1932

Abstract

Two-dimensional electronic spectroscopy (2DES) reveals connections between an optical excitation at a given frequency and the signals it creates over a wide range of frequencies. These connections, manifested as cross-peak locations and their lineshapes, reflect the underlying electronic and vibrational structure of the system under study. How these spectroscopic signatures evolve in time reveals the system dynamics and provides a detailed picture of coherent and incoherent processes. 2DES is rapidly maturing and has already found numerous applications, including studies of photosynthetic energy transfer and photochemical reactions and many-body interactions in nanostructured materials. Many systems of interest contain electronic transitions spanning the ultraviolet to the near infrared and beyond. Most 2DES measurements to date have explored a relatively small frequency range. We discuss the challenges of implementing 2DES and compare and contrast different approaches in terms of their information content, ease of implementation, and potential for broadband measurements.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040513-103623
2015-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/physchem/66/1/annurev-physchem-040513-103623.html?itemId=/content/journals/10.1146/annurev-physchem-040513-103623&mimeType=html&fmt=ahah

Literature Cited

  1. Porter G. 1.  1950. Flash photolysis and spectroscopy: a new method for the study of free radical reactions. Proc. R. Soc. Lond. A 200:284–300 [Google Scholar]
  2. Porter G, Topp MR. 2.  1968. Nanosecond flash photolysis and absorption spectra of singlet excited states. Nature 220:1228–29 [Google Scholar]
  3. Mukamel S. 3.  1995. Principles of Nonlinear Optics and Spectroscopy New York: Oxford Univ. Press
  4. Cho M. 4.  2009. Two-Dimensional Optical Spectroscopy Boca Raton, FL: CRC378
  5. Hamm P, Zanni MT. 5.  2011. Concepts and Methods of 2D Infrared Spectroscopy Cambridge, UK: Cambridge Univ. Press286
  6. Lepetit L, Joffre M. 6.  1996. Two-dimensional nonlinear optics using Fourier-transform spectral interferometry. Opt. Lett. 21:564–66 [Google Scholar]
  7. Likforman JP, Joffre M, Thierry-Mieg V. 7.  1997. Measurement of photon echoes by use of femtosecond Fourier-transform spectral interferometry. Opt. Lett. 22:1104–6 [Google Scholar]
  8. Hybl JD, Albrecht AW, Faeder SMG, Jonas DM. 8.  1998. Two-dimensional electronic spectroscopy. Chem. Phys. Lett. 297:307–13 [Google Scholar]
  9. Hamm P, Lim MH, Hochstrasser RM. 9.  1998. Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy. J. Phys. Chem. B 102:6123–38 [Google Scholar]
  10. Jonas DM. 10.  2003. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54:425–63 [Google Scholar]
  11. Mukamel S, Tanimura Y, Hamm P. 11.  2009. Coherent multidimensional optical spectroscopy. Acc. Chem. Res. 42:1207–9 [Google Scholar]
  12. Abramavicius D, Palmieri B, Voronine DV, Sanda F, Mukamel S. 12.  2009. Coherent multidimensional optical spectroscopy of excitons in molecular aggregates: quasiparticle versus supermolecule perspectives. Chem. Rev. 109:2350–408 [Google Scholar]
  13. Ganim Z, Chung HS, Smith AW, DeFlores LP, Jones KC, Tokmakoff A. 13.  2008. Amide I two-dimensional infrared spectroscopy of proteins. Acc. Chem. Res. 41:432–41 [Google Scholar]
  14. Ginsberg NS, Cheng YC, Fleming GR. 14.  2009. Two-dimensional electronic spectroscopy of molecular aggregates. Acc. Chem. Res. 42:1352–63 [Google Scholar]
  15. Ogilvie JP, Kubarych KJ. 15.  2009. Multidimensional electronic and vibrational spectroscopy: an ultrafast probe of molecular relaxation and reaction dynamics. Adv. At. Mol. Opt. Phys. 57:249–321 [Google Scholar]
  16. Cho MH. 16.  2008. Coherent two-dimensional optical spectroscopy. Chem. Rev. 108:1331–418 [Google Scholar]
  17. Tseng CH, Matsika S, Weinacht TC. 17.  2009. Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet. Opt. Express 17:18788–93 [Google Scholar]
  18. Krebs N, Pugliesi I, Hauer J, Riedle E. 18.  2013. Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe. New J. Phys. 15:085016 [Google Scholar]
  19. Selig U, Schleussner CF, Foerster M, Langhojer F, Nuernberger P, Brixner T. 19.  2010. Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry. Opt. Lett. 35:4178–80 [Google Scholar]
