1932

Abstract

Metal-free motifs, such as graphitic carbon nitride, conjugated polymers, and doped nanostructures, are emerging as a new class of Earth-abundant materials for solar fuel devices. Although these metal-free structures show great potential, detailed mechanistic understanding of their performance remains limited. Here, we review important experimental and theoretical findings relevant to the role of metal-free motifs as either photoelectrodes or electrocatalysts. First, the light-harvesting characteristics of metal-free photoelectrodes (band energetics, exciton binding energies, charge carrier mobilities and lifetimes) are discussed and contrasted with those in traditional inorganic semiconductors (such as Si). Second, the mechanistic insights into the electrocatalytic oxygen reduction and evolution reactions, hydrogen evolution reaction, and carbon dioxide reduction reaction by metal-free motifs are summarized, including experimental surface-sensitive spectroscopy findings, studies on small molecular models, and computational modeling of these chemical transformations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-052516-050924
2017-05-05
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/physchem/68/1/annurev-physchem-052516-050924.html?itemId=/content/journals/10.1146/annurev-physchem-052516-050924&mimeType=html&fmt=ahah

Literature Cited

  1. Lewis NS, Nocera DG. 1.  2006. Powering the planet: chemical challenges in solar energy utilization. PNAS 103:15729–35 [Google Scholar]
  2. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q. 2.  et al. 2010. Solar water splitting cells. Chem. Rev. 110:6446–73 [Google Scholar]
  3. Wang W-H, Himeda Y, Muckerman JT, Manbeck GF, Fujita E. 3.  2015. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 115:12936–73 [Google Scholar]
  4. Zhou M, Wang H-L, Guo S. 4.  2016. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev. 45:1273–307 [Google Scholar]
  5. Trasatti S. 5.  1972. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. 39:163–84 [Google Scholar]
  6. Nørskov JK, Bligaard T, Logadottir A, Kitchin J, Chen J. 6.  et al. 2005. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152:J23–26 [Google Scholar]
  7. Rossmeisl J, Qu Z-W, Zhu H, Kroes G-J, Nørskov JK. 7.  2007. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607:83–89 [Google Scholar]
  8. Trasatti S. 8.  1980. Electrocatalysis by oxides—attempt at a unifying approach. J. Electroanal. Chem. 111:125–31 [Google Scholar]
  9. Sealy C. 9.  2008. The problem with platinum. Mater. Today 11:65–68 [Google Scholar]
  10. Gordon RB, Bertram M, Graedel T. 10.  2006. Metal stocks and sustainability. PNAS 103:1209–14 [Google Scholar]
  11. Kanan MW, Nocera DG. 11.  2008. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and CO2+. Science 321:1072–75 [Google Scholar]
  12. Cady CW, Crabtree RH, Brudvig GW. 12.  2008. Functional models for the oxygen-evolving complex of photosystem II. Coord. Chem. Rev. 252:444–55 [Google Scholar]
  13. Zou X, Zhang Y. 13.  2015. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44:5148–80 [Google Scholar]
  14. Thomas A, Fischer A, Goettmann F, Antonietti M, Müller J-O. 14.  et al. 2008. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18:4893–908 [Google Scholar]
  15. Wang Y, Wang X, Antonietti M. 15.  2012. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 51:68–89 [Google Scholar]
  16. Wang X, Blechert S, Antonietti M. 16.  2012. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal 2:1596–606 [Google Scholar]
  17. Wang H, Maiyalagan T, Wang X. 17.  2012. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–94 [Google Scholar]
  18. Zhao Y, Nakamura R, Kamiya K, Nakanishi S, Hashimoto K. 18.  2013. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 4:2390 [Google Scholar]
