1932

Abstract

Ice is a fundamental solid with important environmental, biological, geological, and extraterrestrial impact. The stable form of ice at atmospheric pressure is hexagonal ice, . Despite its prevalence, remains an enigmatic solid, in part due to challenges in preparing samples for fundamental studies. Surfaces of ice present even greater challenges. Recently developed methods for preparation of large single-crystal samples make it possible to reproducibly prepare any chosen face to address numerous fundamental questions. This review describes preparation methods along with results that firmly establish the connection between the macroscopic structure (observed in snowflakes, microcrystallites, or etch pits) and the molecular-level configuration (detected with X-ray or electron scattering techniques). Selected results of probing interactions at the ice surface, including growth from the melt, surface vibrations, and characterization of the quasi-liquid layer, are discussed.

[Erratum, Closure]

An erratum has been published for this article:
Ice Surfaces
Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-052516-044813
2017-05-05
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/physchem/68/1/annurev-physchem-052516-044813.html?itemId=/content/journals/10.1146/annurev-physchem-052516-044813&mimeType=html&fmt=ahah

Literature Cited

  1. Stern SA, Bagenal F, Ennico K, Gladstone GR, Grundy WM. 1.  et al. 2015. The Pluto system: initial results from its exploration by New Horizons. Science 350:aad1815 [Google Scholar]
  2. Hand E. 2.  2015. Late harvest from Pluto reveals a complex world. Science 350:260–61 [Google Scholar]
  3. 3. NASA 2015. The Milky Way and Universe is awash in water. The Daily Galaxy April 7. http://www.dailygalaxy.com/my_weblog/2015/04/nasa-the-milky-way-and-universe-is-awash-in-water.html [Google Scholar]
  4. Pauling L. 4.  1935. The structure and entropy of ice and other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57:2680–84 [Google Scholar]
  5. Bernal JD, Fowler RH. 5.  1933. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1:515–48 [Google Scholar]
  6. Fletcher NH. 6.  1992. Reconstruction of ice crystal surfaces at low temperatures. Philos. Mag. B 66:109–15 [Google Scholar]
  7. Buch V, Groenzin H, Li I, Shultz MJ, Tosatti E. 7.  2008. Proton order in the ice crystal surface. PNAS 105:5969–74 [Google Scholar]
  8. Pan D, Liu L-M, Tribello GA, Slater B, Michaelides A, Wang E. 8.  2008. Surface energy and surface proton order of ice Ih. . Phys. Rev. Lett. 101:155703 [Google Scholar]
  9. Pan D, Liu L-M, Tribello GA, Slater B, Michaelides A, Wang E. 9.  2010. Surface energy and surface proton order of the ice Ih basal and prism surfaces. J. Phys. Condens. Matter 22:074209 [Google Scholar]
  10. Materer N, Starke U, Barbieri A, Hove MAV, Somorjai GA. 10.  et al. 1995. Molecular surface structure of a low-temperature ice Ih(0001) crystal. J. Phys. Chem. 99:6267–69 [Google Scholar]
  11. Paesani F, Voth GA. 11.  2007. Quantum effects strongly influence the surface premelting of ice. J. Phys. Chem. C 112:324–27 [Google Scholar]
  12. Pedersen A, Wikfeldt KT, Karssemeijer L, Cuppen H, Jónsson H. 12.  2014. Molecular reordering processes on ice (0001) surfaces from long timescale simulations. J. Chem. Phys. 141:234706 [Google Scholar]
  13. Bluhm H, Salmeron M. 13.  1999. Growth of nanometer thin ice films from water vapor studied using scanning polarization force microscopy. J. Chem. Phys. 111:6947–54 [Google Scholar]
  14. Kaya S, Weissenrieder J, Stacchiola D, Shaikhutdinov S, Freund H-J. 14.  2007. Formation of an ordered ice layer on a thin silica film. J. Phys. Chem. C 111:759–64 [Google Scholar]
