. 41.  2014. The relationship between interfacial bonding and radiation damage in adsorbed DNA. Phys. Chem. Chem. Phys. 16:15319–25 [Google Scholar]
  42. Bald I, Langer J, Tegeder P, Ingólfsson O. 42.  2008. From isolated molecules through clusters and condensates to the building blocks of life. Int. J. Mass Spectrom. 277:4–25 [Google Scholar]
  43. Allan M. 43.  1989. Study of triplet states and short-lived negative ions by means of electron impact spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 48:219–351 [Google Scholar]
  44. Caron L, Sanche L. 44.  2012. Theoretical studies of electron interactions with DNA and its subunits. Low-Energy Electron Scattering from Molecules, Biomolecules and Surfaces P Čársky, R Čurik 161–230 Boca Raton, FL: CRC [Google Scholar]
  45. Lepage M, Letarte S, Michaud M, Motte-Tollet F, Hubin-Franskin MJ. 45.  et al. 1998. Electron spectroscopy of resonance-enhanced vibrational excitations of gaseous and solid tetrahydrofuran. J. Chem. Phys. 109:5980–86 [Google Scholar]
  46. Colyer CJ, Vizcaino V, Sullivan JP, Brunger MJ, Buckman SJ. 46.  2007. Absolute elastic cross-sections for low-energy electron scattering from tetrahydrofuran. New J. Phys. 9:41 [Google Scholar]
  47. Możejko P, Ptasińska-Denga E, Domaracka A, Szmytkowski C. 47.  2006. Absolute total cross-section measurements for electron collisions with tetrahydrofuran. Phys. Rev. A 74:012708 [Google Scholar]
  48. Milosavljević AR, Šević D, Marinković BP. 48.  2008. Electron interaction with deoxyribose analogue molecules in gaseous phase. J. Phys. Conf. Ser. 101:012014 [Google Scholar]
  49. Abdoul-Carime H, Cloutier P, Sanche L. 49.  2001. Low-energy (5–40 eV) electron-stimulated desorption of anions from physisorbed DNA bases. Radiat. Res. 155:625–33 [Google Scholar]
  50. Chen Y, Aleksandrov A, Orlando TM. 50.  2008. Probing low-energy electron induced DNA damage using single photon ionization mass spectrometry. Int. J. Mass Spectrom. 277:314–20 [Google Scholar]
  51. Schulz GJ. 51.  1973. Resonances in electron impact on diatomic molecules. Rev. Mod. Phys. 45:423–86 [Google Scholar]
  52. Christophorou LG, Olthoff JK. 52.  2004. Fundamental Electron Interactions with Plasma Processing Gases Dordrecht: Kluwer Acad.
  53. Read FJ. 53.  1977. A modified Rydberg formula. J. Phys. B 10:449–58 [Google Scholar]
  54. Mott NF, Massey HSW. 54.  1965. The Theory of Atomic Collisions Oxford: Clarendon, 3rd ed..
  55. Skalick T, Allan M. 55.  2004. The assignment of dissociative electron attachment bands in compounds containing hydroxyl and amino groups. J. Phys. B 37:4849–59 [Google Scholar]
  56. Ibănescu BC, Allan M. 56.  2009. Selective cleavage of the C–O bonds in alcohols and asymmetric ethers by dissociative electron attachment. Phys. Chem. Chem. Phys. 11:7640–48 [Google Scholar]
  57. Ibănescu BC, May O, Monney A, Allan M. 57.  2007. Electron-induced chemistry of alcohols. Phys. Chem. Chem. Phys. 9:3163–73 [Google Scholar]
  58. Ibănescu BC, May O, Allan M. 58.  2008. Differences in the cleavage of the ether bond by electron impact in linear ethers and in tetrahydrofuran. Phys. Chem. Chem. Phys. 10:1507–11 [Google Scholar]
  59. Ibănescu BC, Allan M. 59.  2008. A dramatic difference between the electron-driven dissociation of alcohols and ethers and its relation to Rydberg states. Phys. Chem. Chem. Phys. 10:5232–37 [Google Scholar]
  60. Jungen M, Vogt J, Staemmler V. 60.  1979. Feshbach resonances and dissociative electron attachment of H2O. Chem. Phys. 37:49–55 [Google Scholar]
  61. Kühn A, Fenzlaff HP, Illenberger E. 61.  1988. Formation and dissociation of negative ion resonances in methanol and allylalcohol. J. Chem. Phys. 88:7453–58 [Google Scholar]