  19. Qu L, Liu Y, Baek J-B, Dai L. 19.  2010. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–26 [Google Scholar]
  20. Geng D, Chen Y, Chen Y, Li Y, Li R. 20.  et al. 2011. High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ. Sci. 4:760–64 [Google Scholar]
  21. Liu J, Liu Y, Liu N, Han Y, Zhang X. 21.  et al. 2015. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347:970–74 [Google Scholar]
  22. Wang X, Maeda K, Thomas A, Takanabe K, Xin G. 22.  et al. 2009. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8:76–80 [Google Scholar]
  23. Scholes GD, Rumbles G. 23.  2006. Excitons in nanoscale systems. Nat. Mater. 5:683–96 [Google Scholar]
  24. Li L, Salvador PA, Rohrer GS. 24.  2014. Photocatalysts with internal electric fields. Nanoscale 6:24–42 [Google Scholar]
  25. Kippelen B, Brédas J-L. 25.  2009. Organic photovoltaics. Energy Environ. Sci. 2:251–61 [Google Scholar]
  26. Yanagida S, Kabumoto A, Mizumoto K, Pac C, Yoshino K. 26.  1985. Poly(p-phenylene)-catalysed photoreduction of water to hydrogen. J. Chem. Soc. Chem. Commun. 1985:474–75 [Google Scholar]
  27. Shibata T, Kabumoto A, Shiragami T, Ishitani O, Pac C, Yanagida S. 27.  1990. Novel visible-light-driven photocatalyst. Poly(p-phenylene)-catalyzed photoreductions of water, carbonyl compounds, and olefins. J. Phys. Chem. 94:2068–76 [Google Scholar]
  28. Brédas J-L, Cornil J, Heeger AJ. 28.  1996. The exciton binding energy in luminescent conjugated polymers. Adv. Mater. 8:447–52 [Google Scholar]
  29. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J-L. 29.  2007. Charge transport in organic semiconductors. Chem. Rev. 107:926–52 [Google Scholar]
  30. Huang C, Chen C, Zhang M, Lin L, Ye X. 30.  et al. 2015. Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat. Commun. 6:7698 [Google Scholar]
  31. Sprick RS, Jiang J-X, Bonillo B, Ren S, Ratvijitvech T. 31.  et al. 2015. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J. Am. Chem. Soc. 137:3265–70 [Google Scholar]
  32. Jr. Hummers WS, Offeman RE. 32.  1958. Preparation of graphitic oxide. J. Am. Chem. Soc. 80:1339 [Google Scholar]
  33. Kailasam K, Schmidt J, Bildirir H, Zhang G, Blechert S. 33.  et al. 2013. Room temperature synthesis of heptazine‐based microporous polymer networks as photocatalysts for hydrogen evolution. Macromol. Rapid Commun. 34:1008–13 [Google Scholar]
  34. Schwab MG, Hamburger M, Feng X, Shu J, Spiess HW. 34.  et al. 2010. Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks. Chem. Commun. 46:8932–34 [Google Scholar]
  35. Wang P, Jiang X, Zhao J. 35.  2015. Bottom-up design of 2D organic photocatalysts for visible-light driven hydrogen evolution. J. Phys. Condens. Matter 28:034004 [Google Scholar]
  36. Jiang X, Wang P, Zhao J. 36.  2015. 2D covalent triazine framework: a new class of organic photocatalyst for water splitting. J. Mater. Chem. A 3:7750–58 [Google Scholar]
  37. Yan H, Huang Y. 37.  2011. Polymer composites of carbon nitride and poly(3-hexylthiophene) to achieve enhanced hydrogen production from water under visible light. Chem. Commun. 47:4168–70 [Google Scholar]
  38. Zhang J, Chen X, Takanabe K, Maeda K, Domen K. 38.  et al. 2010. Synthesis of a carbon nitride structure for visible‐light catalysis by copolymerization. Angew. Chem. Int. Ed. 49:441–44 [Google Scholar]
  39. Liu G, Niu P, Sun C, Smith SC, Chen Z. 39.  et al. 2010. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 132:11642–48 [Google Scholar]
  40. Zhang J, Sun J, Maeda K, Domen K, Liu P. 40.  et al. 2011. Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis. Energy Environ. Sci. 4:675–78 [Google Scholar]
