1932

Abstract

The carbonyl oxide intermediates in the ozonolysis of alkenes, often known as Criegee intermediates, are potentially important reactants in Earth's atmosphere. For decades, careful analysis of ozonolysis systems was employed to derive an understanding of the formation and reactions of these species. Recently it has proved possible to synthesize at least some of these intermediates separately from ozonolysis, and hence to measure their reaction kinetics directly. Direct measurements have allowed new or more detailed understanding of each type of gas-phase reaction that carbonyl oxides undergo, often acting as a complement to highly detailed ozonolysis experiments. Moreover, the use of direct characterization methods to validate increasingly accurate theoretical investigations can enhance their impact well beyond the set of specific reactions that have been measured. Reactions that initiate particles or fuel their growth could be a new frontier for direct measurements of Criegee intermediate chemistry.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-052516-050739
2017-05-05
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/physchem/68/1/annurev-physchem-052516-050739.html?itemId=/content/journals/10.1146/annurev-physchem-052516-050739&mimeType=html&fmt=ahah

Literature Cited

  1. Harries C. 1.  1915. Ueber die Einwirkung des Ozons auf organische Verbindungen. Vierte zusammenfassende Abhandlung. Liebigs Ann. Chem. 410:1–21 [Google Scholar]
  2. Criegee R. 2.  1975. Mechanism of ozonolysis. Angew. Chem. Int. Ed. 14:745–52 [Google Scholar]
  3. Criegee R, Wenner G. 3.  1949. Die Ozonisierung des 9,10-Oktalins. Liebigs Ann. Chem. 564:9–15 [Google Scholar]
  4. Pinelo L, Gudmundsdottir AD, Ault BS. 4.  2013. Matrix isolation study of the ozonolysis of 1,3- and 1,4-cyclohexadiene: identification of novel reaction pathways. J. Phys. Chem. A 117:4174–82 [Google Scholar]
  5. Renz M, Meunier B. 5.  1999. 100 years of Baeyer–Villiger oxidations. Eur. J. Org. Chem. 1999:737–50 [Google Scholar]
  6. Taatjes CA, Shallcross DE, Percival CJ. 6.  2014. Research frontiers in the chemistry of Criegee intermediates and tropospheric ozonolysis. Phys. Chem. Chem. Phys. 16:1704–18 [Google Scholar]
  7. Shallcross DE, Taatjes CA, Percival CJ. 7.  2014. Criegee intermediates in the indoor environment: new insights. Indoor Air 24:495–502 [Google Scholar]
  8. Wisthaler A, Weschler CJ. 8.  2010. Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air. PNAS 107:6568–75 [Google Scholar]
  9. Hatakeyama S, Akimoto H. 9.  1994. Reactions of Criegee intermediates in the gas phase. Res. Chem. Intermed. 20:503–24 [Google Scholar]
  10. Horie O, Moortgat GK. 10.  1998. Gas phase ozonolysis of alkenes. Recent advances in mechanistic investigations. Acc. Chem. Res. 31:387–96 [Google Scholar]
  11. Kroll JH, Seinfeld JH. 11.  2008. Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ. 42:3593–624 [Google Scholar]
  12. Donahue NM, Drozd GT, Epstein SA, Presto AA, Kroll JH. 12.  2011. Adventures in ozoneland: down the rabbit-hole. Phys. Chem. Chem. Phys. 13:10848–57 [Google Scholar]
  13. Lee Y-P. 13.  2015. Perspective: spectroscopy and kinetics of small gaseous Criegee intermediates. J. Chem. Phys. 143:020901 [Google Scholar]
  14. Osborn DL, Taatjes CA. 14.  2015. The physical chemistry of Criegee intermediates in the gas phase. Int. Rev. Phys. Chem. 34:309–60 [Google Scholar]
  15. Horie O, Neeb P, Moortgat GK. 15.  1997. The reactions of the Criegee intermediate CH3CHOO in the gas-phase ozonolysis of 2-butene isomers. Int. J. Chem. Kinet. 29:461–68 [Google Scholar]
  16. Neeb P, Horie O, Moortgat GK. 16.  1996. Formation of secondary ozonides in the gas-phase ozonolysis of simple alkenes. Tetrahedron Lett 37:9297–300 [Google Scholar]