  15. Kimmel GA, Petrik NG, Dohnalek Z, Kay BD. 15.  2007. Crystalline ice growth on Pt(111) and Pd(111): nonwetting growth on a hydrophobic water monolayer. J. Chem. Phys. 126:114702 [Google Scholar]
  16. Döppenschmidt A, Kappl M, Butt H-J. 16.  1998. Surface properties of ice studied by atomic force microscopy. J. Phys. Chem. B 102:7813–19 [Google Scholar]
  17. Sadtchenko V, Giese CF, Gentry WR. 17.  2000. Interaction of hydrogen chloride with thin ice films: the effect of ice morphology and evidence for unique surface species on crystalline vapor-deposited ice. J. Phys. Chem. B 104:9421–29 [Google Scholar]
  18. Sazaki G, Zepeda S, Nakatsubo S, Yokoyama E, Furukawa Y. 18.  2010. Elementary steps at the surface of ice crystals visualized by advanced optical microscopy. PNAS 107:19702–7 [Google Scholar]
  19. Bridgman PW. 19.  1925. Certain physical properties of single crystals of tungsten, antimony, bismuth, tellurium, cadmium, zinc, and tin. Proc. Am. Acad. Arts Sci. 60:305–83 [Google Scholar]
  20. Stockbarger DC. 20.  1936. The production of large single crystals of lithium fluoride. Rev. Sci. Instrum. 7:133–36 [Google Scholar]
  21. Czochralski J. 21.  1918. Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle. Z. Phys. Chem. 92:219–21 [Google Scholar]
  22. Bisson P, Groenzin H, Barnett IL, Shultz MJ. 22.  2016. High yield, single crystal ice via the Bridgman method. Rev. Sci. Instrum. 87:034103 [Google Scholar]
  23. Shultz MJ, Bisson PJ, Brumberg A. 23.  2014. Best face forward: crystal-face competition at the ice–water interface. J. Phys. Chem. B 118:7972–80 [Google Scholar]
  24. Wulff G. 24.  1901. On the question of speed of growth and dissolution of crystal surfaces. Z. Krist. Mineral. 34:449–530 [Google Scholar]
  25. Sundquist BE. 25.  1964. A direct determination of the anisotropy of the surface free energy of solid gold, silver, copper, nickel, and alpha and gamma iron. Acta Metall 12:67–86 [Google Scholar]
  26. Degawa M, Szalma R, Williams ED. 26.  2005. Nano-scale equilibrium crystal shapes. Surf. Sci. 583:126–38 [Google Scholar]
  27. Sehgal RM, Maroudas D. 27.  2015. Equilibrium shape of colloidal crystals. Langmuir 31:11428–37 [Google Scholar]
  28. Shultz MJ, Brumberg A, Bisson P, Shultz R. 28.  2015. Producing desired ice faces. PNAS 112:E6096–100This paper describes a procedure for generating any desired ice face from a single crystal. [Google Scholar]
  29. Roos DvdS. 29.  1975. Rapid production of single crystals of ice. J. Glaciol. 14:325–29 [Google Scholar]
  30. Sánchez MA, Kling T, Ishiyama T, van Zadel M-J, Bisson PJ. 30.  et al. 2017. Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice. PNAS 114:227–32 [Google Scholar]
  31. Girardet C, Toubin C. 31.  2001. Molecular atmospheric pollutant adsorption on ice: a theoretical survey. Surf. Sci. Rep. 44:159–238 [Google Scholar]
  32. Abbatt JPD. 32.  2003. Interactions of atmospheric trace gases with ice surfaces: adsorption and reaction. Chem. Rev. 103:4783–800 [Google Scholar]
  33. Huthwelker T, Ammann M, Peter T. 33.  2006. The uptake of acidic gases on ice. Chem. Rev. 106:1375–444 [Google Scholar]
  34. Mehlhorn M, Morgenstern K. 34.  2007. Faceting during the transformation of amorphous to crystalline ice. Phys. Rev. Let. 99:246101 [Google Scholar]
  35. Thürmer K, Bartelt NC. 35.  2008. Growth of multilayer ice films and the formation of cubic ice imaged with STM. Phys. Rev. B 77:195425 [Google Scholar]
  36. Nie S, Bartelt NC, Thürmer K. 36.  2009. Observation of surface self-diffusion on ice. Phys. Rev. Let. 102:136101 [Google Scholar]