  20. Widom JR, Johnson NP, von Hippel PH, Marcus AH. 20.  2013. Solution conformation of 2-aminopurine dinucleotide determined by ultraviolet two-dimensional fluorescence spectroscopy. New J. Phys. 15:025028 [Google Scholar]
  21. Westenhoff S, Palecek D, Edlund P, Smith PWE, Zigmantas D. 21.  2012. Coherent picosecond exciton dynamics in a photosynthetic reaction center. J. Am. Chem. Soc. 134:16484–87 [Google Scholar]
  22. West BA, Giokas PG, Molesky BP, Ross AD, Moran AM. 22.  2013. Toward two-dimensional photon echo spectroscopy with 200 nm laser pulses. Opt. Express 21:2118–25 [Google Scholar]
  23. Prokhorenko V, Picchiotti A, Maneshi S, Miller RJD. 23.  2015. Broadband electronic two-dimensional spectroscopy in the deep UV. Proc. 19th Int. Conf. Ultrafast Phenom. New York: Springer [Google Scholar]
  24. Brixner T, Stenger J, Vaswani HM, Cho M, Blankenship RE, Fleming GR. 24.  2005. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434:625–28 [Google Scholar]
  25. Read EL, Engel GS, Calhoun TR, Mancal T, Ahn TK. 25.  et al. 2007. Cross-peak-specific two-dimensional electronic spectroscopy. Proc. Natl. Acad. Sci. USA 104:14203–8 [Google Scholar]
  26. Ostroumov EE, Mulvaney RM, Cogdell RJ, Scholes GD. 26.  2013. Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria. Science 340:52–56 [Google Scholar]
  27. Collini E, Wong CY, Wilk KE, Curmi PMG, Brumer P, Scholes GD. 27.  2010. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463:644–47 [Google Scholar]
  28. West BA, Womick JM, McNeil LE, Tan KJ, Moran AM. 28.  2011. Influence of vibronic coupling on band structure and exciton self-trapping in α-perylene. J. Phys. Chem. B 115:5157–67 [Google Scholar]
  29. Fuller FD, Pan J, Butkus V, Gelzinis A, Senlik S. 29.  et al. 2014. Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6:706–11 [Google Scholar]
  30. Myers JA, Lewis KLM, Fuller FD, Tekavec PF, Yocum CF, Ogilvie JP. 30.  2010. Two-dimensional electronic spectroscopy of the D1-D2-cyt b559 photosystem II reaction center complex. J. Phys. Chem. Lett. 1:2774–80 [Google Scholar]
  31. Ruetzel S, Diekmann M, Nuernberger P, Walter C, Engels B, Brixner T. 31.  2014. Multidimensional spectroscopy of photoreactivity. Proc. Natl. Acad. Sci. USA 111:4764–69 [Google Scholar]
  32. Ruetzel S, Kullmann M, Buback J, Nuernberger P, Brixner T. 32.  2013. Tracing the steps of photoinduced chemical reactions in organic molecules by coherent two-dimensional electronic spectroscopy using triggered exchange. Phys. Rev. Lett. 110:148305 [Google Scholar]
  33. Milota F, Prokhorenko VI, Mancal T, von Berlepsch H, Bixner O. 33.  et al. 2013. Vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular J-aggregates. J. Phys. Chem. A 117:6007–14 [Google Scholar]
  34. Bixner O, Lukes V, Mancal T, Hauer J, Milota F. 34.  et al. 2012. Ultrafast photo-induced charge transfer unveiled by two-dimensional electronic spectroscopy. J. Chem. Phys. 136:204503 [Google Scholar]
  35. Christensson N, Milota F, Nemeth A, Sperling J, Kauffmann HF. 35.  et al. 2009. Two-dimensional electronic spectroscopy of β-carotene. J. Phys. Chem. B 113:16409–19 [Google Scholar]
  36. Lott GA, Perdomo-Ortiz A, Utterback JK, Widom JR, Aspuru-Guzik A, Marcus AH. 36.  2011. Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy. Proc. Natl. Acad. Sci. USA 108:16521–26 [Google Scholar]
  37. Tekavec PF, Lott GA, Marcus AH. 37.  2007. Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation. J. Chem. Phys. 127:214307 [Google Scholar]
  38. Dai XC, Richter M, Li HB, Bristow AD, Falvo C. 38.  et al. 2012. Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor. Phys. Rev. Lett. 108:193201 [Google Scholar]
  39. Karaiskaj D, Bristow AD, Yang LJ, Dai XC, Mirin RP. 39.  et al. 2010. Two-quantum many-body coherences in two-dimensional Fourier-transform spectra of exciton resonances in semiconductor quantum wells. Phys. Rev. Lett. 104:117401 [Google Scholar]
  40. Turner DB, Nelson KA. 40.  2010. Coherent measurements of high-order electronic correlations in quantum wells. Nature 466:1089–92 [Google Scholar]
  41. Stone KW, Gundogdu K, Turner DB, Li XQ, Cundiff ST, Nelson KA. 41.  2009. Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells. Science 324:1169–73 [Google Scholar]