  17. Fajgar R, Vítek J, Haas Y, Pola J. 17.  1999. Formation of secondary ozonides in the gas phase low-temperature ozonation of primary and secondary alkenes. J. Chem. Soc. Perkin Trans. 2 1999:239–48 [Google Scholar]
  18. Fenske JD, Hasson AS, Ho AW, Paulson SE. 18.  2000. Measurement of absolute unimolecular and bimolecular rate constants for CH3CHOO generated by the trans-2-butene reaction with ozone in the gas phase. J. Phys. Chem. A 104:9921–32 [Google Scholar]
  19. Vereecken L, Francisco JS. 19.  2012. Theoretical studies of atmospheric reaction mechanisms in the troposphere. Chem. Soc. Rev. 41:6259–93 [Google Scholar]
  20. Vereecken L, Glowacki DR, Pilling MJ. 20.  2015. Theoretical chemical kinetics in tropospheric chemistry: methodologies and applications. Chem. Rev. 115:4063–114 [Google Scholar]
  21. Sander W. 21.  1990. Carbonyl oxides: zwitterions or diradicals?. Angew. Chem. Int. Ed. 29:344–54 [Google Scholar]
  22. Bunnelle WH. 22.  1991. Preparation, properties, and reactions of carbonyl oxides. Chem. Rev. 91:335–62 [Google Scholar]
  23. Sander W. 23.  2014. Carbonyl oxides—rising stars in tropospheric chemistry. Angew. Chem. Int. Ed. 53:362–64 [Google Scholar]
  24. Clay M, Ault BS. 24.  2010. Infrared matrix isolation and theoretical study of the initial intermediates in the reaction of ozone with cis-2-butene. J. Phys. Chem. A 114:2799–805 [Google Scholar]
  25. Hoops MD, Ault BS. 25.  2009. Matrix isolation study of the early intermediates in the ozonolysis of cyclopentene and cyclopentadiene: observation of two Criegee intermediates. J. Am. Chem. Soc. 131:2853–63 [Google Scholar]
  26. Andersen A, Carter EA. 26.  2008. First-principles-derived kinetics of the reactions involved in low-temperature dimethyl ether oxidation. Mol. Phys. 106:367–96 [Google Scholar]
  27. Asatryan R, Bozzelli JW. 27.  2008. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide. Phys. Chem. Chem. Phys. 10:1769–80 [Google Scholar]
  28. Taatjes CA, Meloni G, Selby TM, Trevitt AJ, Osborn DL. 28.  et al. 2008. Direct observation of the gas-phase Criegee intermediate (CH2OO). J. Am. Chem. Soc. 130:11883–85 [Google Scholar]
  29. Eskola AJ, Wojcik-Pastuszka D, Ratajczak E, Timonen RS. 29.  2006. Kinetics of the reactions of CH2Br and CH2I radicals with molecular oxygen at atmospheric temperatures. Phys. Chem. Chem. Phys. 8:1416–24 [Google Scholar]
  30. Welz O, Savee JD, Osborn DL, Vasu SS, Percival CJ. 30.  et al. 2012. Direct kinetic measurements of Criegee intermediate (CH2OO) formed by reaction of CH2I with O2. Science 335:204–7 [Google Scholar]
  31. Huang Y-H, Chen L-W, Lee Y-P. 31.  2015. Simultaneous infrared detection of the ICH2OO radical and Criegee intermediate CH2OO: the pressure dependence of the yield of CH2OO in the reaction CH2I + O2. J. Phys. Chem. Lett. 6:4610–15 [Google Scholar]
  32. Stone D, Blitz M, Daubney L, Ingham T, Seakins P. 32.  2013. CH2OO Criegee biradical yields following photolysis of CH2I2 in O2. Phys. Chem. Chem. Phys. 15:19119–24 [Google Scholar]
  33. Beames JM, Liu F, Lu L, Lester MI. 33.  2013. UV spectroscopic characterization of an alkyl substituted Criegee intermediate CH3CHOO. J. Chem. Phys. 138:244307 [Google Scholar]
  34. Sheps L, Scully AM, Au K. 34.  2014. UV absorption probing of the conformer-dependent reactivity of a Criegee intermediate CH3CHOO. Phys. Chem. Chem. Phys. 16:26701–6 [Google Scholar]
  35. Taatjes CA, Welz O, Eskola AJ, Savee JD, Scheer AM. 35.  et al. 2013. Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3CHOO. Science 340:171–80 [Google Scholar]
  36. Chang Y-P, Chang C-H, Takahashi K, Lin JJ-M. 36.  2016. Absolute UV absorption cross sections of dimethyl substituted Criegee intermediate (CH3)2COO. Chem. Phys. Lett. 653:155–60 [Google Scholar]