  41. Zhang G, Zhang M, Ye X, Qiu X, Lin S, Wang X. 41.  2014. Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 26:805–9 [Google Scholar]
  42. Wang Y, Di Y, Antonietti M, Li H, Chen X, Wang X. 42.  2010. Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids. Chem. Mater. 22:5119–21 [Google Scholar]
  43. Zhang Y, Mori T, Ye J, Antonietti M. 43.  2010. Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 132:6294–95 [Google Scholar]
  44. Saha S, Jana M, Khanra P, Samanta P, Koo H. 44.  et al. 2015. Band gap engineering of boron nitride by graphene and its application as positive electrode material in asymmetric supercapacitor device. ACS Appl. Mater. Interfaces 7:14211–22 [Google Scholar]
  45. Yeh T-F, Chan F-F, Hsieh C-T, Teng H. 45.  2011. Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: the band positions of graphite oxide. J. Phys. Chem. C 115:22587–97 [Google Scholar]
  46. Green MA. 46.  2013. Improved value for the silicon free exciton binding energy. AIP Adv 3:112104 [Google Scholar]
  47. Melissen S, Le Bahers T, Steinmann SN, Sautet P. 47.  2015. Relationship between carbon nitride structure and exciton binding energies: a DFT perspective. J. Phys. Chem. C 119:25188–96 [Google Scholar]
  48. Wei W, Jacob T. 48.  2013. Strong excitonic effects in the optical properties of graphitic carbon nitride g-C3N4 from first principles. Phys. Rev. B 87:085202 [Google Scholar]
  49. Merschjann C, Tyborski T, Orthmann S, Yang F, Schwarzburg K. 49.  et al. 2013. Photophysics of polymeric carbon nitride: an optical quasimonomer. Phys. Rev. B 87:205204 [Google Scholar]
  50. Azevedo S, Moraes F, de Lima Bernardo B. 50.  2014. Optical properties of BxNyCz monolayers. Appl. Phys. A 117:2095–100 [Google Scholar]
  51. Bernardi M, Palummo M, Grossman JC. 51.  2012. Optoelectronic properties in monolayers of hybridized graphene and hexagonal boron nitride. Phys. Rev. Lett. 108:226805 [Google Scholar]
  52. Lee D, Seo J, Zhu X, Lee J, Shin H-J. 52.  et al. 2013. Quantum confinement-induced tunable exciton states in graphene oxide. Sci. Rep. 3:2250 [Google Scholar]
  53. Zhang J, Zhang M, Sun RQ, Wang X. 53.  2012. A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem. Int. Ed. 124:10145–49 [Google Scholar]
  54. Tamai Y, Ohkita H, Benten H, Ito S. 54.  2015. Exciton diffusion in conjugated polymers: from fundamental understanding to improvement in photovoltaic conversion efficiency. J. Phys. Chem. Lett. 6:3417–28 [Google Scholar]
  55. Niu P, Zhang L, Liu G, Cheng HM. 55.  2012. Graphene‐like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22:4763–70 [Google Scholar]
  56. Lu J, Zhang K, Liu XF, Zhang H, Sum TC. 56.  et al. 2013. Order–disorder transition in a two-dimensional boron–carbon–nitride alloy. Nat. Commun. 4:2681 [Google Scholar]
  57. Chien CT, Li SS, Lai WJ, Yeh YC, Chen HA. 57.  et al. 2012. Tunable photoluminescence from graphene oxide. Angew. Chem. Int. Ed. 51:6662–66 [Google Scholar]
  58. Rao KV, Mohapatra S, Maji TK, George SJ. 58.  2012. Guest‐responsive reversible swelling and enhanced fluorescence in a super‐absorbent, dynamic microporous polymer. Chem. Eur. J. 18:4505–9 [Google Scholar]
  59. Merschjann C, Tschierlei S, Tyborski T, Kailasam K, Orthmann S. 59.  et al. 2015. Complementing graphenes: 1D interplanar charge transport in polymeric graphitic carbon nitrides. Adv. Mater. 27:7993–99 [Google Scholar]
  60. Ci L, Song L, Jin C, Jariwala D, Wu D. 60.  et al. 2010. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9:430–35 [Google Scholar]
  61. Eda G, Mattevi C, Yamaguchi H, Kim H, Chhowalla M. 61.  2009. Insulator to semimetal transition in graphene oxide. J. Phys. Chem. C 113:15768–71 [Google Scholar]
  62. Wan S, Gándara F, Asano A, Furukawa H, Saeki A. 62.  et al. 2011. Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 23:4094–97 [Google Scholar]