  42. Caram JR, Zheng HB, Dahlberg PD, Rolczynski BS, Griffin GB. 42.  et al. 2014. Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy. J. Chem. Phys. 140:084701 [Google Scholar]
  43. Panitchayangkoon G, Hayes D, Fransted KA, Caram JR, Harel E. 43.  et al. 2010. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl. Acad. Sci. USA 107:12766–70 [Google Scholar]
  44. Wells KL, Lambrev PH, Zhang ZY, Garab G, Tan HS. 44.  2014. Pathways of energy transfer in LHCII revealed by room-temperature 2D electronic spectroscopy. Phys. Chem. Chem. Phys. 16:11640–46 [Google Scholar]
  45. Dostal J, Mancal T, Augulis R, Vacha F, Psencik J, Zigmantas D. 45.  2012. Two-dimensional electronic spectroscopy reveals ultrafast energy diffusion in chlorosomes. J. Am. Chem. Soc. 134:11611–17 [Google Scholar]
  46. Halpin A, Johnson PJM, Tempelaar R, Murphy RS, Knoester J. 46.  et al. 2014. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. Nat. Chem. 6:196–201 [Google Scholar]
  47. Kim YS, Liu L, Axelsen PH, Hochstrasser RM. 47.  2009. 2D IR provides evidence for mobile water molecules in β-amyloid fibrils. Proc. Natl. Acad. Sci. USA 106:17751–56 [Google Scholar]
  48. Rosenfeld DE, Gengeliczki Z, Smith BJ, Stack TDP, Fayer MD. 48.  2011. Structural dynamics of a catalytic monolayer probed by ultrafast 2D IR vibrational echoes. Science 334:634–39 [Google Scholar]
  49. Zheng JR, Kwak KW, Xie J, Fayer MD. 49.  2006. Ultrafast carbon-carbon single-bond rotational isomerization in room-temperature solution. Science 313:1951–55 [Google Scholar]
  50. Roberts ST, Petersen PB, Ramasesha K, Tokmakoff A, Ufimtsev IS, Martinez TJ. 50.  2009. Observation of a Zundel-like transition state during proton transfer in aqueous hydroxide solutions. Proc. Natl. Acad. Sci. USA 106:15154–59 [Google Scholar]
  51. Chung HS, Ganim Z, Jones KC, Tokmakoff A. 51.  2007. Transient 2D IR spectroscopy of ubiquitin unfolding dynamics. Proc. Natl. Acad. Sci. USA 104:14237–42 [Google Scholar]
  52. Cowan ML, Bruner BD, Huse N, Dwyer JR, Chugh B. 52.  et al. 2005. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature 434:199–202 [Google Scholar]
  53. King JT, Arthur EJ, Brooks CL, Kubarych KJ. 53.  2014. Crowding induced collective hydration of biological macromolecules over extended distances. J. Am. Chem. Soc. 136:188–94 [Google Scholar]
  54. King JT, Ross MR, Kubarych KJ. 54.  2012. Ultrafast α-like relaxation of a fragile glass-forming liquid measured using two-dimensional infrared spectroscopy. Phys. Rev. Lett. 108:157401 [Google Scholar]
  55. Anna JM, Kubarych KJ. 55.  2010. Watching solvent friction impede ultrafast barrier crossings: a direct test of Kramers theory. J. Chem. Phys. 133:174506 [Google Scholar]
  56. Kolano C, Helbing J, Kozinski M, Sander W, Hamm P. 56.  2006. Watching hydrogen-bond dynamics in a β-turn by transient two-dimensional infrared spectroscopy. Nature 444:469–72 [Google Scholar]
  57. Bredenbeck J, Helbing J, Kumita JR, Woolley GA, Hamm P. 57.  2005. α-Helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time-resolved IR spectroscopy. Proc. Natl. Acad. Sci. USA 102:2379–84 [Google Scholar]
  58. Woerner M, Kuehn W, Bowlan P, Reimann K, Elsaesser T. 58.  2013. Ultrafast two-dimensional terahertz spectroscopy of elementary excitations in solids. New J. Phys. 15:025039 [Google Scholar]
  59. Kuehn W, Reimann K, Woerner M, Elsaesser T, Hey R. 59.  2011. Two-dimensional terahertz correlation spectra of electronic excitations in semiconductor quantum wells. J. Phys. Chem. B 115:5448–55 [Google Scholar]
  60. Kovalenko SA, Dobryakov AL, Ruthmann J, Ernsting NP. 60.  1999. Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing. Phys. Rev. A 59:2369–84 [Google Scholar]
  61. Alfano RR. 61.  2006. The Supercontinuum Laser Source New York: Springer
  62. Tian PF, Keusters D, Suzaki Y, Warren WS. 62.  2003. Femtosecond phase-coherent two-dimensional spectroscopy. Science 300:1553–55 [Google Scholar]
  63. Fuller FD, Wilcox DE, Ogilvie JP. 63.  2014. Pulse shaping based two-dimensional electronic spectroscopy in a background free geometry. Opt. Express 22:1018–27 [Google Scholar]