  62. Curtis MG, Walker IC. 62.  1992. Dissociative electron attachment in water and methanol (5–14 eV). J. Chem. Soc. Faraday Trans. 88:2805–10 [Google Scholar]
  63. Prabhudesai VS, Kelkar AH, Nandi D, Krishnakumar E. 63.  2005. Functional group dependent site specific fragmentation of molecules by low energy electrons. Phys. Rev. Lett. 95:143202 [Google Scholar]
  64. Prabhudesai VS, Nandi D, Kelkar AH, Krishnakumar E. 64.  2008. Functional group dependent dissociative electron attachment to simple organic molecules. J. Chem. Phys. 128:154309 [Google Scholar]
  65. Prabhudesai VS, Ram NB, Aravind G, Rawat P, Krishnakumar E. 65.  2007. Probing site selective fragmentation of molecules containing hydroxyl group using Velocity Slice Imaging. J. Phys. Conf. Ser. 80:012016 [Google Scholar]
  66. Orzol M, Martin I, Kocisek J, Dabkowska I, Langer J, Illenberger E. 66.  2007. Bond and site selectivity in dissociative electron attachment to gas phase and condensed phase ethanol and trifluoroethanol. Phys. Chem. Chem. Phys. 9:3424–31 [Google Scholar]
  67. Kumar A, Sevilla MD. 67.  2009. Theoretical modeling of radiation-induced DNA damage. Radical and Radical Ion Reactivity in Nucleic Acid Chemistry MM Greenberg 1–40 New York: Wiley [Google Scholar]
  68. Kumar A, Sevilla MD. 68.  2008. The role of πσ* excited states in electron-induced DNA strand break formation: a time-dependent density functional theory study. J. Am. Chem. Soc. 130:2130–31 [Google Scholar]
  69. Martin F, Burrow PD, Cai Z, Cloutier P, Hunting DJ, Sanche L. 69.  2004. DNA strand breaks induced by 0–4 eV electrons: the role of shape resonances. Phys. Rev. Lett. 93:068101 [Google Scholar]
  70. Li X, Sevilla MD, Sanche L. 70.  2003. Density functional theory studies of electron interaction with DNA: Can zero eV electrons induce strand breaks?. J. Am. Chem. Soc. 125:13668–69 [Google Scholar]
  71. Zheng Y, Cloutier P, Hunting DJ, Sanche L, Wagner JR. 71.  2005. Chemical basis of DNA sugar-phosphate cleavage by low-energy electrons. J. Am. Chem. Soc. 127:16592–98 [Google Scholar]
  72. Barrios R, Skurski P, Simons J. 72.  2002. Mechanism for damage to DNA by low-energy electrons. J. Phys. Chem. B 106:7991–94 [Google Scholar]
  73. Berdys J, Anusiewicz I, Skurski P, Simons J. 73.  2004. Damage to model DNA fragments from very low-energy (<1 eV) electrons. J. Am. Chem. Soc. 126:6441–47 [Google Scholar]
  74. Berdys J, Skurski P, Simons J. 74.  2004. Damage to model DNA fragments by 0.25–1.0 eV electrons attached to a thymine π* orbital. J. Phys. Chem. B 108:5800–5 [Google Scholar]
  75. Berdys J, Anusiewicz I, Skurski P, Simons J. 75.  2004. Theoretical study of damage to DNA by 0.2–1.5 eV electrons attached to cytosine. J. Phys. Chem. A 108:2999–3005 [Google Scholar]
  76. Smyth M, Kohanoff J. 76.  2011. Excess electron localization in solvated DNA bases. Phys. Rev. Lett. 106:238108 [Google Scholar]
  77. Dabkowska I, Rak J, Gutowski M. 77.  2005. DNA strand breaks induced by concerted interaction of H radicals and low-energy electrons. Eur. Phys. J. D 35:429–35 [Google Scholar]
  78. Zheng Y, Wagner JR, Sanche L. 78.  2006. DNA damage induced by low-energy electrons: electron transfer and diffraction. Phys. Rev. Lett. 96:208101 [Google Scholar]
  79. Caron LG, Sanche L. 79.  2005. Diffraction in resonant electron scattering from helical macromolecules: effects of the DNA backbone. Phys. Rev. A 72:032726 [Google Scholar]
  80. Caron LG, Sanche L. 80.  2003. Low-energy electron diffraction and resonances in DNA and other helical macromolecules. Phys. Rev. Lett. 91:113201 [Google Scholar]
  81. Li Z, Zheng Y, Cloutier P, Sanche L, Wagner JR. 81.  2008. Low energy electron induced DNA damage: effects of terminal phosphate and base moieties on the distribution of damage. J. Am. Chem. Soc. 130:5612–13 [Google Scholar]