  63. Jacoboni C, Canali C, Ottaviani G, Quaranta AA. 63.  1977. A review of some charge transport properties of silicon. Solid-State Electron 20:77–89 [Google Scholar]
  64. Meek GA, Baczewski AD, Little DJ, Levine BG. 64.  2014. Polaronic relaxation by three-electron bond formation in graphitic carbon nitrides. J. Phys. Chem. C 118:4023–32 [Google Scholar]
  65. Wang X, Maeda K, Thomas A, Takanabe K, Xin G. 65.  et al. 2009. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8:76–80 [Google Scholar]
  66. Kuriki R, Sekizawa K, Ishitani O, Maeda K. 66.  2015. Visible‐light‐driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts. Angew. Chem. Int. Ed. 54:2406–9 [Google Scholar]
  67. Maeda K, Wang X, Nishihara Y, Lu D, Antonietti M, Domen K. 67.  2009. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J. Phys. Chem. C 113:4940–47 [Google Scholar]
  68. Ran J, Ma TY, Gao G, Du X-W, Qiao SZ. 68.  2015. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 8:3708–17 [Google Scholar]
  69. Wang X, Maeda K, Chen X, Takanabe K, Domen K. 69.  et al. 2009. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc. 131:1680–81 [Google Scholar]
  70. Du A, Sanvito S, Li Z, Wang D, Jiao Y. 70.  et al. 2012. Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron–hole puddle, interfacial charge transfer, and enhanced visible light response. J. Am. Chem. Soc. 134:4393–97 [Google Scholar]
  71. Huang C, Chen C, Zhang M, Lin L, Ye X. 71.  et al. 2015. Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat. Commun. 6:7698 [Google Scholar]
  72. Sprick RS, Bonillo B, Clowes R, Guiglion P, Brownbill NJ. 72.  et al. 2016. Visible‐light‐driven hydrogen evolution using planarized conjugated polymer photocatalysts. Angew. Chem. Int. Ed. 55:1792–96 [Google Scholar]
  73. Koppenol W, Butler J. 73.  1985. Energetics of interconversion reactions of oxyradicals. Adv. Free Radic. Biol. Med. 1:91–131 [Google Scholar]
  74. Bolotin KI, Sikes K, Jiang Z, Klima M, Fudenberg G. 74.  et al. 2008. Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–55 [Google Scholar]
  75. Peigney A, Laurent C, Flahaut E, Bacsa R, Rousset A. 75.  2001. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39:507–14 [Google Scholar]
  76. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. 76.  2015. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44:2060–86 [Google Scholar]
  77. Dai L, Xue Y, Qu L, Choi H-J, Baek J-B. 77.  2015. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115:4823–92 [Google Scholar]
  78. Tian GL, Zhao MQ, Yu D, Kong XY, Huang JQ. 78.  et al. 2014. Nitrogen‐doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Small 10:2251–59 [Google Scholar]
  79. El‐Sawy AM, Mosa IM, Su D, Guild CJ, Khalid S. 79.  et al. 2015. Controlling the active sites of sulfur‐doped carbon nanotube–graphene nanolobes for highly efficient oxygen evolution and reduction catalysis. Adv. Energy Mater. 6:1501966 [Google Scholar]
  80. Sharma PP, Wu J, Yadav RM, Liu M, Wright CJ. 80.  et al. 2015. Nitrogen‐doped carbon nanotube arrays for high‐efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity. Angew. Chem. Int. Ed. 54:13701–5 [Google Scholar]
  81. Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen BA. 81.  et al. 2013. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 4:2819 [Google Scholar]
  82. Wu J, Liu M, Sharma PP, Yadav RM, Ma L. 82.  et al. 2015. Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Lett 16:466–70 [Google Scholar]
  83. Gong K, Du F, Xia Z, Durstock M, Dai L. 83.  2009. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–64 [Google Scholar]