  64. Bakulin AA, Liang C, Jansen TL, Wiersma DA, Bakker HJ, Pshenichnikov MS. 64.  2009. Hydrophobic solvation: a 2D IR spectroscopic inquest. Acc. Chem. Res. 42:1229–38 [Google Scholar]
  65. Hybl JD, Christophe Y, Jonas DM. 65.  2001. Peak shapes in femtosecond 2D correlation spectroscopy. Chem. Phys. 266:295–309 [Google Scholar]
  66. Engel GS, Calhoun TR, Read EL, Ahn TK, Mancal T. 66.  et al. 2007. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–86 [Google Scholar]
  67. Ishizaki A, Fleming GR. 67.  2012. Quantum coherence in photosynthetic light harvesting. Annu. Rev. Condens. Matter Phys. 3:333–61 [Google Scholar]
  68. Chenu A, Christensson N, Kauffmann HF, Mancal T. 68.  2013. Enhancement of vibronic and ground-state vibrational coherences in 2D spectra of photosynthetic complexes. Sci. Rep. 3:2029 [Google Scholar]
  69. Christensson N, Kauffmann HF, Pullerits T, Mancal T. 69.  2012. Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116:7449–54 [Google Scholar]
  70. Turner DB, Dinshaw R, Lee KK, Belsley MS, Wilk KE. 70.  et al. 2012. Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. Phys. Chem. Chem. Phys. 14:4857–74 [Google Scholar]
  71. Womick JM, Moran AM. 71.  2011. Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes. J. Phys. Chem. B 115:1347–56 [Google Scholar]
  72. Butkus V, Valkunas L, Abramavicius D. 72.  2014. Vibronic phenomena and exciton-vibrational interference in two-dimensional spectra of molecular aggregates. J. Chem. Phys. 140:034306 [Google Scholar]
  73. Butkus V, Zigmantas D, Abramavicius D, Valkunas L. 73.  2013. Distinctive character of electronic and vibrational coherences in disordered molecular aggregates. Chem. Phys. Lett. 587:93–98 [Google Scholar]
  74. Butkus V, Zigmantas D, Valkunas L, Abramavicius D. 74.  2012. Vibrational versus electronic coherences in 2D spectrum of molecular systems. Chem. Phys. Lett. 545:40–43 [Google Scholar]
  75. Tiwari V, Peters WK, Jonas DM. 75.  2013. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl. Acad. Sci. USA 110:1203–8 [Google Scholar]
  76. Romero E, Augulis R, Novoderezhkin VI, Ferretti M, Thieme J. 76.  et al. 2014. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10:676–82 [Google Scholar]
  77. Volkov V, Schanz R, Hamm P. 77.  2005. Active phase stabilization in Fourier-transform two-dimensional infrared spectroscopy. Opt. Lett. 30:2010–12 [Google Scholar]
  78. Levenson MD, Eesley GL. 78.  1979. Polarization selective optical heterodyne detection for dramatically improved sensitivity in laser spectroscopy. Appl. Phys. 19:1–17 [Google Scholar]
  79. Lepetit L, Cheriaux G, Joffre M. 79.  1995. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B 12:2467–74 [Google Scholar]
  80. de Boeij WP, Pshenichnikov MS, Wiersma DA. 80.  1998. Heterodyne-detected stimulated photon echo: applications to optical dynamics in solution. Chem. Phys. 233:287–309 [Google Scholar]
  81. Goodno GD, Dadusc G, Miller RJD. 81.  1998. Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics. J. Opt. Soc. Am. B 15:1791–94 [Google Scholar]
  82. Dadusc G, Ogilvie JP, Schulenberg P, Marvet U, Miller RJD. 82.  2001. Diffractive optics-based heterodyne-detected four-wave mixing signals of protein motion: from “protein quakes” to ligand escape for myoglobin. Proc. Natl. Acad. Sci. USA 98:6110–15 [Google Scholar]
  83. Ogilvie JP, Plazanet M, Dadusc G, Miller RJD. 83.  2002. Dynamics of ligand escape in myoglobin: Q-band transient absorption and four-wave mixing studies. J. Phys. Chem. B 106:10460–67 [Google Scholar]
  84. Milota F, Lincoln CN, Hauer J. 84.  2013. Precise phasing of 2D-electronic spectra in a fully non-collinear phase-matching geometry. Opt. Express 21:15904–11 [Google Scholar]
  85. Bristow AD, Karaiskaj D, Dai XC, Cundiff ST. 85.  2008. All-optical retrieval of the global phase for two-dimensional Fourier-transform spectroscopy. Opt. Express 16:18017–27 [Google Scholar]
  86. Backus EHG, Garrett-Roe S, Hamm P. 86.  2008. Phasing problem of heterodyne-detected two-dimensional infrared spectroscopy. Opt. Lett. 33:2665–67 [Google Scholar]
  87. Gallagher SM, Albrecht AW, Hybl TD, Landin BL, Rajaram B, Jonas DM. 87.  1998. Heterodyne detection of the complete electric field of femtosecond four-wave mixing signals. J. Opt. Soc. Am. B 15:2338–45 [Google Scholar]
