1932

Abstract

The lack of accessibility to normal and diseased human intestine and the inability to separate the different functional compartments of the intestine even when tissue could be obtained have held back the understanding of human intestinal physiology. Clevers and his associates identified intestinal stem cells and established conditions to grow “mini-intestines” ex vivo in differentiated and undifferentiated conditions. This pioneering work has made a new model of the human intestine available and has begun making contributions to the understanding of human intestinal transport in normal physiologic conditions and the pathophysiology of intestinal diseases. However, this model is reductionist and lacks many of the complexities of normal intestine. Consequently, it is not yet possible to predict how great the advances using this model will be for understanding human physiology and pathophysiology, nor how the model will be modified to include multiple other intestinal cell types and physical forces necessary to more closely approximate normal intestine. This review describes recent studies using mini-intestines, which have readdressed previously established models of normal intestinal transport physiology and newly examined intestinal pathophysiology. The emphasis is on studies with human enteroids grown either as three-dimensional spheroids or two-dimensional monolayers. In addition, comments are provided on mouse studies in cases when human studies have not yet been described.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021115-105211
2017-02-10
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/physiol/79/1/annurev-physiol-021115-105211.html?itemId=/content/journals/10.1146/annurev-physiol-021115-105211&mimeType=html&fmt=ahah

Literature Cited

  1. Barrett KE. 1.  1993. Positive and negative regulation of chloride secretion in T84 cells. Am. J. Physiol. Cell Physiol. 265:C859–68 [Google Scholar]
  2. Oltra-Noguera D, Mangas-Sanjuan V, Centelles-Sangüesa A, Gonzalez-Garcia I, Sanchez-Castaño G. 2.  et al. 2015. Variability of permeability estimation from different protocols of subculture and transport experiments in cell monolayers. J. Pharmacol. Toxicol. Methods 71:21–32 [Google Scholar]
  3. Davila JC, Rodriguez RJ, Melchert RB, Acosta D Jr. 3.  1998. Predictive value of in vitro model systems in toxicology. Annu. Rev. Pharmacol. Toxicol. 38:63–96 [Google Scholar]
  4. Kramer JA, Sagartz JE, Morris DL. 4.  2007. The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates. Nat. Rev. Drug Discov. 6:636–49 [Google Scholar]
  5. Olson H, Betton G, Robinson D, Thomas K, Monro A. 5.  et al. 2000. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul. Toxicol. Pharmacol. 32:56–67 [Google Scholar]
  6. Cao X, Gibbs ST, Fang L, Miller HA, Landowski CP. 6.  et al. 2006. Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm. Res. 23:1675–86 [Google Scholar]
  7. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL. 7.  et al. 2010. Membrane transporters in drug development. Nat. Rev. Drug Discov. 9:215–36 [Google Scholar]
  8. Hodgson J. 8.  2001. ADMET—turning chemicals into drugs. Nat. Biotechnol. 19:722–26 [Google Scholar]
  9. Singh V, Yang J, Chen TE, Zachos NC, Kovbasnjuk O. 9.  et al. 2014. Translating molecular physiology of intestinal transport into pharmacologic treatment of diarrhea: stimulation of Na+ absorption. Clin. Gastroenterol. Hepatol. 12:27–31 [Google Scholar]
  10. Thiagarajah JR, Donowitz M, Verkman AS. 10.  2015. Secretory diarrhoea: mechanisms and emerging therapies. Nat. Rev. Gastroenterol. Hepatol. 12:446–57 [Google Scholar]
  11. Thiagarajah JR, Ko EA, Tradtrantip L, Donowitz M, Verkman AS. 11.  Discovery and development of antisecretory drugs for treating diarrheal diseases. Clin. Gastroenterol. Hepatol. 12:204–9 [Google Scholar]
  12. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M. 12.  et al. 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–7 [Google Scholar]
  13. de Lau W, Barker N, Low TY, Koo B-K, Li VSW. 13.  et al. 2011. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476:293–97 [Google Scholar]
  14. Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ. 14.  et al. 2008. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat. Genet. 40:1291–99 [Google Scholar]
