1932

Abstract

Pendrin is a Na+-independent Cl/HCO exchanger that localizes to type B and non-A, non-B intercalated cells, which are expressed within the aldosterone-sensitive region of the nephron, i.e., the distal convoluted tubule, the connecting tubule, and the cortical collecting duct. Type B cells mediate Cl absorption and HCO secretion primarily through pendrin-mediated Cl/HCO exchange. At least in some treatment models, pendrin acts in tandem with the Na+-dependent Cl/HCO exchanger (NDCBE) encoded by to mediate NaCl absorption. The pendrin-mediated Cl/HCO exchange process is greatly upregulated in models of metabolic alkalosis, such as following aldosterone administration or dietary NaHCO loading. It is also upregulated by angiotensin II. In the absence of pendrin [ (−/−) or pendrin null mice], aldosterone-stimulated NaCl absorption is reduced, which lowers the blood pressure response to aldosterone and enhances the alkalosis that follows the administration of this steroid hormone. Pendrin modulates aldosterone-induced Na+ absorption by changing ENaC abundance and function through a kidney-specific mechanism that does not involve changes in the concentration of a circulating hormone. Instead, pendrin changes ENaC abundance and function at least in part by altering luminal HCO and ATP concentrations. Thus, aldosterone and angiotensin II also stimulate pendrin expression and function, which likely contributes to the pressor response of these hormones. This review summarizes the contribution of the Cl/HCO exchanger pendrin in distal nephron function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021014-071854
2015-02-10
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/physiol/77/1/annurev-physiol-021014-071854.html?itemId=/content/journals/10.1146/annurev-physiol-021014-071854&mimeType=html&fmt=ahah

Literature Cited

  1. Wall SM, Weinstein AM. 1.  2013. Cortical distal nephron Cl transport in volume homeostasis and blood pressure regulation. Am. J. Physiol. Ren. Physiol. 305:F427–38 [Google Scholar]
  2. Costanzo LS, Windhager EE. 2.  1978. Calcium and sodium transport by the distal convoluted tubule of the rat. Am. J. Physiol. Ren. Physiol. 235:F492–506 [Google Scholar]
  3. Elalouf J-M, Roinel N, deRouffignac C. 3.  1984. Effects of antidiuretic hormone on electrolyte reabsorption and secretion in distal tubules of rat kidney. Pflüg. Arch. 401:167–73 [Google Scholar]
  4. Field MJ, Stanton BA, Giebisch GH. 4.  1984. Influence of ADH on renal potassium handling: a micro-puncture and microperfusion study. Kidney Int. 25:502–11 [Google Scholar]
  5. Khuri RN, Wiederholt M, Strieder N, Giebisch G. 5.  1975. Effects of graded solute diuresis on renal tubule sodium transport in the rat. Am. J. Physiol. 228:1262–68 [Google Scholar]
  6. Malnic G, Klose RM, Giebisch G. 6.  1966. Micropuncture study of distal tubular potassium and sodium transport in rat nephron. Am. J. Physiol. 211:529–47 [Google Scholar]
  7. Stein JH, Osgood RW, Boonjarern S, Cox JW, Ferris TF. 7.  1974. Segmental sodium reabsorption in rats with mild and severe volume depletion. Am. J. Physiol. Ren. Physiol. 227F351–59
  8. Costanzo LS. 8.  1984. Comparison of calcium and sodium transport in early and late rat distal tubules: effect of amiloride. Am. J. Physiol. Ren. Physiol. 246:F937–45 [Google Scholar]