  37. Sun Z, Pan D, Xu L, Wang E. 37.  2012. Role of proton ordering in adsorption preference of polar molecule on ice surface. PNAS 109:13177–81 [Google Scholar]
  38. Cardellach M, Verdaguer A, Santiso J, Fraxedas J. 38.  2010. Two-dimensional wetting: the role of atomic steps on the nucleation of thin water films on BaF2(111) at ambient conditions. J. Chem. Phys. 132:234708 [Google Scholar]
  39. Maier S, Lechner BAJ, Somorjai GA, Salmeron M. 39.  2016. Growth and structure of the first layers of ice on Ru(0001) and Pt(111). J. Am. Chem. Soc. 138:3145–51 [Google Scholar]
  40. Bockstedte M, Michl A, Kolb M, Mehlhorn M, Morgenstern K. 40.  2016. Incomplete bilayer termination of the ice (0001) surface. J. Phys. Chem. C 120:1097–109 [Google Scholar]
  41. Thürmer K, Nie S. 41.  2013. Formation of hexagonal and cubic ice during low-temperature growth. PNAS 110:11757–62Experiment and modeling show substrate control of cubic versus hexagonal ice. [Google Scholar]
  42. Badan C, Heyrich Y, Koper MTM, Juurlink LBF. 42.  2016. Surface structure dependence in desorption and crystallization of thin interfacial water films on platinum. J. Phys. Chem. Lett. 7:1682–86 [Google Scholar]
  43. Zaragoza A, Conde MM, Espinosa JR, Valeriani C, Vega C, Eduardo Sanche L. 43.  2015. Competition between ices Ih and Ic in homogeneous water freezing. J. Chem. Phys. 143:134504 [Google Scholar]
  44. Kimmel GA, Zubkov T, Smith RS, Petrik NG, Kay BD. 44.  2014. Turning things downside up: adsorbate induced water flipping on Pt(111). J. Chem. Phys. 141:18C515 [Google Scholar]
  45. Pfalzgraff WC, Hulscher RM, Neshyba SP. 45.  2010. Scanning electron miscroscopy and molecular dynamics of surfaces of growing and ablating hexagonal ice crystals. Atmos. Chem. Phys. 10:2927–35 [Google Scholar]
  46. Pfalzgraff W, Neshyba S, Roeselova M. 46.  2011. Comparative molecular dynamics study of vapor-exposed basal, prismatic, and pyramidal surfaces of ice. J. Phys. Chem. A 115:6184–93 [Google Scholar]
  47. Neshyba SP, Lowen B, Benning M, Lawson A, Rowe PM. 47.  2013. Roughness metrics of prismatic facets of ice. J. Geophys. Res. Atmos. 118:3309–18 [Google Scholar]
  48. Aufdermaur VAN, List R, Mayes WC, DeQuervain MR. 48.  1963. Kristallachsenlagen in Hagelkörnern. Z. Angew. Math. Phys. 14:574–89 [Google Scholar]
  49. Barrette PD, Sinha NK. 49.  1996. Lattice rotation in a deformed ice crystal: a study by chemical etching and replication. Mater. Chem. Phys. 44:251–54 [Google Scholar]
  50. Furukawa Y, Nada H. 50.  1997. Anisotropic surface melting of an ice crystal and its relationship to growth forms. J. Phys. Chem. B 101:6167–70 [Google Scholar]
  51. Higuchi K. 51.  1958. The etching of ice crystals. Acta Metall 6:636–42 [Google Scholar]
  52. Knight C, Knight N. 52.  1965. “Negative” crystals in ice: a method for growth. Science 150:1819–21 [Google Scholar]
  53. Matsuda M. 53.  1979. Instruments and methods: determination of a-axis orientations of polycrystalline ice. J. Glaciol. 22:165–69 [Google Scholar]
  54. Knight C. 54.  1996. A simple technique for growing large, optically “perfect” ice crystals. J. Glaciol. 42:585–87 [Google Scholar]
  55. Libbrecht KG, Rickerby ME. 55.  2013. Measurements of surface attachment kinetics for faceted ice crystal growth. J. Cryst. Growth 377:1–8 [Google Scholar]
  56. Nakaya U. 56.  1956. Properties of single crystals of ice, revealed by internal melting Res. Pap. 13, Snow Ice Permafr. Res. Establ. Wilmette, IL:
  57. Sazaki G, Zepeda S, Nakatsubo S, Yokomine M, Furukawa Y. 57.  2012. Quasi-liquid layers on ice crystal surfaces are made up of two different phases. Proc. Am. Acad. Arts Sci. 109:1052–55 [Google Scholar]
  58. Brumberg A, Hammonds K, Baker I, Backus E, Bisson P. 58.  et al. 2017. Single crystal Ih ice surface: connecting macroscopic etch pits and molecular structure Unpublished research
  59. Bader H. 59.  1950. The significance of air bubbles in glacier ice. J. Glaciol. 1:443–51 [Google Scholar]
  60. Bader H. 60.  1939. Der Schnee und Seine Metamorphose Bern, Switz.: Kümmerly & Frey
  61. Higuchi K. 61.  1957. A new method for recording the grain-structure of ice. J. Glaciol. 3:131–32 [Google Scholar]
  62. Libbrecht KG. 62.  2014. Toward a comprehensive model of snow crystal growth: 3. The correspondence between ice growth from water vapor and ice growth from liquid water arXiv1407.0740 [cond-mat.mtrl-sci]
  63. Libbrecht KG. 63.  2013. Toward a comprehensive model of snow crystal growth dynamics: 2. structure dependent attachment kinetics near −5 C arXiv1302.1231 [cond-mat.mtrl-sci]
  64. Libbrecht KG. 64.  2012. On the equilibrium shape of an ice crystal. arXiv1205.1452v1 [cond-mat.mtrl-sci]
  65. Libbrecht KG. 65.  2012. Toward a comprehensive model of snow crystal growth dynamics: 1. Overarching features and physical origins arXiv1211.5555 [cond-mat.mtrl-sci]
  66. Libbrecht KG. 66.  2003. Explaining the formation of thin ice crystal plates with structure-dependent attachment kinetics. J. Cryst. Growth 258:168–75 [Google Scholar]
  67. Libbrecht K. 67.  2003. Growth rates of the principal facets of ice between −10°C and −40°C. J. Cryst. Growth 247:530–40 [Google Scholar]
  68. Mizuno Y. 68.  1978. Studies of crystal imperfections in ice with reference to the growth process by the use of X-ray diffraction topography and divergent Laue method. J. Glaciol. 21:409–418 [Google Scholar]
  69. Butterfield N, Neshyba S. 69.  2016. SEM images: ice crystallites Personal communication
  70. Nishikawa S, Kikuchi S. 70.  1928. The diffraction of cathode rays by calcite. Proc. Imp. Acad. 4:175–477 [Google Scholar]
  71. Schwartz A, Kumar M, Adams B, Field D. 71. , eds. 2009. Electron Backscatter Diffraction in Materials Science New York: Springer Science
  72. Iliescu D, Baker I, Chang H. 72.  2004. Determining the orientations of ice crystals using electron backscatter patterns. Microsc. Res. Tech. 63:183–87 [Google Scholar]
  73. Prior DJ, Diebold S, Obbard R, Daghlian C, Goldsby DL. 73.  et al. 2012. Insight into the phase transformations between ice Ih and ice II from electron backscatter diffraction data. Scripta Mater 66:69–72 [Google Scholar]
  74. Baker I, Sieg K, Spaulding N, Meese D. 74.  2007. Advanced electron microscopy techniques for studying ice and firn cores Ext. Abstr. 185, USGS OF-2007-1047, US Geol. Surv. Reston, VA:
  75. Obbard R, Baker I, Sieg K. 75.  2006. Using electron backscatter diffraction patterns to examine recrystallization in polar ice sheets. J. Glaciol. 52:546–57This paper describes substrate handling procedures for successful electron backscatter diffraction from ice surfaces. [Google Scholar]
  76. Weikusat I, DeWinter DAM, Pennock GM, Hayles M, Schneijdenberg CTWM, Drury MR. 76.  2010. Cryogenic EBSD on ice: preserving a stable surface in a low pressure SEM. J. Microsc. 242:295–310 [Google Scholar]
  77. Shultz MJ, Bisson PJ, Brumberg A. 77.  2016. Correction to “Best face forward: crystal-face competition at the ice-water interface. .” J. Phys. Chem. B. 120:10420 [Google Scholar]