  88. Bristow AD, Karaiskaj D, Dai X, Zhang T, Carlsson C. 88.  et al. 2009. A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy. Rev. Sci. Instrum. 80:073108 [Google Scholar]
  89. Maznev AA, Nelson KA, Rogers TA. 89.  1998. Optical heterodyne detection of laser-induced gratings. Opt. Lett. 23:1319–21 [Google Scholar]
  90. Kubarych KJ, Milne CJ, Lin S, Astinov V, Miller RJD. 90.  2002. Diffractive optics-based six-wave mixing: heterodyne detection of the full χ(5) tensor of liquid CS2. J. Chem. Phys. 116:2016–42 [Google Scholar]
  91. Kubarych KJ, Milne CJ, Miller RJD. 91.  2003. Fifth-order two-dimensional Raman spectroscopy: a new direct probe of the liquid state. Int. Rev. Phys. Chem. 22:497–532 [Google Scholar]
  92. Cowan ML, Ogilvie JP, Miller RJD. 92.  2004. Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes. Chem. Phys. Lett. 386:184–89 [Google Scholar]
  93. Ogilvie JP, Cowan ML, Armstrong M, Nagy A, Miller RJD. 93.  2002. Diffractive optics-based heterodyne detected three-pulse photon echo. Ultrafast Phenomena XIII: Proc. 13th Int. Conf. RJD Miller, MM Murnane, NF Scherer, AM Weiner 571–73 New York: Springer [Google Scholar]
  94. Brixner T, Stiopkin IV, Fleming GR. 94.  2004. Tunable two-dimensional femtosecond spectroscopy. Opt. Lett. 29:884–86 [Google Scholar]
  95. Brixner T, Mancal T, Stiopkin IV, Fleming GR. 95.  2004. Phase-stabilized two-dimensional electronic spectroscopy. J. Chem. Phys. 121:4221–36 [Google Scholar]
  96. Prokhorenko VI, Halpin A, Miller RJD. 96.  2009. Coherently-controlled two-dimensional photon echo electronic spectroscopy. Opt. Express 17:9764–79 [Google Scholar]
  97. Prokhorenko VI, Nagy AM, Miller RJD. 97.  2005. Coherent control of the population transfer in complex solvated molecules at weak excitation: an experimental study. J. Chem. Phys. 122:184502 [Google Scholar]
  98. Nemeth A, Sperling J, Hauer J, Kauffmann HF, Milota F. 98.  2009. Compact phase-stable design for single- and double-quantum two-dimensional electronic spectroscopy. Opt. Lett. 34:3301–3 [Google Scholar]
  99. Augulis R, Zigmantas D. 99.  2011. Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance. Opt. Express 19:13126–33 [Google Scholar]
  100. Selig U, Langhojer F, Dimler F, Lohrig T, Schwarz C. 100.  et al. 2008. Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics. Opt. Lett. 33:2851–53 [Google Scholar]
  101. Heisler IA, Moca R, Camargo FVA, Meech SR. 101.  2014. Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition. Rev. Sci. Instrum. 85:063103 [Google Scholar]
  102. Zhang YZ, Meyer K, Ott C, Pfeifer T. 102.  2013. Passively phase-stable, monolithic, all-reflective two-dimensional electronic spectroscopy based on a four-quadrant mirror. Opt. Lett. 38:356–58 [Google Scholar]
  103. Vaughan JC, Hornung T, Stone KW, Nelson KA. 103.  2007. Coherently controlled ultrafast four-wave mixing spectroscopy. J. Phys. Chem. A 111:4873–83 [Google Scholar]
  104. Zheng HB, Caram JR, Dahlberg PD, Rolczynski BS, Viswanathan S. 104.  et al. 2014. Dispersion-free continuum two-dimensional electronic spectrometer. Appl. Opt. 53:1909–17 [Google Scholar]
  105. Aue WP, Bartholdi E, Ernst RR. 105.  1976. Two-dimensional spectroscopy: application to nuclear magnetic resonance. J. Chem. Phys. 64:2229–46 [Google Scholar]
  106. Keusters D, Tan HS, Warren WS. 106.  1999. Role of pulse phase and direction in two-dimensional optical spectroscopy. J. Phys. Chem. A 103:10369–80 [Google Scholar]
  107. Turner DB, Stone KW, Gundogdu K, Nelson KA. 107.  2011. Invited article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier. Rev. Sci. Instrum. 82:081301 [Google Scholar]
  108. Stone KW, Turner DB, Gundogdu K, Cundiff ST, Nelson KA. 108.  2009. Exciton-exciton correlations revealed by two-quantum, two-dimensional Fourier transform optical spectroscopy. Acc. Chem. Res. 42:1452–61 [Google Scholar]
  109. Gundogdu K, Stone KW, Turner DB, Nelson KA. 109.  2007. Multidimensional coherent spectroscopy made easy. Chem. Phys. 341:89–94 [Google Scholar]
  110. Nardin G, Autry TM, Silverman KL, Cundiff ST. 110.  2013. Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure. Opt. Express 21:28617–27 [Google Scholar]