  37. Liu F, Beames JM, Green AM, Lester MI. 37.  2014. UV spectroscopic characterization of dimethyl- and ethyl-substituted carbonyl oxides. J. Phys. Chem. A 118:2298–306 [Google Scholar]
  38. Taatjes CA, Welz O, Eskola AJ, Savee JD, Osborn DL. 38.  et al. 2012. Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone. Phys. Chem. Chem. Phys. 14:10391–400 [Google Scholar]
  39. Welz O, Eskola AJ, Sheps L, Rotavera B, Savee JD. 39.  et al. 2014. Rate coefficients of C1 and C2 Criegee intermediate reactions with formic and acetic acid near the collision limit: direct kinetics measurements and atmospheric implications. Angew. Chem. Int. Ed. 126:4635–38 [Google Scholar]
  40. Beames JM, Liu F, Lu L, Lester MI. 40.  2012. Ultraviolet spectrum and photochemistry of the simplest Criegee intermediate CH2OO. J. Am. Chem. Soc. 134:20045–48 [Google Scholar]
  41. Sheps L. 41.  2013. Absolute ultraviolet absorption spectrum of a Criegee intermediate CH2OO. J. Phys. Chem. Lett. 4:4201–5 [Google Scholar]
  42. Smith MC, Ting W-L, Chang C-H, Takahashi K, Boering KA, Lin JJ-M. 42.  2014. UV absorption spectrum of the C2 Criegee intermediate CH3CHOO. J. Chem. Phys. 141:074302 [Google Scholar]
  43. Ting W-L, Chen Y-H, Chao W, Smith MC, Lin JJ-M. 43.  2014. The UV absorption spectrum of the simplest Criegee intermediate CH2OO. Phys. Chem. Chem. Phys. 16:10438–43 [Google Scholar]
  44. Smith MC, Chang C-H, Chao W, Lin L-C, Takahashi K. 44.  et al. 2015. Strong negative temperature dependence of the simplest Criegee intermediate CH2OO reaction with water dimer. J. Phys. Chem. Lett. 6:2708–13 [Google Scholar]
  45. Smith MC, Chao W, Takahashi K, Boering KA, Lin JJ-M. 45.  2016. Unimolecular decomposition rate of the Criegee intermediate (CH3)2COO measured directly with UV absorption spectroscopy. J. Phys. Chem. A 120:4789–98 [Google Scholar]
  46. Ting W-L, Chang C-H, Lee Y-F, Matsui H, Lee Y-P, Lin JJ-M. 46.  2014. Detailed mechanism of the CH2I + O2 reaction: yield and self-reaction of the simplest Criegee intermediate CH2OO. J. Chem. Phys. 141:104308 [Google Scholar]
  47. Foreman ES, Kapnas KM, Jou Y, Kalinowski J, Feng D. 47.  et al. 2015. High resolution absolute absorption cross sections of the transition of the CH2OO biradical. Phys. Chem. Chem. Phys. 17:32539–46 [Google Scholar]
  48. Su Y-T, Huang Y-H, Witek HA, Lee Y-P. 48.  2013. Infrared absorption spectrum of the simplest Criegee intermediate CH2OO. Science 340:174–76 [Google Scholar]
  49. Su Y-T, Lin H-Y, Putikam R, Matsui H, Lin MC, Lee Y-P. 49.  2014. Extremely rapid self-reaction of the simplest Criegee intermediate CH2OO and its implications in atmospheric chemistry. Nat. Chem. 6:477–83 [Google Scholar]
  50. Ahrens J, Carlsson PTM, Hertl N, Olzmann M, Pfeifle M. 50.  et al. 2014. Infrared detection of Criegee intermediates formed during the ozonolysis of β-pinene and their reactivity towards sulfur dioxide. Angew. Chem. Int. Ed. 53:715–19 [Google Scholar]
  51. Lin H-Y, Huang Y-H, Wang X, Bowman JM, Nishimura Y. 51.  et al. 2015. Infrared identification of the Criegee intermediates syn- and anti-CH3CHOO, and their distinct conformation-dependent reactivity. Nat. Commun 6:7012 [Google Scholar]
  52. Womack CC, Martin-Drumel M-A, Brown GG, Field RW, McCarthy MC. 52.  2015. Observation of the simplest Criegee intermediate CH2OO in the gas-phase ozonolysis of ethylene. Sci. Adv. 1:e1400105 [Google Scholar]
  53. McCarthy MC, Cheng L, Crabtree KN, Oscar Martinez J, Nguyen TL. 53.  et al. 2013. The simplest Criegee intermediate (H2C=O—O): isotopic spectroscopy, equilibrium structure, and possible formation from atmospheric lightning. J. Phys. Chem. Lett. 4:4133–39 [Google Scholar]