  84. Yang L, Jiang S, Zhao Y, Zhu L, Chen S. 84.  et al. 2011. Boron‐doped carbon nanotubes as metal‐free electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 50:7132–35 [Google Scholar]
  85. Yang Z, Yao Z, Li G, Fang G, Nie H. 85.  et al. 2011. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6:205–11 [Google Scholar]
  86. Wang S, Yu D, Dai L. 86.  2011. Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 133:5182–85 [Google Scholar]
  87. Wang S, Yu D, Dai L, Chang DW, Baek J-B. 87.  2011. Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. ACS Nano 5:6202–9 [Google Scholar]
  88. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. 88.  2014. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J. Am. Chem. Soc. 136:4394–403 [Google Scholar]
  89. Zhang L, Niu J, Li M, Xia Z. 89.  2014. Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells. J. Phys. Chem. C 118:3545–53 [Google Scholar]
  90. Shui J, Wang M, Du F, Dai L. 90.  2015. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci. Adv. 1:e1400129 [Google Scholar]
  91. Feng L, Yan Y, Chen Y, Wang L. 91.  2011. Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells. Energy Environ. Sci. 4:1892–99 [Google Scholar]
  92. Zhu Y, Li L, Zhang C, Casillas G, Sun Z. 92.  et al. 2012. A seamless three-dimensional carbon nanotube graphene hybrid material. Nat. Commun. 3:1225 [Google Scholar]
  93. Yan H, Xu B, Shi S, Ouyang C. 93.  2012. First-principles study of the oxygen adsorption and dissociation on graphene and nitrogen doped graphene for Li-air batteries. J. Appl. Phys. 112:104316 [Google Scholar]
  94. Qiao J, Saito M, Hayamizu K, Okada T. 94.  2006. Degradation of perfluorinated ionomer membranes for PEM fuel cells during processing with H2O2. J. Electrochem. Soc. 153:A967–74 [Google Scholar]
  95. Zhou R, Zheng Y, Jaroniec M, Qiao SZ. 95.  2016. Determination of electron transfer number for oxygen reduction reaction: from theory to experiment. ACS Catal 6:4720–28 [Google Scholar]
  96. Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao SZ. 96.  2013. Two‐step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. 125:3192–98 [Google Scholar]
  97. Wang S, Zhang L, Xia Z, Roy A, Chang DW. 97.  et al. 2012. BCN graphene as efficient metal‐free electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 51:4209–12 [Google Scholar]
  98. Liang J, Jiao Y, Jaroniec M, Qiao SZ. 98.  2012. Sulfur and nitrogen dual‐doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 51:11496–500 [Google Scholar]
  99. Zheng Y, Jiao Y, Li LH, Xing T, Chen Y. 99.  et al. 2014. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8:5290–96 [Google Scholar]
  100. Viswanathan V, Hansen HA, Rossmeisl J, Nørskov JK. 100.  2012. Unifying the 2e and 4e reduction of oxygen on metal surfaces. J. Phys. Chem. Lett. 3:2948–51 [Google Scholar]
  101. Zhang L, Xia Z. 101.  2011. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C 115:11170–76 [Google Scholar]
  102. Kim H, Lee K, Woo SI, Jung Y. 102.  2011. On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons. Phys. Chem. Chem. Phys. 13:17505–10 [Google Scholar]
  103. Sabatier P. 103.  1911. Hydrogénations et déshydrogénations par catalyse. Ber. Dtsch. Chem. Ges. 44:1984–2001 [Google Scholar]
  104. Cheon JY, Kim JH, Kim JH, Goddeti KC, Park JY, Joo SH. 104.  2014. Intrinsic relationship between enhanced oxygen reduction reaction activity and nanoscale work function of doped carbons. J. Am. Chem. Soc. 136:8875–78 [Google Scholar]
  105. Luo Z, Lim S, Tian Z, Shang J, Lai L. 105.  et al. 2011. Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property. J. Mater. Chem. 21:8038–44 [Google Scholar]
  106. Zhao Z, Li M, Zhang L, Dai L, Xia Z. 106.  2015. Design principles for heteroatom‐doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal–air batteries. Adv. Mater. 27:6834–40 [Google Scholar]