  78. Sazaki G, Asakawa H, Nagashima K, Nakatsubo S, Furukawa Y. 78.  2014. Double spiral steps on Ih ice crystal surfaces grown from water vapor just below the melting point. Cryst. Growth Des. 14:2133–37This research detects spiral growth and demonstrates LCM-DIM on ice. [Google Scholar]
  79. Bisson P, Shultz MJ. 79.  2013. Hydrogen bonding in the prism face of ice Ih via sum frequency vibrational spectroscopy. J. Phys. Chem. A 117:6116–25 [Google Scholar]
  80. Groenzin H, Li I, Buch V, Shultz MJ. 80.  2007. The single crystal, basal face of ice Ih investigated with sum frequency generation. J. Chem. Phys. 127:214502 [Google Scholar]
  81. Wei X, Shen YR. 81.  2002. Vibrational spectroscopy of ice interfaces. Appl. Phys. B 74:617–20 [Google Scholar]
  82. Wei X, Miranda PB, Shen YR. 82.  2001. Surface vibrational spectroscopic study of surface melting of ice. Phys. Rev. Lett. 86:1554–57 [Google Scholar]
  83. De Yoreo JJ, Gilbert PUPA, Sommerdijk NAJM, Penn RL, Whitelam S. 83.  et al. 2015. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349:aaa6760 [Google Scholar]
  84. Libbrecht KG. 84.  2007. The formation of snow crystals: Subtle molecular processes govern the growth of a remarkable variety of elaborate ice structures. Am. Sci. 95:52–59 [Google Scholar]
  85. Barnard AS, Zapol P. 85.  2004. A model for the phase stability of arbitrary nanoparticles as a function of size and shape. J. Chem. Phys. 121:4276–83This paper delineates the thermodynamics that determine nano- and microscopic particle morphology. [Google Scholar]
  86. Sazaki G, Matsui T, Tsukamoto K, Usami N, Ujihara T. 86.  et al. 2004. In situ observation of elementary growth steps on the surface of protein crystals by laser confocal microscopy. J. Cryst. Growth 262:536–42 [Google Scholar]
  87. Shen YR. 87.  2016. Fundamentals of Sum Frequency Spectroscopy Cambridge, UK: Cambridge Univ. PressThis is a description of sum frequency generation by the founder of the technique.
  88. Shen YR, Ostroverkhov V. 88.  2006. Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem. Rev. 106:1140–54 [Google Scholar]
  89. Shen YR. 89.  2002. Principles of Nonlinear Optics New York: John Wiley & Sons
  90. Shultz MJ. 90.  2008. Sum frequency generation: an introduction plus recent developments and current issues. Advances in Multi-Photon Processes and Spectroscopy SH Lin, AA Villaeys, Y Fujimura 133–200 Singapore: World Sci. [Google Scholar]
  91. Shultz MJ, Bisson P, Groenzin H, Li I. 91.  2010. Multiplexed polarization spectroscopy: measuring surface hyperpolarizability orientation. J. Chem. Phys. 133:054702 [Google Scholar]
  92. Groenzin H, Li I, Shultz MJ. 92.  2008. Sum-frequency generation: polarization surface spectroscopy analysis of the vibrational surface modes on the basal face of ice Ih. . J. Chem. Phys. 128:214510 [Google Scholar]
  93. Ishiyama T, Morita A. 93.  2014. A direct evidence of vibrationally delocalized response at ice surface. J. Chem. Phys. 141:18C503 [Google Scholar]
  94. Ishiyama T, Takahashi H, Morita A. 94.  2012. Origin of vibrational spectroscopic response at ice surface. J. Phys. Chem. Lett. 3:3001–6 [Google Scholar]
  95. Yamaguchi S, Shiratori K, Morita A, Tahara T. 95.  2011. Electric quadrupole contribution to the nonresonant background of sum frequency generation at air/liquid interfaces. J. Chem. Phys. 134:184705 [Google Scholar]
  96. Buch V, Tarbuck T, Richmond GL, Groenzin H, Li I, Shultz MJ. 96.  2007. Sum frequency generation surface spectra of ice, water and acid solution investigated by an exciton model. J. Chem. Phys. 127:204710 [Google Scholar]
  97. Buch V. 97.  2005. Molecular structure and OH-stretch spectra of liquid water surface. J. Phys. Chem. B 109:17771–74 [Google Scholar]