  54. Nguyen TL, Lee H, Matthews DA, McCarthy MC, Stanton JF. 54.  2015. Stabilization of the simplest Criegee intermediate from the reaction between ozone and ethylene: a high-level quantum chemical and kinetic analysis of ozonolysis. J. Phys. Chem. A 119:5524–33 [Google Scholar]
  55. Nakajima M, Endo Y. 55.  2013. Communication: determination of the molecular structure of the simplest Criegee intermediate CH2OO. J. Chem. Phys. 139:101103 [Google Scholar]
  56. Nakajima M, Endo Y. 56.  2014. Communication: spectroscopic characterization of an alkyl substituted Criegee intermediate syn-CH3CHOO through pure rotational transitions. J. Chem. Phys. 140:011101 [Google Scholar]
  57. Nakajima M, Endo Y. 57.  2014. Spectroscopic characterization of the complex between water and the simplest Criegee intermediate CH2OO. J. Chem. Phys. 140:134302 [Google Scholar]
  58. Nakajima M, Yue Q, Endo Y. 58.  2015. Fourier-transform microwave spectroscopy of an alkyl substituted Criegee intermediate anti-CH3CHOO. J. Mol. Spectrosc. 310:109–12 [Google Scholar]
  59. Daly AM, Drouin BJ, Yu S. 59.  2014. Submillimeter measurements of the Criegee intermediate CH2OO, in the gas phase. J. Mol. Spectrosc. 297:16–20 [Google Scholar]
  60. Nakajima M, Yue Q, Li J, Guo H, Endo Y. 60.  2015. An experimental and theoretical study on rotational constants of vibrationally excited CH2OO. Chem. Phys. Lett. 621:129–33 [Google Scholar]
  61. Miliordos E, Xantheas SS. 61.  2016. The origin of the reactivity of the Criegee intermediate: implications for atmospheric particle growth. Angew. Chem. Int. Ed. 55:1015–19 [Google Scholar]
  62. Buras ZJ, Elsamra RMI, Green WH. 62.  2014. Direct determination of the simplest Criegee intermediate (CH2OO) self reaction rate. J. Phys. Chem. Lett. 5:2224–28 [Google Scholar]
  63. Chhantyal-Pun R, Davey A, Shallcross DE, Percival CJ, Orr-Ewing AJ. 63.  2015. A kinetic study of the CH2OO Criegee intermediate self-reaction, reaction with SO2 and unimolecular reaction using cavity ring-down spectroscopy. Phys. Chem. Chem. Phys. 17:3617–26 [Google Scholar]
  64. Vereecken L, Harder H, Novelli A. 64.  2014. The reactions of Criegee intermediates with alkenes, ozone, and carbonyl oxides. Phys. Chem. Chem. Phys. 16:4039–49 [Google Scholar]
  65. Jalan A, Alecu IM, Meana-Pañeda R, Aguilera-Iparraguirre J, Yang KR. 65.  et al. 2013. New pathways for formation of acids and carbonyl products in low-temperature oxidation: the Korcek decomposition of γ-ketohydroperoxides. J. Am. Chem. Soc. 135:11100–14 [Google Scholar]
  66. Buras ZJ, Elsamra RMI, Jalan A, Middaugh JE, Green WH. 66.  2014. Direct kinetic measurements of reactions between the simplest Criegee intermediate CH2OO and alkenes. J. Phys. Chem. A 118:1997–2006 [Google Scholar]
  67. Elsamra RM, Jalan A, Buras ZJ, Middaugh JE, Green WH. 67.  2016. Temperature‐ and pressure‐dependent kinetics of CH2OO + CH3COCH3 and CH2OO + CH3CHO: direct measurements and theoretical analysis. Int. J. Chem. Kinet. 48:474–88 [Google Scholar]
  68. Stone D, Blitz M, Daubney L, Howes NUM, Seakins P. 68.  2014. Kinetics of CH2OO reactions with SO2, NO2, NO, H2O and CH3CHO as a function of pressure. Phys. Chem. Chem. Phys. 16:1139–49 [Google Scholar]
  69. Berndt T, Kaethner R, Voigtländer J, Stratmann F, Pfeifle M. 69.  et al. 2015. Kinetics of the unimolecular reaction of CH2OO and the bimolecular reactions with the water monomer, acetaldehyde and acetone under atmospheric conditions. Phys. Chem. Chem. Phys. 17:19862–73 [Google Scholar]
  70. Cox RA, Penkett SA. 70.  1971. Oxidation of atmospheric SO2 by products of the ozone-olefin reaction. Nature 230:321–22 [Google Scholar]