  107. Li Q, Zhang S, Dai L, Li L. 107.  2012. Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction. J. Am. Chem. Soc. 134:18932–35 [Google Scholar]
  108. Li Q, Noffke BW, Wang Y, Menezes B, Peters DG. 108.  et al. 2014. Electrocatalytic oxygen activation by carbanion intermediates of nitrogen-doped graphitic carbon. J. Am. Chem. Soc. 136:3358–61 [Google Scholar]
  109. Kaye R, Stonehill H. 109.  1952. The polarographic reduction of pyridine, quinoline, and phenazine. J. Chem. Soc.3240–43 [Google Scholar]
  110. Sawyer DT, Komai RY. 110.  1972. Electrochemistry of phenazine at a platinum electrode in aprotic solvents. Anal. Chem. 44:715–21 [Google Scholar]
  111. Fukushima T, Drisdell W, Yano J, Surendranath Y. 111.  2015. Graphite-conjugated pyrazines as molecularly tunable heterogeneous electrocatalysts. J. Am. Chem. Soc. 137:10926–29 [Google Scholar]
  112. Zhao Y, Nakamura R, Kamiya K, Nakanishi S, Hashimoto K. 112.  2013. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 4:2390 [Google Scholar]
  113. Zhang J, Zhao Z, Xia Z, Dai L. 113.  2015. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10:444–52 [Google Scholar]
  114. Yang HB, Miao J, Hung S-F, Chen J, Tao HB. 114.  et al. 2016. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2:e1501122 [Google Scholar]
  115. Li R, Wei Z, Gou X. 115.  2015. Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. ACS Catal 5:4133–42 [Google Scholar]
  116. Zhao J, Liu Y, Quan X, Chen S, Zhao H, Yu H. 116.  2016. Nitrogen and sulfur co-doped graphene/carbon nanotube as metal-free electrocatalyst for oxygen evolution reaction: the enhanced performance by sulfur doping. Electrochim. Acta 204:169–75 [Google Scholar]
  117. Lu X, Yim W-L, Suryanto BH, Zhao C. 117.  2015. Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J. Am. Chem. Soc. 137:2901–7 [Google Scholar]
  118. Zhao Z, Zhang L, Xia Z. 118.  2016. Electron transfer and catalytic mechanism of organic molecule-adsorbed graphene nanoribbons as efficient catalysts for oxygen reduction and evolution reactions. J. Phys. Chem. C 120:2166–75 [Google Scholar]
  119. Mirzakulova E, Khatmullin R, Walpita J, Corrigan T, Vargas-Barbosa NM. 119.  et al. 2012. Electrode-assisted catalytic water oxidation by a flavin derivative. Nat. Chem. 4:794–801 [Google Scholar]
  120. Bunting JW. 120.  1980. Heterocyclic pseudobases. Adv. Heterocycl. Chem. 25:1–82 [Google Scholar]
  121. Suzuki T, Nishida J, Ohkita M, Tsuji T. 121.  2000. Preparation, structure, and redox reactions of nine‐membered cyclic peroxides: a novel electrochromic system undergoing reversible extrusion and trapping of O2. Angew. Chem. Int. Ed. 39:1804–6 [Google Scholar]
  122. Walpita J, Yang X, Khatmullin R, Luk HL, Hadad CM, Glusac KD. 122.  2015. Pourbaix diagrams in weakly coupled systems: a case study involving acridinol and phenanthridinol pseudobases. J. Phys. Org. Chem. 29:204–8 [Google Scholar]
  123. Yang X, Walpita J, Mirzakulova E, Oottikkal S, Hadad CM, Glusac KD. 123.  2014. Mechanistic studies of electrode-assisted catalytic oxidation by flavinium and acridinium cations. ACS Catal 4:2635–44 [Google Scholar]
  124. Zoric MR, Pandey Kadel U, Korvinson KA, Luk HL, Nimthong‐ Roldan A. 124.  et al. 2016. Conformational flexibility of xanthene‐based covalently linked dimers. J. Phys. Org. Chem. 29:505–13 [Google Scholar]
  125. Conway B, Tilak B. 125.  2002. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 47:3571–94 [Google Scholar]
  126. Zheng Y, Jiao Y, Zhu Y, Li LH, Han Y. 126.  et al. 2014. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5:3783 [Google Scholar]
  127. Chen W-F, Muckerman JT, Fujita E. 127.  2013. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 49:8896–909 [Google Scholar]