  9. Almeida AJ, Burg MB. 9.  1982. Sodium transport in the rabbit connecting tubule. Am. J. Physiol. Ren. Physiol. 243:F330–34 [Google Scholar]
  10. Wall SM, Hassell KA, Royaux IE, Green ED, Chang JY. 10.  et al. 2003. Localization of pendrin in mouse kidney. Am. J. Physiol. Ren. Physiol. 284:F229–41 [Google Scholar]
  11. Royaux IE, Wall SM, Karniski LP, Everett LA, Suzuki K. 11.  et al. 2001. Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc. Natl. Acad. Sci. USA 98:4221–26 [Google Scholar]
  12. Kim Y-H, Kwon T-H, Frische S, Kim J, Tisher CC. 12.  et al. 2002. Immunocytochemical localization of pendrin in intercalated cell subtypes in rat and mouse kidney. Am. J. Physiol. Ren. Physiol. 283:F744–54 [Google Scholar]
  13. Verlander JW, Hassell KA, Royaux IE, Glapion DM, Wang ME. 13.  et al. 2003. Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney: role of pendrin in mineralocorticoid-induced hypertension. Hypertension 42:356–62 [Google Scholar]
  14. Brown D, Hirsch S, Gluck S. 14.  1988. Localization of a proton-pumping ATPase in rat kidney. J. Clin. Investig. 82:2114–26 [Google Scholar]
  15. Alper SL, Natale J, Gluck S, Lodish HF, Brown D. 15.  1989. Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+-ATPase. Proc. Natl. Acad. Sci. USA 86:5429–33 [Google Scholar]
  16. Kim J, Kim Y-H, Cha J-H, Tisher CC, Madsen KM. 16.  1999. Intercalated cell subtypes in connecting tubule and cortical collecting duct of rat and mouse. J. Am. Soc. Nephrol. 10:1–12 [Google Scholar]
  17. Teng-ummnuay P, Verlander JW, Yuan W, Tisher CC, Madsen KM. 17.  1996. Identification of distinct subpopulations of intercalated cells in the mouse collecting duct. J. Am. Soc. Nephrol. 7:260–74 [Google Scholar]
  18. Schuster VL. 18.  1993. Function and regulation of collecting duct intercalated cells. Annu. Rev. Physiol. 55:267–88 [Google Scholar]
  19. Emmons C. 19.  1993. New subtypes of rabbit CCD intercalated cells as functionally defined by anion exchange and H+-ATPase activity. J. Am. Soc. Nephrol. 4:838 (Abstr.) [Google Scholar]
  20. Amlal H, Petrovic S, Xu J, Wang Z, Sun X. 20.  et al. 2010. Deletion of the anion exchanger Slc26a4 (pendrin) decreases the apical Cl/HCO3 exchanger activity and impairs bicarbonate secretion in the kidney collecting duct. Am. J. Physiol. Cell Physiol. 299:C33–41 [Google Scholar]
  21. Star RA, Burg MB, Knepper MA. 21.  1985. Bicarbonate secretion and chloride absorption by rabbit cortical collecting ducts: role of chloride/bicarbonate exchange. J. Clin. Investig. 76:1123–30 [Google Scholar]
  22. Schlatter E, Greger R, Schafer JA. 22.  1990. Principal cells of the cortical collecting ducts of the rat are not a route of transepithelial Cl transport. Pflüg. Arch. 417:317–23 [Google Scholar]
  23. Wall SM, Kim YH, Stanley L, Glapion DM, Everett LA. 23.  et al. 2004. NaCl restriction upregulates renal Slc26a4 through subcellular redistribution: role in Cl conservation. Hypertension 44:982–87 [Google Scholar]
  24. Pendred V. 24.  1896. Deaf-mutism and goitre. Lancet 2:532 [Google Scholar]
  25. Everett LA, Green ED. 25.  1999. A family of mammalian anion transporters and their involvement in human genetic diseases. Hum. Mol. Genet. 8:1883–91 [Google Scholar]