  71. Cox RA, Penkett SA. 71.  1972. Aerosol formation from sulphur dioxide in the presence of ozone and olefinic hydrocarbons. J. Chem. Soc. Faraday Trans. 1 68:1735–53 [Google Scholar]
  72. Johnson D, Lewin AG, Marston G. 72.  2001. The effect of Criegee-intermediate scavengers on the OH yield from the reaction of ozone with 2-methylbut-2-ene. J. Phys. Chem. A 105:2933–35 [Google Scholar]
  73. Johnson D, Marston G. 73.  2008. The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere. Chem. Soc. Rev. 37:699–716 [Google Scholar]
  74. Hatakeyama S, Kobayashi H, Lin Z-Y, Takagi H, Akimoto H. 74.  1986. Mechanism for the reaction of peroxymethylene with sulfur dioxide. J. Phys. Chem. 90:4131–35 [Google Scholar]
  75. Kurtén T, Lane JR, Jørgensen S, Kjaergaard HG. 75.  2011. A computational study of the oxidation of SO2 to SO3 by gas-phase organic oxidants. J. Phys. Chem. A 115:8669–81 [Google Scholar]
  76. Martinez RI, Herron JT. 76.  1981. Gas-phase reaction of SO2 with a Criegee intermediate in the presence of water vapor. J. Environ. Sci. Health A 16:623–36 [Google Scholar]
  77. Kuwata KT, Guinn EJ, Hermes MR, Fernandez JA, Mathison JM, Huang K. 77.  2015. A computational re-examination of the Criegee intermediate–sulfur dioxide reaction. J. Phys. Chem. A 119:10316–35 [Google Scholar]
  78. Vereecken L, Harder H, Novelli A. 78.  2012. The reaction of Criegee intermediates with NO, RO2, and SO2, and their fate in the atmosphere. Phys. Chem. Chem. Phys. 14:14682–95 [Google Scholar]
  79. III Mauldin RL, Berndt T, Sipilä M, Paasonen P, Petäjä T. 79.  et al. 2012. A new atmospherically relevant oxidant of sulphur dioxide. Nature 488:193–96 [Google Scholar]
  80. Berndt T, Jokinen T, III Mauldin RL, Petäjä T, Herrmann H. 80.  et al. 2012. Gas-phase ozonolysis of selected olefins: the yield of stabilized Criegee intermediate and the reactivity toward SO2. J. Phys. Chem. Lett. 3:2892–96 [Google Scholar]
  81. Berndt T, Voigtländer J, Stratmann F, Junninen H, III Mauldin RL. 81.  et al. 2014. Competing atmospheric reactions of CH2OO with SO2 and water vapour. Phys. Chem. Chem. Phys. 16:19130–36 [Google Scholar]
  82. Liu Y, Bayes KD, Sander SP. 82.  2014. Measuring rate constants for reactions of the simplest Criegee intermediate (CH2OO) by monitoring the OH radical. J. Phys. Chem. A 118:741–47 [Google Scholar]
  83. Okumura M. 83.  2015. Just add water dimers. Science 347:718–19 [Google Scholar]
  84. Williams J, Van Velthoven P, Brenninkmeijer C. 84.  2013. Quantifying the uncertainty in simulating global tropospheric composition due to the variability in global emission estimates of biogenic volatile organic compounds. Atmos. Chem. Phys. 13:2857–91 [Google Scholar]
  85. Goldstein AH, Galbally IE. 85.  2007. Known and unexplored organic constituents in the Earth's atmosphere. Environ. Sci. Technol. 41:1514–21 [Google Scholar]
  86. Kroll JH, Clarke JS, Donahue NM, Anderson JG, Demerjian KL. 86.  2001. Mechanism of HOx formation in the gas-phase ozone-alkene reaction. 1. Direct, pressure-dependent measurements of prompt OH yields. J. Phys. Chem. A 105:1554–60 [Google Scholar]
  87. Drozd GT, Donahue NM. 87.  2011. Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes. J. Phys. Chem. A 115:4381–87 [Google Scholar]
  88. Hasson AS, Ho AW, Kuwata KT, Paulson SE. 88.  2001. Production of stabilized Criegee intermediates and peroxides in the gas phase ozonolysis of alkenes 2. Asymmetric and biogenic alkenes. J. Geophys. Res. Atmos. 106:34143–53 [Google Scholar]
  89. Hasson AS, Orzechowska G, Paulson SE. 89.  2001. Production of stabilized Criegee intermediates and peroxides in the gas phase ozonolysis of alkenes 1. Ethene, trans-2-butene, and 2,3-dimethyl-2-butene. J. Geophys. Res. Atmos. 106:34131–42 [Google Scholar]