  111. Bloem R, Garrett-Roe S, Strzalka H, Hamm P, Donaldson P. 111.  2010. Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments. Opt. Express 18:27067–78 [Google Scholar]
  112. Faeder SMG, Jonas DM. 112.  1999. Two-dimensional electronic correlation and relaxation spectra: theory and model calculations. J. Phys. Chem. A 103:10489–505 [Google Scholar]
  113. Deboeij WP, Pshenichnikov MS, Wiersma DA. 113.  1995. Phase-locked heterodyne-detected stimulated photon-echo: a unique tool to study solute-solvent interactions. Chem. Phys. Lett. 238:1–8 [Google Scholar]
  114. Shim SH, Strasfeld DB, Ling YL, Zanni MT. 114.  2007. Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide. Proc. Natl. Acad. Sci. USA 104:14197–202 [Google Scholar]
  115. DeFlores LP, Nicodemus RA, Tokmakoff A. 115.  2007. Two dimensional Fourier transform spectroscopy in the pump-probe geometry. Opt. Lett. 32:2966–68 [Google Scholar]
  116. Grumstrup EM, Shim SH, Montgomery MA, Damrauer NH, Zanni MT. 116.  2007. Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology. Opt. Express 15:16681–89 [Google Scholar]
  117. Myers JA, Lewis KLM, Tekavec PF, Ogilvie JP. 117.  2008. Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper. Opt. Express 16:17420–28 [Google Scholar]
  118. Xiong W, Zanni MT. 118.  2008. Signal enhancement and background cancellation in collinear two-dimensional spectroscopies. Opt. Lett. 33:1371–73 [Google Scholar]
  119. Rock W, Li YL, Pagano P, Cheatum CM. 119.  2013. 2D IR spectroscopy using four-wave mixing, pulse shaping, and IR upconversion: a quantitative comparison. J. Phys. Chem. A 117:6073–83 [Google Scholar]
  120. Courtney TL, Park SD, Hill RJ, Cho B, Jonas DM. 120.  2014. Enhanced interferometric detection in two-dimensional spectroscopy with a Sagnac interferometer. Opt. Lett. 39:513–16 [Google Scholar]
  121. Zhang ZY, Wells KL, Hyland EWJ, Tan HS. 121.  2012. Phase-cycling schemes for pump-probe beam geometry two-dimensional electronic spectroscopy. Chem. Phys. Lett. 550:156–61 [Google Scholar]
  122. Zhang ZY, Wells KL, Seidel MT, Tan HS. 122.  2013. Fifth-order three-dimensional electronic spectroscopy using a pump-probe configuration. J. Phys. Chem. B 117:15369–85 [Google Scholar]
  123. Ding F, Zanni MT. 123.  2007. Heterodyned 3D IR spectroscopy. Chem. Phys. 341:95–105 [Google Scholar]
  124. Garrett-Roe S, Hamm P. 124.  2009. What can we learn from three-dimensional infrared spectroscopy?. Acc. Chem. Res. 42:1412–22 [Google Scholar]
  125. Brida D, Manzoni C, Cerullo G. 125.  2012. Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line. Opt. Lett. 37:3027–29 [Google Scholar]
  126. Rehault J, Maiuri M, Manzoni C, Brida D, Helbing J, Cerullo G. 126.  2014. 2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line. Opt. Express 22:9063–72 [Google Scholar]
  127. Trebino R. 127.  2002. Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses New York: Springer425
  128. Harel E, Fidler AF, Engel GS. 128.  2010. Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy. Proc. Natl. Acad. Sci. USA 107:16444–47 [Google Scholar]
  129. Singh VP, Fidler AF, Rolczynski BS, Engel GS. 129.  2013. Independent phasing of rephasing and non-rephasing 2D electronic spectra. J. Chem. Phys. 139:084201 [Google Scholar]
  130. Harel E, Long PD, Engel GS. 130.  2011. Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2. Opt. Lett. 36:1665–67 [Google Scholar]
  131. Mercer IP, El-Taha YC, Kajumba N, Marangos JP, Tisch JWG. 131.  et al. 2009. Instantaneous mapping of coherently coupled electronic transitions and energy transfers in a photosynthetic complex using angle-resolved coherent optical wave-mixing. Phys. Rev. Lett. 102:057402 [Google Scholar]
  132. Wilhelm T, Piel J, Riedle E. 132.  1997. Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter. Opt. Lett. 22:1494–96 [Google Scholar]
  133. van Stokkum IHM, Larsen DS, van Grondelle R. 133.  2004. Global and target analysis of time-resolved spectra. Biochim. Biophys. Acta 1657:82–104 [Google Scholar]
  134. Tekavec PF, Myers JA, Lewis KLM, Ogilvie JP. 134.  2009. Two-dimensional electronic spectroscopy with a continuum probe. Opt. Lett. 34:1390–92 [Google Scholar]
  135. Fuller FD, Ogilvie JP. 135.  2013. Continuum probe two-dimensional electronic spectroscopy of the photosystem II reaction center. EPJ Web Conf. 41:08018 [Google Scholar]