  15. Jung P, Sato T, Merlos-Suárez A, Barriga FM, Iglesias M. 15.  et al. 2011. Isolation and in vitro expansion of human colonic stem cells. Nat. Med. 17:1225–27 [Google Scholar]
  16. Li L, Clevers H. 16.  2010. Coexistence of quiescent and active adult stem cells in mammals. Science 327:542–45 [Google Scholar]
  17. Merlos-Suárez A, Barriga Francisco M, Jung P, Iglesias M, Céspedes María V. 17.  et al. 2011. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8:511–24 [Google Scholar]
  18. Sato T, Stange DE, Ferrante M, Vries RGJ, van Es JH. 18.  et al. 2011. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141:1762–72 [Google Scholar]
  19. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG. 19.  et al. 2011. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415–18 [Google Scholar]
  20. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N. 20.  et al. 2009. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–65 [Google Scholar]
  21. Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M. 21.  et al. 2010. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:134–44 [Google Scholar]
  22. Stelzner M, Helmrath M, Dunn JCY, Henning SJ, Houchen CW. 22.  et al. 2012. A nomenclature for intestinal in vitro cultures. Am. J. Physiol. Gastrointest. Liver Physiol. 302:G1359–63 [Google Scholar]
  23. Clevers H. 23.  2015. What is an adult stem cell?. Science 350:1319–20 [Google Scholar]
  24. Koo B-K, Clevers H. 24.  2014. Stem cells marked by the R-spondin receptor LGR5. Gastroenterology 147:289–302 [Google Scholar]
  25. Sato T, Clevers H. 25.  2013. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340:1190–94 [Google Scholar]
  26. Date S, Sato T. 26.  2015. Mini-gut organoids: reconstitution of the stem cell niche. Annu. Rev. Cell Dev. Biol. 31:269–89 [Google Scholar]
  27. Clevers H. 27.  2013. The intestinal crypt, a prototype stem cell compartment. Cell 154:274–84 [Google Scholar]
  28. Dedhia PH, Bertaux-Skeirik N, Zavros Y, Spence JR. 28.  2016. Organoid models of human gastrointestinal development and disease. Gastroenterology 150:1098–112 [Google Scholar]
  29. Kovbasnjuk O, Zachos NC, In J, Foulke-Abel J, Ettayebi K. 29.  et al. 2013. Human enteroids: preclinical models of non-inflammatory diarrhea. Stem Cell Res. Ther. 4:Suppl. 1S3 [Google Scholar]
  30. Foulke-Abel J, In J, Kovbasnjuk O, Zachos NC, Ettayebi K. 30.  et al. 2014. Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract. Exp. Biol. Med. 239:1124–34 [Google Scholar]
  31. Zachos NC, Kovbasnjuk O, Foulke-Abel J, In J, Blutt SE. 31.  et al. 2016. Human enteroids/colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology. J. Biol. Chem. 291:3759–66 [Google Scholar]
  32. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N. 32.  et al. 2009. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459:262–65 [Google Scholar]
  33. Foulke-Abel J, In J, Yin J, Zachos NC, Kovbasnjuk O. 33.  et al. 2016. Human enteroids as a model of upper small intestinal ion transport physiology and pathophysiology. Gastroenterology 150:638–49 [Google Scholar]
  34. In J, Foulke-Abel J, Zachos NC, Hansen AM, Kaper JB. 34.  et al. 2016. Enterohemorrhagic Escherichia coli reduce mucus and intermicrovillar bridges in human stem cell-derived colonoids. Cell. Mol. Gastroenterol. Hepatol. 2:48–62.e3 [Google Scholar]
  35. Sato T, Clevers H. 35.  2013. Primary mouse small intestinal epithelial cell cultures. Epithelial Cell Culture Protocols HS Randell, LM Fulcher 319–28 Totowa, NJ: Humana Press, 2nd ed.. [Google Scholar]
  36. McCracken KW, Howell JC, Wells JM, Spence JR. 36.  2011. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat. Protoc. 6:1920–28 [Google Scholar]
  37. Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE. 37.  et al. 2011. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–9 [Google Scholar]
  38. Wells JM, Spence JR. 38.  2014. How to make an intestine. Development 141:752–60 [Google Scholar]
  39. Finkbeiner SR, Hill DR, Altheim CH, Dedhia PH, Taylor MJ. 39.  et al. 2015. Transcriptome-wide analysis reveals hallmarks of human intestine development and maturation in vitro and in vivo. Stem Cell Rep 4:1140–55 [Google Scholar]