  82. Park Y, Li Z, Cloutier P, Sanche L, Wagner JR. 82.  2010. DNA damage induced by low-energy electrons: conversion of thymine to 5,6-dihydrothymine in the oligonucleotide trimer TpTpT. Radiat. Res. 175:240–46 [Google Scholar]
  83. Li Z, Cloutier P, Sanche L, Wagner JR. 83.  2011. Low-energy electron-induced damage in a trinucleotide containing 5-bromouracil. J. Phys. Chem. B 115:13668–73 [Google Scholar]
  84. Ptasińska S, Denifl S, Grill V, Märk TD, Scheier P. 84.  et al. 2005. Bond-selective H-ion abstraction from thymine. Angew. Chem. Int. Ed. Engl. 44:1647–50 [Google Scholar]
  85. Abdoul-Carime H, Langer J, Huels MA, Illenberger E. 85.  2005. Decomposition of purine nucleobases by very low energy electrons. Eur. Phys. J. D 35:399–404 [Google Scholar]
  86. Denifl S, Ptasińska S, Cingel M, Matejcik S, Scheier P, Märk TD. 86.  2003. Electron attachment to the DNA bases thymine and cytosine. Chem. Phys. Lett. 377:74–80 [Google Scholar]
  87. Denifl S, Ptasińska S, Probst M, Hrušák J, Scheier P, Märk TD. 87.  2004. Electron attachment to the gas-phase DNA bases cytosine and thymine. J. Phys. Chem. A 108:6562–69 [Google Scholar]
  88. Denifl S, Zappa F, Mähr I, Lecointre J, Probst M. 88.  et al. 2006. Mass spectrometric investigation of anions formed upon free electron attachment to nucleobase molecules and clusters embedded in superfluid helium droplets. Phys. Rev. Lett. 97:043201 [Google Scholar]
  89. Huber D, Beikircher M, Denifl S, Zappa F, Matejcik S. 89.  et al. 2006. High resolution dissociative electron attachment to gas phase adenine. J. Chem. Phys. 125:084304 [Google Scholar]
  90. Ptasińska S, Denifl S, Grill V, Märk TD, Illenberger E, Scheier P. 90.  2005. Bond- and site-selective loss of H from pyrimidine bases. Phys. Rev. Lett. 95:093201 [Google Scholar]
  91. Ptasińska S, Denifl S, Mróz B, Probst M, Grill V. 91.  et al. 2005. Bond selective dissociative electron attachment to thymine. J. Chem. Phys. 123:124302 [Google Scholar]
  92. Ptasińska S, Sanche L. 92.  2006. On the mechanism of anion desorption from DNA induced by low energy electrons. J. Chem. Phys. 125:144713 [Google Scholar]
  93. Ptasińska S, Sanche L. 93.  2007. Dissociative electron attachment to abasic DNA. Phys. Chem. Chem. Phys. 9:1730–35 [Google Scholar]
  94. Boulanouar O, Fromm M, Bass AD, Cloutier P, Sanche L. 94.  2013. Dissociative electron attachment to DNA-diamine thin films: impact of the DNA close environment on the OH and O decay channels. J. Chem. Phys. 139:055104 [Google Scholar]
  95. Zheng Y, Cloutier P, Hunting DJ, Wagner JR, Sanche L. 95.  2006. Phosphodiester and N-glycosidic bond cleavage in DNA induced by 4–15 eV electrons. J. Chem. Phys. 124:064710 [Google Scholar]
  96. Pan X, Cloutier P, Hunting DJ, Sanche L. 96.  2003. Dissociative electron attachment to DNA. Phys. Rev. Lett. 90:208102 [Google Scholar]
  97. Luo X, Zheng Y, Sanche L. 97.  2014. DNA strand breaks and crosslinks induced by transient anions in the range 2–20 eV. J. Chem. Phys. 140:155101 [Google Scholar]
  98. Orlando TM, Oh D, Chen Y, Aleksandrov A. 98.  2008. Low-energy electron diffraction and induced damage in hydrated DNA. J. Chem. Phys. 128:195102 [Google Scholar]
  99. Kumar S, Pota T, Peri D, Dongre A, Rao B. 99.  2012. Low energy electron induced damage to plasmid DNA pQE30. J. Chem. Phys. 137:045101 [Google Scholar]
  100. Abdoul-Carime H, Cloutier P, Sanche L. 100.  2001. Low-energy (5–40 eV) electron-stimulated desorption of anions from physisorbed DNA bases. Radiat. Res. 155:625–33 [Google Scholar]
  101. Ptasińska S, Denifl S, Scheier P, Illenberger E, Märk TD. 101.  2005. Bond- and site-selective loss of H atoms from nucleobases by very-low-energy electrons (<3 eV). Angew. Chem. Int. Ed. Engl. 44:6941–43 [Google Scholar]