  90. Fang Y, Liu F, Barber VP, Klippenstein SJ, McCoy AB, Lester MI. 90.  2016. Communication: real time observation of unimolecular decay of Criegee intermediates to OH radical products. J. Chem. Phys. 144:061102 [Google Scholar]
  91. Newland MJ, Rickard AR, Alam MS, Vereecken L, Muñoz A. 91.  et al. 2015. Kinetics of stabilised Criegee intermediates derived from alkene ozonolysis: reactions with SO2, H2O and decomposition under boundary layer conditions. Phys. Chem. Chem. Phys. 17:4076–88 [Google Scholar]
  92. Faragó E, Szőri M, Owen M, Fittschen C, Viskolcz B. 92.  2015. Critical evaluation of the potential energy surface of the CH3 + HO2 reaction system. J. Chem. Phys. 142:054308 [Google Scholar]
  93. Olzmann M, Kraka E, Cremer D, Gutbrod R, Andersson S. 93.  1997. Energetics, kinetics, and product distributions of the reactions of ozone with ethene and 2,3-dimethyl-2-butene. J. Phys. Chem. A 101:9421–29 [Google Scholar]
  94. Zhang D, Zhang R. 94.  2002. Mechanism of OH formation from ozonolysis of isoprene: a quantum-chemical study. J. Am. Chem. Soc. 124:2692–703 [Google Scholar]
  95. Kalinowski J, Räsänen M, Heinonen P, Kilpeläinen I, Gerber RB. 95.  2014. Isomerization and decomposition of a Criegee intermediate in the ozonolysis of alkenes: dynamics using a multireference potential. Angew. Chem. Int. Ed. 53:265–68 [Google Scholar]
  96. Lu L, Beames JM, Lester MI. 96.  2014. Early time detection of OH radical products from energized Criegee intermediates CH2OO and CH3CHOO. Chem. Phys. Lett. 598:23–27 [Google Scholar]
  97. Liu F, Beames JM, Petit AS, McCoy AB, Lester MI. 97.  2014. Infrared-driven unimolecular reaction of CH3CHOO Criegee intermediates to OH radical products. Science 345:1596–98 [Google Scholar]
  98. Liu F, Beames JM, Lester MI. 98.  2014. Direct production of OH radicals upon CH overtone activation of (CH3)2COO Criegee intermediates. J. Chem. Phys. 141:234312 [Google Scholar]
  99. Kidwell NM, Li H, Wang X, Bowman JM, Lester MI. 99.  2016. Unimolecular dissociation dynamics of vibrationally activated CH3CHOO Criegee intermediates to OH radical products. Nat. Chem. 8:509–14 [Google Scholar]
  100. Berndt T, Jokinen T, Sipilä M, Mauldin RL, Herrmann H. 100.  et al. 2014. H2SO4 formation from the gas-phase reaction of stabilized Criegee intermediates with SO2: influence of water vapour content and temperature. Atmos. Environ. 89:603–12 [Google Scholar]
  101. Kroll JH, Sahay SR, Anderson JG, Demerjian KL, Donahue NM. 101.  2001. Mechanism of HOx formation in the gas-phase ozone-alkene reaction. 2. Prompt versus thermal dissociation of carbonyl oxides to form OH. J. Phys. Chem. A 105:4446–57 [Google Scholar]
  102. Kuwata KT, Valin LC, Converse AD. 102.  2005. Quantum chemical and master equation studies of the methyl vinyl carbonyl oxides formed in isoprene ozonolysis. J. Phys. Chem. A 109:10710–25 [Google Scholar]
  103. Bailey PS. 103.  1956. The ozonolysis of phenanthrene in methanol. J. Am. Chem. Soc. 78:3811–16 [Google Scholar]
  104. Neeb P, Horie O, Moortgat GK. 104.  1996. Gas-phase ozonolysis of ethene in the presence of hydroxylic compounds. Int. J. Chem. Kinet. 28:721–30 [Google Scholar]
  105. Horie O, Neeb P, Limbach S, Moortgat GK. 105.  1994. Formation of formic-acid and organic peroxides in the ozonolysis of ethene with added water vapor. Geophys. Res. Lett. 21:1523–26 [Google Scholar]
  106. Gäb S, Turner WV, Wolff S, Becker KH, Ruppert L, Brockmann KJ. 106.  1995. Formation of alkyl and hydroxyalkyl hydroperoxides on ozonolysis in water and in air. Atmos. Environ. 29:2401–7 [Google Scholar]
  107. Gäb S, Hellpointner E, Turner WV, Korte F. 107.  1985. Hydroxymethyl hydroperoxide and bis(hydroxymethyl) peroxide from gas-phase ozonolysis of naturally-occurring alkenes. Nature 316:535–36 [Google Scholar]