  136. Greenfield SR, Wasielewski MR. 136.  1996. Excitation energy transfer and charge separation in the isolated Photosystem II reaction center. Photosynth. Res. 48:83–97 [Google Scholar]
  137. Yoder LM, Cole AG, Sension RJ. 137.  2002. Structure and function in the isolated reaction center complex of Photosystem II: energy and charge transfer dynamics and mechanism. Photosynth. Res. 72:147–58 [Google Scholar]
  138. Romero E, van Stokkum IHM, Novoderezhkin VI, Dekker JP, van Grondelle R. 138.  2010. Two different charge separation pathways in photosystem II. Biochemistry 49:4300–7 [Google Scholar]
  139. Kullmann M, Ruetzel S, Buback J, Nuernberger P, Brixner T. 139.  2011. Reaction dynamics of a molecular switch unveiled by coherent two-dimensional electronic spectroscopy. J. Am. Chem. Soc. 133:13074–80 [Google Scholar]
  140. Krebs N, Pugliesi I, Hauer J, Riedle E. 140.  2013. Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe. New J. Phys. 15:085016 [Google Scholar]
  141. Tekavec PF, Myers JA, Lewis KLM, Fuller FD, Ogilvie JP. 141.  2010. Effects of chirp on two-dimensional Fourier transform electronic spectra. Opt. Express 18:11015–24 [Google Scholar]
  142. Tekavec PA, Lewis KL, Fuller FD, Myers JA, Ogilvie JP. 142.  2012. Toward broad bandwidth 2-D electronic spectroscopy: correction of chirp from a continuum probe. IEEE J. Sel. Top. Quantum Electron. 18:210–17 [Google Scholar]
  143. Wittmann E, Bradler M, Riedle E. 143.  2015. Direct generation of 7 fs whitelight pulses from bulk sapphire. Proc. 19th Int. Conf. Ultrafast Phenom. New York: Springer [Google Scholar]
  144. Mehlenbacher RD, McDonough TJ, Grechko M, Wu M-Y, Arnold MS, Zanni MT. 144.  2014. Energy transfer pathways in semiconducting carbon nanotubes revealed using two dimensional white-light spectroscopy. Manuscript submitted
  145. Hauri CP, Kornelis W, Helbing FW, Heinrich A, Couairon A. 145.  et al. 2004. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation. Appl. Phys. B 79:673–77 [Google Scholar]
  146. Stibenz G, Zhavoronkov N, Steinmeyer G. 146.  2006. Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament. Opt. Lett. 31:274–76 [Google Scholar]
  147. Goulielmakis E, Koehler S, Reiter B, Schultze M, Verhoef AJ. 147.  et al. 2008. Ultrabroadband, coherent light source based on self-channeling of few-cycle pulses in helium. Opt. Lett. 33:1407–9 [Google Scholar]
  148. Kornelis W, Bruck M, Helbing FW, Hauri CP, Heinrich A. 148.  et al. 2004. Single-shot dynamics of pulses from a gas-filled hollow fiber. Appl. Phys. B 79:1033–39 [Google Scholar]
  149. Zhavoronkov N. 149.  2011. Efficient spectral conversion and temporal compression of femtosecond pulses in SF6. Opt. Lett. 36:529–31 [Google Scholar]
  150. Dharmadhikari AK, Dharmadhikari JA, Rajgara FA, Mathur D. 150.  2008. Polarization and energy stability of filamentation-generated few-cycle pulses. Opt. Express 16:7083–90 [Google Scholar]
  151. De Marco L, Ramasesha K, Tokmakoff A. 151.  2013. Experimental evidence of Fermi resonances in isotopically dilute water from ultrafast broadband IR spectroscopy. J. Phys. Chem. B 117:15319–27 [Google Scholar]
  152. West BA, Moran AM. 152.  2012. Two-dimensional electronic spectroscopy in the ultraviolet wavelength range. J. Phys. Chem. Lett. 3:2575–81 [Google Scholar]
  153. Consani C, Aubock G, van Mourik F, Chergui M. 153.  2013. Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy. Science 339:1586–89 [Google Scholar]
  154. Reiter F, Graf U, Schultze M, Schweinberger W, Schroder H. 154.  et al. 2010. Generation of sub-3 fs pulses in the deep ultraviolet. Opt. Lett. 35:2248–50 [Google Scholar]
  155. Schweigert IV, Mukamel S. 155.  2007. Coherent ultrafast core-hole correlation spectroscopy: X-ray analogues of multidimensional NMR. Phys. Rev. Lett. 99:163001 [Google Scholar]
  156. Abramavicius D, Mukamel S. 156.  2006. Chirality-induced signals in coherent multidimensional spectroscopy of excitons. J. Chem. Phys. 124:034113 [Google Scholar]
  157. Choi JH, Cheon S, Lee H, Cho M. 157.  2008. Two-dimensional nonlinear optical activity spectroscopy of coupled multi-chromophore system. Phys. Chem. Chem. Phys. 10:3839–56 [Google Scholar]