  26. Everett LA, Glaser B, Beck JC, Idol JR, Buchs A. 26.  et al. 1997. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat. Genet. 17:411–22 [Google Scholar]
  27. Scott DA, Karniski LP. 27.  2000. Human pendrin expressed in Xenopus laevis oocytes mediates chloride/formate exchange. Am. J. Physiol. Cell Physiol. 278:C207–11 [Google Scholar]
  28. Scott DA, Wang R, Kreman TM, Sheffield VC, Karniski LP. 28.  1999. The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat. Genet. 21:440–43 [Google Scholar]
  29. Soleimani M, Greeley T, Petrovic S, Wang Z, Amlal H. 29.  et al. 2001. Pendrin: an apical Cl/OH/HCO3 exchanger in the kidney cortex. Am. J. Physiol. Ren. Physiol. 280:F356–64 [Google Scholar]
  30. Shcheynikov N, Yang D, Wang Y, Zeng W, Karniski LP. 30.  et al. 2008. The Slc26a4 transporter functions as an electroneutral Cl/I/HCO3 exchanger: role of Slc26a4 and Slc26a6 in I and HCO3 secretion and in regulation of CFTR in the parotid duct. J. Physiol. 586:3814–24 [Google Scholar]
  31. Wangemann P, Itza EM, Albrecht B, Wu T, Jabba SV. 31.  et al. 2004. Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Med. 2:30–45 [Google Scholar]
  32. Royaux IE, Suzuki K, Mori A, Katoh R, Everett LA. 32.  et al. 2000. Pendrin, the protein encoded by the Pendred Syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology 141:839–45 [Google Scholar]
  33. Knepper MA, Good DW, Burg MB. 33.  1985. Ammonia and bicarbonate transport by rat cortical collecting ducts perfused in vitro. Am. J. Physiol. Ren. Physiol. 249:F870–77 [Google Scholar]
  34. Terada Y, Knepper MA. 34.  1990. Thiazide-sensitive NaCl absorption in rat cortical collecting duct. Am. J. Physiol. Ren. Physiol. 259:F519–28 [Google Scholar]
  35. Leviel F, Hübner CA, Houillier P, Morla L, El Moghrabi S. 35.  et al. 2010. The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J. Clin. Investig. 120:1627–35 [Google Scholar]
  36. Chambrey R, Kurth I, Peti-Peterdi J, Houillier P, Purkerson JM. 36.  et al. 2013. Renal intercalated cells are rather energized by a proton than a sodium pump. Proc. Natl. Acad. Sci. USA 110:7928–33 [Google Scholar]
  37. Pech V, Thumova M, Kim Y-H, Agazatian D, Hummler E. 37.  et al. 2012. ENaC inhibition stimulates Cl secretion in the mouse cortical collecting duct through an NKCC1-dependent mechanism. Am. J. Physiol. Ren. Physiol. 303:F45–55 [Google Scholar]
  38. Pech V, Thumova M, Dikalov S, Hummler E, Rossier BC. 38.  et al. 2013. Nitric oxide reduces Cl absorption in the mouse cortical collecting duct through an ENaC-dependent mechanism. Am. J. Physiol. Ren. Physiol.F1390–97
  39. Eaton DC, Malik B, Saxena NC, Al-Khalili OK, Yue G. 39.  2001. Mechanisms of aldosterone's action on epithelial Na+ transport. J. Membr. Biol. 184:313–19 [Google Scholar]
  40. Garcia-Austt J, Good DW, Burg MB, Knepper MA. 40.  1985. Deoxycorticosterone-stimulated bicarbonate secretion in rabbit cortical collecting duct: effects of luminal chloride removal and in vivo acid loading. Am. J. Physiol. Ren. Physiol. 249:F205–12 [Google Scholar]
  41. Hanley MJ, Kokko JP. 41.  1978. Study of chloride transport across the rabbit cortical collecting tubule. J. Clin. Investig. 62:39–44 [Google Scholar]