  108. Kumar M, Busch DH, Subramaniam B, Thompson WH. 108.  2014. Barrierless tautomerization of Criegee intermediates via acid catalysis. Phys. Chem. Chem. Phys. 16:22968–73 [Google Scholar]
  109. Anglada JM, Solé A. 109.  2016. Impact of water dimer on the atmospheric reactivity of carbonyl oxides. Phys. Chem. Chem. Phys. 18:17698–712 [Google Scholar]
  110. Vereecken L, Rickard A, Newland M, Bloss W. 110.  2015. Theoretical study of the reactions of Criegee intermediates with ozone, alkylhydroperoxides, and carbon monoxide. Phys. Chem. Chem. Phys. 17:23847–58 [Google Scholar]
  111. Anglada JM, Aplincourt P, Bofill JM, Cremer D. 111.  2002. Atmospheric formation of OH radicals and H2O2 from alkene ozonolysis under humid conditions. ChemPhysChem 3:215–21 [Google Scholar]
  112. Ryzhkov AB, Ariya PA. 112.  2004. A theoretical study of the reactions of parent and substituted Criegee intermediates with water and the water dimer. Phys. Chem. Chem. Phys. 6:5042–50 [Google Scholar]
  113. Kuwata KT, Hermes MR, Carlson MJ, Zogg CK. 113.  2010. Computational studies of the isomerization and hydration reactions of acetaldehyde oxide and methyl vinyl carbonyl oxide. J. Phys. Chem. A 114:9192–204 [Google Scholar]
  114. Anglada JM, González J, Torrent-Sucarrat M. 114.  2011. Effects of the substituents on the reactivity of carbonyl oxides. A theoretical study on the reaction of substituted carbonyl oxides with water. Phys. Chem. Chem. Phys. 13:13034–45 [Google Scholar]
  115. Chao W, Hsieh J-T, Chang C-H, Lin JJ-M. 115.  2015. Direct kinetic measurement of the reaction of the simplest Criegee intermediate with water vapor. Science 347:751–54 [Google Scholar]
  116. Lin L-C, Chang H-T, Chang C-H, Chao W, Smith MC. 116.  et al. 2016. Competition between H2O and (H2O)2 reactions with CH2OO/CH3CHOO. Phys. Chem. Chem. Phys. 18:4557–68 [Google Scholar]
  117. Lewis TR, Blitz MA, Heard DE, Seakins PW. 117.  2015. Direct evidence for a substantive reaction between the Criegee intermediate, CH2OO, and the water vapour dimer. Phys. Chem. Chem. Phys. 17:4859–63 [Google Scholar]
  118. Neeb P, Sauer F, Horie O, Moortgat GK. 118.  1997. Formation of hydroxymethyl hydroperoxide and formic acid in alkene ozonolysis in the presence of water vapour. Atmos. Environ. 31:1417–23 [Google Scholar]
  119. Nguyen TB, Tyndall GS, Crounse JD, Teng AP, Bates KH. 119.  et al. 2016. Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene. Phys. Chem. Chem. Phys. 18:10241–54 [Google Scholar]
  120. Sipilä M, Jokinen T, Berndt T, Richters S, Makkonen R. 120.  et al. 2014. Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO2 and organic acids. Atmos. Chem. Phys. 14:12143–53 [Google Scholar]
  121. Neeb P, Horie O, Moortgat GK. 121.  1995. The nature of the transitory product in the gas-phase ozonolysis of ethene. Chem. Phys. Lett. 246:150–56 [Google Scholar]
  122. Long B, Cheng J-R, Tan X-F, Zhang W-J. 122.  2009. Theoretical study on the detailed reaction mechanisms of carbonyl oxide with formic acid. J. Mol. Struct. 916:159–67 [Google Scholar]
  123. Aplincourt P, Ruiz-Lopez MF. 123.  2000. Theoretical study of formic acid anhydride formation from carbonyl oxide in the atmosphere. J. Phys. Chem. A 104:380–88 [Google Scholar]
  124. Liu F, Fang Y, Kumar M, Thompson WH, Lester MI. 124.  2015. Direct observation of vinyl hydroperoxide. Phys. Chem. Chem. Phys. 17:20490–94 [Google Scholar]
  125. Foreman ES, Kapnas KM, Murray C. 125.  2016. Reactions between Criegee intermediates and the inorganic acids HCl and HNO3: kinetics and atmospheric implications. Angew. Chem. Int. Ed. 55:10419–22 [Google Scholar]