  158. Eom I, Ahn SH, Rhee H, Cho M. 158.  2012. Single-shot electronic optical activity interferometry: power and phase fluctuation-free measurement. Phys. Rev. Lett. 108:103901 [Google Scholar]
  159. Fidler AF, Singh VP, Long PD, Dahlberg PD, Engel GS. 159.  2014. Dynamic localization of electronic excitation in photosynthetic complexes revealed with chiral two-dimensional spectroscopy. Nat. Commun. 5:3286 [Google Scholar]
  160. Schlawin F, Mukamel S. 160.  2013. Two-photon spectroscopy of excitons with entangled photons. J. Chem. Phys. 139:244110 [Google Scholar]
  161. Richter M, Mukamel S. 161.  2010. Ultrafast double-quantum-coherence spectroscopy of excitons with entangled photons. Phys. Rev. A 82:013820 [Google Scholar]
  162. Roslyak O, Mukamel S. 162.  2009. Multidimensional pump-probe spectroscopy with entangled twin-photon states. Phys. Rev. A 79:063409 [Google Scholar]
  163. Roslyak O, Marx CA, Mukamel S. 163.  2009. Nonlinear spectroscopy with entangled photons: manipulating quantum pathways of matter. Phys. Rev. A 79:033832 [Google Scholar]
  164. Raymer MG, Marcus AH, Widom JR, Vitullo DLP. 164.  2013. Entangled photon-pair two-dimensional fluorescence spectroscopy (EPP-2DFS). J. Phys. Chem. B 117:15559–75 [Google Scholar]
  165. Aeschlimann M, Brixner T, Fischer A, Kramer C, Melchior P. 165.  et al. 2011. Coherent two-dimensional nanoscopy. Science 333:1723–26 [Google Scholar]
  166. Oliver TAA, Lewis NHC, Fleming GR. 166.  2014. Correlating the motion of electrons and nuclei with two-dimensional electronic–vibrational spectroscopy. Proc. Natl. Acad. Sci. USA 111:10061–66 [Google Scholar]
  167. Wilcox DE, Ogilvie JP. 167.  2013. Two-dimensional electronic femtosecond stimulated Raman spectroscopy. EPJ Web Conf. 41:05034 [Google Scholar]
  168. Khalil M. 168.  2014. Probing the correlation of vibrational and electronic motions using multidimensional spectroscopies Presented at Int. Conf. Coherent Multidimens. Spectrosc., 7th, Eugene, OR
  169. Savolainen J, Ahmed S, Hamm P. 169.  2013. Two-dimensional Raman-terahertz spectroscopy of water. Proc. Natl. Acad. Sci. USA 110:20402–7 [Google Scholar]
  170. Kukura P, Celebrano M, Renn A, Sandoghdar V. 170.  2010. Single-molecule sensitivity in optical absorption at room temperature. J. Phys. Chem. Lett. 1:3323–27 [Google Scholar]
  171. Chong SS, Min W, Xie XS. 171.  2010. Ground-state depletion microscopy: detection sensitivity of single-molecule optical absorption at room temperature. J. Phys. Chem. Lett. 1:3316–22 [Google Scholar]
  172. Moerner WE, Kador L. 172.  1989. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62:2535–38 [Google Scholar]
  173. Moerner WE, Orrit M. 173.  1999. Illuminating single molecules in condensed matter. Science 283:1670–76 [Google Scholar]
  174. Hildner R, Brinks D, Nieder JB, Cogdell RJ, van Hulst NF. 174.  2013. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science 340:1448–51 [Google Scholar]
  175. Hildner R, Brinks D, van Hulst NF. 175.  2011. Femtosecond coherence and quantum control of single molecules at room temperature. Nat. Phys. 7:172–77 [Google Scholar]
  176. Hildner R, Brinks D, Stefani FD, van Hulst NF. 176.  2011. Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy. Phys. Chem. Chem. Phys. 13:1888–94 [Google Scholar]
  177. Brinks D, Stefani FD, Kulzer F, Hildner R, Taminiau TH. 177.  et al. 2010. Visualizing and controlling vibrational wave packets of single molecules. Nature 465:905–8 [Google Scholar]
  178. Hybl JD, Ferro AA, Jonas DM. 178.  2001. Two-dimensional Fourier transform electronic spectroscopy. J. Chem. Phys. 115:6606–22 [Google Scholar]
  179. Christensson N, Milota F, Nemeth A, Pugliesi I, Riedle E. 179.  et al. 2010. Electronic double-quantum coherences and their impact on ultrafast spectroscopy: the example of β-carotene. J. Phys. Chem. Lett. 1:3366–70 [Google Scholar]
  180. Spokoyny B, Harel E. 180.  2014. Mapping the vibronic structure of a molecule by few-cycle continuum two-dimensional spectroscopy in a single pulse. J. Phys. Chem. Lett. 5:2808–14 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040513-103623
Loading
/content/journals/10.1146/annurev-physchem-040513-103623
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error