  42. Shibata S, Rinehart J, Zhang J, Moeckel G, Castaneda-Bueno M. 42.  et al. 2013. Mineralocorticoid receptor phosphorylation regulates ligand binding and renal response to volume depletion and hyperkalemia. Cell Metab. 18:660–71 [Google Scholar]
  43. Pela I, Bigozzi M, Bianchi B. 43.  2008. Profound hypokalemia and hypochloremic metabolic alkalosis during thiazide therapy in a child with Pendred Syndrome. Clin. Nephrol. 69:450–53 [Google Scholar]
  44. Kim Y-H, Pech V, Spencer KB, Beierwaltes WH, Everett LA. 44.  et al. 2007. Reduced ENaC expression contributes to the lower blood pressure observed in pendrin null mice. Am. J. Physiol. Ren. Physiol. 293:F1314–24 [Google Scholar]
  45. Vallet M, Picard N, Loffing-Cueni D, Fysekidis M, Bloch-Faure M. 45.  et al. 2006. Pendrin regulation in mouse kidney primarily is chloride-dependent. J. Am. Soc. Nephrol. 17:2153–63 [Google Scholar]
  46. Schultheis PJ, Lorenz JN, Meneton P, Nieman ML, Riddle TM. 46.  et al. 1998. Phenotype resembling Gitelman's Syndrome in mice lacking the apical Na+-Cl cotransporter of the distal convoluted tubule. J. Biol. Chem. 273:29150–55 [Google Scholar]
  47. Soleimani M, Barone S, Xu J, Shull GE, Siddiqui F. 47.  et al. 2012. Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure. Proc. Natl. Acad. Sci. USA 109:13368–73 [Google Scholar]
  48. Verlander JW, Kim Y-H, Shin WK, Pham TD, Hassell KA. 48.  et al. 2006. Dietary Cl restriction upregulates pendrin expression within the apical plasma membrane of type B intercalated cells. Am. J. Physiol. Ren. Physiol. 291:F833–39 [Google Scholar]
  49. Pech V, Pham TD, Hong S, Weinstein AM, Spencer KB. 49.  et al. 2010. Pendrin modulates ENaC function by changing luminal HCO3. J. Am. Soc. Nephrol. 21:1928–41 [Google Scholar]
  50. Jacques T, Picard N, Miller RL, Riemondy KA, Houillier P. 50.  et al. 2013. Overexpression of pendrin in intercalated cells produces chloride-sensitive hypertension. J. Am. Soc. Nephrol. 24:1104–13 [Google Scholar]
  51. Madeo AC, Manichaikul A, Pryor SP, Griffith AJ. 51.  2009. Do mutations of the Pendred syndrome gene, SLC26A4, confer resistance to asthma and hypertension?. J. Med. Genet. 46:405–6 [Google Scholar]
  52. Quentin F, Chambrey R, Trinh-Trang-Tan MM, Fysekidis M, Cambillau M. 52.  et al. 2004. The Cl/HCO3 exchanger pendrin in the rat kidney is regulated in response to chronic alterations in chloride balance. Am. J. Physiol. Ren. Physiol. 287:F1179–88 [Google Scholar]
  53. Ki YN, Oh YK, Han JS, Joo KW, Lee JS. 53.  et al. 2003. Upregulation of Na+ transporter abundances in response to chronic thiazide or loop diuretic treatment in rats. Am. J. Physiol. Ren. Physiol. 284:F133–43 [Google Scholar]
  54. Pech V, Kim Y-H, Weinstein AM, Everett LA, Pham TD, Wall SM. 54.  2007. Angiotensin II increases chloride absorption in the cortical collecting duct in mice through a pendrin-dependent mechanism. Am. J. Physiol. Ren. Physiol. 292:F914–20 [Google Scholar]
  55. Na KY, Kim G-H, Joo KW, Lee JW, Jang HR. 55.  et al. 2007. Chronic furosemide or hydrochlorothiazide administration increases H+-ATPase B1 subunit abundance in rat kidney. Am. J. Physiol. Ren. Physiol. 292:F1701–9 [Google Scholar]
  56. Hager H, Kwon T-H, Vinnikova AK, Masilamani S, Brooks HL. 56.  et al. 2001. Immunocytochemical and immunoelectron microscopic localization of α-, β- and γ-ENaC in rat kidney. Am. J. Physiol. Ren. Physiol. 280:F1093–106 [Google Scholar]