  126. Ouyang B, McLeod MW, Jones RL, Bloss WJ. 126.  2013. NO3 radical production from the reaction between the Criegee intermediate CH2OO and NO2. Phys. Chem. Chem. Phys. 15:17070–75 [Google Scholar]
  127. Presto AA, Donahue NM. 127.  2004. Ozonolysis fragment quenching by nitrate formation: the pressure dependence of prompt OH radical formation. J. Phys. Chem. A 108:9096–104 [Google Scholar]
  128. Kulmala M, Petäjä T, Ehn M, Thornton J, Sipilä M. 128.  et al. 2014. Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. Annu. Rev. Phys. Chem. 65:21–37 [Google Scholar]
  129. Docherty KS, Ziemann PJ. 129.  2003. Effects of stabilized Criegee intermediate and OH radical scavengers on aerosol formation from reactions of β-pinene with O3. Aerosol Sci. Technol. 37:877–91 [Google Scholar]
  130. Rissanen MP, Kurtén T, Sipilä M, Thornton JA, Kausiala O. 130.  et al. 2015. Effects of chemical complexity on the autoxidation mechanisms of endocyclic alkene ozonolysis products: from methylcyclohexenes toward understanding α-pinene. J. Phys. Chem. A 119:4633–50 [Google Scholar]
  131. Sadezky A, Winterhalter R, Kanawati B, Römpp A, Spengler B. 131.  et al. 2008. Oligomer formation during gas-phase ozonolysis of small alkenes and enol ethers: new evidence for the central role of the Criegee intermediate as oligomer chain unit. Atmos. Chem. Phys. 8:2667–99 [Google Scholar]
  132. Sadezky A, Chaimbault P, Mellouki A, Römpp A, Winterhalter R. 132.  et al. 2006. Formation of secondary organic aerosol and oligomers from the ozonolysis of enol ethers. Atmos. Chem. Phys. 6:5009–24 [Google Scholar]
  133. Sakamoto Y, Inomata S, Hirokawa J. 133.  2013. Oligomerization reaction of the Criegee intermediate leads to secondary organic aerosol formation in ethylene ozonolysis. J. Phys. Chem. A 117:12912–21 [Google Scholar]
  134. Zhao Y, Wingen LM, Perraud V, Greaves J, Finlayson-Pitts BJ. 134.  2015. Role of the reaction of stabilized Criegee intermediates with peroxy radicals in particle formation and growth in air. Phys. Chem. Chem. Phys. 17:12500–14 [Google Scholar]
  135. Anglada JM, Olivella S, Solé A. 135.  2013. The reaction of formaldehyde carbonyl oxide with the methyl peroxy radical and its relevance in the chemistry of the atmosphere. Phys. Chem. Chem. Phys. 15:18921–33 [Google Scholar]
  136. Ziemann PJ. 136.  2005. Aerosol products, mechanisms, and kinetics of heterogeneous reactions of ozone with oleic acid in pure and mixed particles. Faraday Discuss 130:469–90 [Google Scholar]
  137. Zahardis J, Petrucci GA. 137.  2007. The oleic acid–ozone heterogeneous reaction system: products, kinetics, secondary chemistry, and atmospheric implications of a model system—a review. Atmos. Chem. Phys. 7:1237–74 [Google Scholar]
  138. Hearn JD, Lovett AJ, Smith GD. 138.  2005. Ozonolysis of oleic acid particles: evidence for a surface reaction and secondary reactions involving Criegee intermediates. Phys. Chem. Chem. Phys. 7:501–11 [Google Scholar]
  139. Wang M, Yao L, Zheng J, Wang X, Chen J. 139.  et al. 2016. Reactions of atmospheric particulate stabilized Criegee intermediates lead to high-molecular-weight aerosol components. Environ. Sci. Technol. 50:5702–10 [Google Scholar]
  140. Chapleski RC, Zhang Y, Troya D, Morris JR. 140.  2016. Heterogeneous chemistry and reaction dynamics of the atmospheric oxidants, O3, NO3, and OH, on organic surfaces. Chem. Soc. Rev. 45:3731–46 [Google Scholar]
  141. Hakala JP, Donahue NM. 141.  2016. Pressure-dependent Criegee intermediate stabilization from alkene ozonolysis. J. Phys. Chem. A 120:2173–78 [Google Scholar]
/content/journals/10.1146/annurev-physchem-052516-050739
Loading
/content/journals/10.1146/annurev-physchem-052516-050739
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error