  128. Ito Y, Cong W, Fujita T, Tang Z, Chen M. 128.  2015. High catalytic activity of nitrogen and sulfur co‐doped nanoporous graphene in the hydrogen evolution reaction. Angew. Chem. Int. Ed. 54:2131–36 [Google Scholar]
  129. Dolganov A, Tanaseichuk B, Moiseeva D, Yurova V, Sakanyan J. 129.  et al. 2016. Acridinium salts as metal-free electrocatalyst for hydrogen evolution reaction. Electrochem. Commun. 68:59–61 [Google Scholar]
  130. White JL, Baruch MF, III Pander JE, Hu Y, Fortmeyer IC. 130.  et al. 2015. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem. Rev. 115:12888–935 [Google Scholar]
  131. Singh MR, Clark EL, Bell AT. 131.  2015. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels. PNAS 112:E6111–18 [Google Scholar]
  132. Seshadri G, Lin C, Bocarsly AB. 132.  1994. A new homogeneous electrocatalyst for the reduction of carbon dioxide to methanol at low overpotential. J. Electroanal. Chem. 372:145–50 [Google Scholar]
  133. Barton EE, Rampulla DM, Bocarsly AB. 133.  2008. Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J. Am. Chem. Soc. 130:6342–44 [Google Scholar]
  134. Barton Cole E, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB. 134.  2010. Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J. Am. Chem. Soc. 132:11539–51 [Google Scholar]
  135. Sun X, Kang X, Zhu Q, Ma J, Yang G. 135.  et al. 2016. Very highly efficient reduction of CO2 to CH4 using metal-free N-doped carbon electrodes. Chem. Sci. 7:2883–87 [Google Scholar]
  136. Nakata K, Ozaki T, Terashima C, Fujishima A, Einaga Y. 136.  2014. High‐yield electrochemical production of formaldehyde from CO2 and seawater. Angew. Chem. 126:890–93 [Google Scholar]
  137. Liu Y, Chen S, Quan X, Yu H. 137.  2015. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 137:11631–36 [Google Scholar]
  138. Lim C-H, Holder AM, Musgrave CB. 138.  2012. Mechanism of homogeneous reduction of CO2 by pyridine: proton relay in aqueous solvent and aromatic stabilization. J. Am. Chem. Soc. 135:142–54 [Google Scholar]
  139. Keith JA, Carter EA. 139.  2012. Theoretical insights into pyridinium-based photoelectrocatalytic reduction of CO2. J. Am. Chem. Soc. 134:7580–83 [Google Scholar]
  140. Lim C-H, Holder AM, Hynes JT, Musgrave CB. 140.  2014. Reduction of CO2 to methanol catalyzed by a biomimetic organo-hydride produced from pyridine. J. Am. Chem. Soc. 136:16081–95 [Google Scholar]
  141. Lessio M, Carter EA. 141.  2015. What is the role of pyridinium in pyridine-catalyzed CO2 reduction on p-GaP photocathodes?. J. Am. Chem. Soc. 137:13248–51 [Google Scholar]
  142. Ertem MZ, Konezny SJ, Araujo CM, Batista VS. 142.  2013. Functional role of pyridinium during aqueous electrochemical reduction of CO2 on Pt(111). J. Phys. Chem. Lett. 4:745–48 [Google Scholar]
  143. Yan Y, Zeitler EL, Gu J, Hu Y, Bocarsly AB. 143.  2013. Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. J. Am. Chem. Soc. 135:14020–23 [Google Scholar]
  144. Costentin C, Canales JC, Haddou B, Savéant J-M. 144.  2013. Electrochemistry of acids on platinum. Application to the reduction of carbon dioxide in the presence of pyridinium ion in water. J. Am. Chem. Soc. 135:17671–74 [Google Scholar]
  145. Keith JA, Carter EA. 145.  2013. Electrochemical reactivities of pyridinium in solution: consequences for CO2 reduction mechanisms. Chem. Sci. 4:1490–96 [Google Scholar]
  146. Lim C-H, Holder AM, Hynes JT, Musgrave CB. 146.  2015. Catalytic reduction of CO2 by renewable organohydrides. J. Phys. Chem. Lett. 6:5078–92 [Google Scholar]
/content/journals/10.1146/annurev-physchem-052516-050924
Loading
/content/journals/10.1146/annurev-physchem-052516-050924
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error