  57. Kim BG, Kim JY, Kim HN, Bok J, Namkung W. 57.  et al. 2014. Developmental changes of ENaC expression and function in the inner ear of pendrin knock-out mice as a perspective on the development of endolymphatic hydrops. PLOS ONE 9:e95730 [Google Scholar]
  58. Milton AE, Weiner ID. 58.  1998. Regulation of B-type intercalated cell apical anion exchange activity by CO2/HCO3. Am. J. Physiol. Ren. Physiol. 274:F1086–94 [Google Scholar]
  59. Kim Y-H, Verlander JW, Matthews SW, Kurtz I, Shin WK. 59.  et al. 2005. Intercalated cell H+/OH transporter expression is reduced in Slc26a4 null mice. Am. J. Physiol. Ren. Physiol. 289:F1262–72 [Google Scholar]
  60. Gueutin V, Vallet M, Jayat M, Peti-Peterdi J, Corniere N. 60.  et al. 2013. Renal β-intercalated cells maintain body fluid and electrolyte balance. J. Clin. Investig. 123:4219–31 [Google Scholar]
  61. Peti-Peterdi J, Warnock DG, Bell PD. 61.  2002. Angiotensin II directly stimulates ENaC activity in the cortical collecting duct via AT1 receptors. J. Am. Soc. Nephrol. 13:1131–35 [Google Scholar]
  62. Verlander JW, Hong S, Pech V, Bailey JL, Agazatian D. 62.  et al. 2011. Angiotensin II acts through the angiotensin 1a receptor to upregulate pendrin. Am. J. Physiol. Ren. Physiol. 301:F1314–25 [Google Scholar]
  63. Beutler KT, Masilamani S, Turban S, Nielsen J, Brooks HL. 63.  et al. 2003. Long-term regulation of ENaC expression in kidney by angiotensin II. Hypertension 41:1143–50 [Google Scholar]
  64. Brooks HL, Allred AJ, Beutler KT, Coffman TM, Knepper MA. 64.  2002. Targeted proteomic profiling of renal Na+ transporter and channel abundances in angiotensin II type 1a receptor knockout mice. Hypertension 39:470–73 [Google Scholar]
  65. Pech V, Zheng W, Pham TD, Verlander JW, Wall SM. 65.  2008. Angiotensin II activates H+-ATPase in type A intercalated cells in mouse cortical collecting duct. J. Am. Soc. Nephrol. 19:84–91 [Google Scholar]
  66. Rothenberger F, Velic A, Stehberger PA, Kovacikova J, Wagner CA. 66.  2007. Angiotensin II stimulates vacuolar H+-ATPase activity in renal acid-secretory intercalated cells from the outer medullary collecting duct. J. Am. Soc. Nephrol. 18:2085–93 [Google Scholar]
  67. Procino G, Milano S, Tamma G, Dossena S, Barbieri C. 67.  et al. 2013. Co-regulated pendrin and aquaporin 5 expression and trafficking in type-B intercalated cells under potassium depletion. Cell. Physiol. Biochem. 32:184–99 [Google Scholar]
  68. Morimoto T, Liu W, Woda C, Carattino MD, Wei Y. 68.  et al. 2006. Mechanism underlying flow stimulation of sodium absorption in the mammalian collecting duct. Am. J. Physiol. Ren. Physiol. 291:F663–69 [Google Scholar]
  69. Kim Y-H, Pham TD, Zheng W, Hong S, Baylis C. 69.  et al. 2009. Role of pendrin in iodide balance: going with the flow. Am. J. Physiol. 297:1069–79 [Google Scholar]
  70. Rozenfeld J, Tal O, Kladnitsky O, Adler L, Efrati E. 70.  et al. 2012. The pendrin anion exchanger gene is transcriptionally regulated by uroguanylin: a novel enterorenal link. Am. J. Physiol. Ren. Physiol. 302:F614–24 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021014-071854
Loading
/content/journals/10.1146/annurev-physiol-021014-071854
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error