  102. Ptasińska S, Denifl S, Gohlke S, Scheier P, Illenberger E, Märk TD. 102.  2006. Decomposition of thymidine by low-energy electrons: implications for the molecular mechanisms of single-strand breaks in DNA. Angew. Chem. Int. Ed. Engl. 45:1893–96 [Google Scholar]
  103. Burrow PD, Gallup GA, Scheer AM, Denifl S, Ptasińska S. 103.  et al. 2006. Vibrational Feshbach resonances in uracil and thymine. J. Chem. Phys. 124:124310 [Google Scholar]
  104. Bao Q, Chen Y, Zheng Y, Sanche L. 104.  2014. Cisplatin radiosensitization of DNA irradiated with 2–20 eV electrons: role of transient anions. J. Phys. Chem. C 118:15516–24 [Google Scholar]
  105. Solomun T, Skalicky T. 105.  2008. The interaction of a protein–DNA surface complex with low-energy electrons. Chem. Phys. Lett. 453:101–4 [Google Scholar]
  106. Ptasińska S, Sanche L. 106.  2007. Dissociative electron attachment to hydrated single DNA strands. Phys. Rev. E 75:031915 [Google Scholar]
  107. Falk M, Hartman KA, Lord RC. 107.  1963. Hydration of deoxyribonucleic acid. II. An infrared study. J. Am. Chem. Soc. 85:387–91 [Google Scholar]
  108. Grieves GA, McLain JL, Orlando TM. 108.  2011. Low-energy electron-stimulated reactions in nanoscale water films and water-DNA interfaces. Charged Particle and Photon Interactions with Matter: Recent Advances, Applications, and Interfaces Y Hatano, Y Katsumura, A Mozumder 473–501 Boca Raton, FL: CRC [Google Scholar]
  109. Alizadeh E, Cloutier P, Hunting DJ, Sanche L. 109.  2011. Soft X-ray and low energy electron-induced damage to DNA under N2 and O2 atmospheres. J. Phys. Chem. B 115:4523–31 [Google Scholar]
  110. Alizadeh E, Sanche L. 110.  2013. The role of humidity and oxygen level on damage to DNA induced by soft X-rays and low-energy electrons. J. Phys. Chem. C 117:22445–53 [Google Scholar]
  111. Alizadeh E, Sanz AG, Madugundu GS, Garcia G, Wagner JR, Sanche L. 111.  2014. Thymidine decomposition induced by low-energy electrons and soft X-rays under N2 and O2 atmospheres. Radiat. Res. 181:629–40 [Google Scholar]
  112. Gokhberg K, Kolorenč P, Kuleff AI, Cederbaum LS. 112.  2014. Site- and energy-selective slow-electron production through intermolecular Coulombic decay. Nature 505:661–63 [Google Scholar]
  113. Cederbaum LS, Zobeley J, Tarantelli F. 113.  1997. Giant intermolecular decay and fragmentation of clusters. Phys. Rev. Lett. 79:4778–81 [Google Scholar]
  114. Santra R, Zobeley J, Cederbaum LS, Moiseyev N. 114.  2000. Interatomic coulombic decay in van der Waals clusters and impact of nuclear motion. Phys. Rev. Lett. 85:4490–93 [Google Scholar]
  115. Mucke M, Braune M, Barth S, Förstel M, Lischke T. 115.  et al. 2010. A hitherto unrecognized source of low-energy electrons in water. Nat. Phys. 6:143–46 [Google Scholar]
  116. Grieves GA, Orlando TM. 116.  2011. Intermolecular coulomb decay at weakly coupled heterogeneous interfaces. Phys. Rev. Lett. 107:016104 [Google Scholar]
  117. Hergenhan U. 117.  2012. Production of low kinetic energy electrons and energetic ion pairs by Intermolecular Coulombic Decay. Int. J. Radiat. Biol. 88:871–83 [Google Scholar]
  118. Kouass Sahbani S, Sanche L, Cloutier P, Bass AD, Hunting DJ. 118.  2014. Loss of cellular transformation efficiency induced by DNA irradiation with low-energy (10 eV) electrons. J. Phys. Chem. B 11813123–31
  119. Kouass Sahbani S, Girouard S, Cloutier P, Sanche L, Hunting DJ. 119.  2014. The relative contributions of DNA strand breaks, base damage and clustered lesions to the loss of DNA functionality induced by ionizing radiation. Radiat. Res. 181:99–110 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040513-103605
Loading
/content/journals/10.1146/annurev-physchem-040513-103605
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error