  98. Shultz MJ, Bisson P, Vu TH. 98.  2014. Insights into hydrogen bonding via ice interfaces and isolated water. J. Chem. Phys. 141:18C521 [Google Scholar]
  99. Faraday M. 99.  1859. On regelation, and the conservation of force. Philos. Mag. 17:162–69 [Google Scholar]
  100. Dash JG, Fu H, Wettlaufer JS. 100.  1995. The premelting of ice and its environmental consequences. Rep. Prog. Phys. 58:115–67 [Google Scholar]
  101. Li Y, Somorjai GA. 101.  2007. Surface premelting of ice. J. Phys. Chem. C 111:9631–37 [Google Scholar]
  102. Lied A, Dosch H, Bilgram JH. 102.  1994. Surface melting of ice Ih single crystals revealed by glancing angle X-ray scattering. Phys. Rev. Lett. 72:3554–57 [Google Scholar]
  103. Dosch H, Lied A, Bilgram JH. 103.  1995. Glancing-angle X-ray scattering studies of the premelting of ice surfaces. Surf. Sci. 327:145–64 [Google Scholar]
  104. Suter MT, Andersson PU, Pettersson JBC. 104.  2006. Surface properties of water ice at 150–191 K studied by elastic helium scattering. J. Chem. Phys. 125:174704 [Google Scholar]
  105. Goertz MP, Zhu X-Y, Houston JE. 105.  2009. Exploring the liquid-like layer on the ice surface. Langmuir 25:6905–8 [Google Scholar]
  106. Döppenschmidt A, Butt H-J. 106.  2000. Measuring the thickness of the liquid-like layer on ice surfaces with atomic force microscopy. Langmuir 16:6709–14 [Google Scholar]
  107. Furukawa Y, Yamamoto M, Kuroda T. 107.  1987. Ellipsometric study of the transition layer on the surface of an ice crystal. J. Cryst. Growth 82:665–77 [Google Scholar]
  108. Bluhm H, Ogletree DF, Fadley CS, Hussain Z, Salmeron M. 108.  2002. The premelting of ice studied with photoelectron spectroscopy. J. Phys. Condens. Matter 14:L227–33 [Google Scholar]
  109. Dec SF. 109.  2009. Clathrate hydrate formation: dependence on aqueous hydration number. J. Phys. Chem. C 113:12355–61 [Google Scholar]
  110. Dec SF. 110.  2012. Surface transformation of methane–ethane sI and sII clathrate hydrates. J. Phys. Chem. C 116:9660–65 [Google Scholar]
  111. Park S-C, Moon E-S, Kang H. 111.  2010. Some fundamental properties and reactions of ice surfaces at low temperatures. Phys. Chem. Chem. Phys. 12:12000–11 [Google Scholar]
  112. Shepherd TD, Koc MA, Molinero V. 112.  2012. The quasi-liquid layer of ice under conditions of methane clathrate formation. J. Phys. Chem. C 116:12172–80 [Google Scholar]
  113. Limmer DT, Chandler D. 113.  2014. Premelting, fluctuations, and coarse-graining of water-ice interfaces. J. Chem. Phys. 141:18C505 [Google Scholar]
  114. Persson BNJ. 114.  2015. Ice friction: role of non-uniform frictional heating and ice premelting. J. Chem. Phys. 143:224701 [Google Scholar]
  115. Asakawa H, Sazaki G, Nagashima K, Nakatsubo S, Furukawa Y. 115.  2016. Two types of quasi-liquid layers on ice crystals are formed kinetically. Proc. Am. Acad. Arts Sci. 113:1749–53 [Google Scholar]
  116. Sazaki G, Asakawa H, Nagashima K, Nakatsubo S, Furukawa Y. 116.  2013. How do quasi-liquid layers emerge from ice crystal surfaces?. Cryst. Growth Des. 13:1761–66 [Google Scholar]
  117. Henson BF, Voss LF, Wilson KR, Robinson JM. 117.  2005. Thermodynamic model of quasiliquid formation on H2O ice: comparison with experiment. J. Chem. Phys. 123:144707 [Google Scholar]
  118. Wei X, Miranda PB, Zhang C, Shen YR. 118.  2002. Sum-frequency spectroscopic studies of ice interfaces. Phys. Rev. B 66:085401 [Google Scholar]
/content/journals/10.1146/annurev-physchem-052516-044813
Loading
/content/journals/10.1146/annurev-physchem-052516-044813
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error