  40. Watson CL, Mahe MM, Munera J, Howell JC, Sundaram N. 40.  et al. 2014. An in vivo model of human small intestine using pluripotent stem cells. Nat. Med. 20:1310–14 [Google Scholar]
  41. Wells JM, Spence JR. 41.  2014. How to make an intestine. Development 141:752–60 [Google Scholar]
  42. Flier LGvd, Clevers H. 42.  2009. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 71:241–60 [Google Scholar]
  43. Laâbi Y, Metcalf D, Mifsud S, Di Rago L. 43.  2000. Differentiation commitment and regulator-specific granulocyte-macrophage maturation in a novel pro-B murine leukemic cell line. Leukemia 14:1785–95 [Google Scholar]
  44. Metcalf D. 44.  1998. Lineage commitment and maturation in hematopoietic cells: the case for extrinsic regulation. Blood 92:345–47 [Google Scholar]
  45. Karam SM. 45.  1999. Lineage commitment and maturation of epithelial cells in the gut. Front. Biosci. 4:D286–98 [Google Scholar]
  46. Roth KA, Hermiston ML, Gordon JI. 46.  1991. Use of transgenic mice to infer the biological properties of small intestinal stem cells and to examine the lineage relationships of their descendants. PNAS 88:9407–11 [Google Scholar]
  47. Shaffiey SA, Jia H, Keane T, Costello C, Wasserman D. 47.  et al. 2016. Intestinal stem cell growth and differentiation on a tubular scaffold with evaluation in small and large animals. Regen. Med. 11:45–61 [Google Scholar]
  48. Bosse T, Piaseckyj CM, Burghard E, Fialkovich JJ, Rajagopal S. 48.  et al. 2006. Gata4 is essential for the maintenance of jejunal-ileal identities in the adult mouse small intestine. Mol. Cell. Biol. 26:9060–70 [Google Scholar]
  49. Silberg DG, Swain GP, Suh ER, Traber PG. 49.  2000. Cdx1 and cdx2 expression during intestinal development. Gastroenterology 119:961–71 [Google Scholar]
  50. McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G. 50.  et al. 2001. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291:1755–59 [Google Scholar]
  51. Krasinski SD, Upchurch BH, Irons SJ, June RM, Mishra K. 51.  et al. 1997. Rat lactase-phlorizin hydrolase/human growth hormone transgene is expressed on small intestinal villi in transgenic mice. Gastroenterology 113:844–55 [Google Scholar]
  52. Dawson PA, Lan T, Rao A. 52.  2009. Bile acid transporters. J. Lipid Res. 50:2340–57 [Google Scholar]
  53. Middendorp S, Schneeberger K, Wiegerinck CL, Mokry M, Akkerman RD. 53.  et al. 2014. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells 32:1083–91 [Google Scholar]
  54. Amatya VJ, Mawas AS, Kushitani K, Mohi El-Din MM, Takeshima Y. 54.  2016. Differential microRNA expression profiling of mesothelioma and expression analysis of miR-1 and miR-214 in mesothelioma. Int. J. Oncol. 48:1599–607 [Google Scholar]
  55. Tetteh PW, Basak O, Farin HF, Wiebrands K, Kretzschmar K. 55.  et al. 2016. Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell 18:203–13 [Google Scholar]
  56. Farin HF, Jordens I, Mosa MH, Basak O, Korving J. 56.  et al. 2016. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature 530:340–43 [Google Scholar]
  57. Valenta T, Degirmenci B, Moor AE, Herr P, Zimmerli D. 57.  et al. 2016. Wnt ligands secreted by subepithelial mesenchymal cells are essential for the survival of intestinal stem cells and gut homeostasis. Cell Rep. 15:911–18 [Google Scholar]
  58. Spencer AU, Sun X, El-Sawaf M, Haxhija EQ, Brei D. 58.  et al. 2006. Enterogenesis in a clinically feasible model of mechanical small-bowel lengthening. Surgery 140:212–20 [Google Scholar]
  59. Basson MD, Li GD, Hong F, Han O, Sumpio BE. 59.  1996. Amplitude-dependent modulation of brush border enzymes and proliferation by cyclic strain in human intestinal Caco-2 monolayers. J. Cell. Physiol. 168:476–88 [Google Scholar]
  60. Zhang J, Li W, Sanders MA, Sumpio BE, Panja A, Basson MD. 60.  2003. Regulation of the intestinal epithelial response to cyclic strain by extracellular matrix proteins. FASEB J. 17:926–28 [Google Scholar]
  61. Kim HJ, Huh D, Hamilton G, Ingber DE. 61.  2012. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12:2165–74 [Google Scholar]
  62. Kim HJ, Ingber DE. 62.  2013. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 5:1130–40 [Google Scholar]
  63. Kim HJ, Li H, Collins JJ, Ingber DE. 63.  2016. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. PNAS 113:E7–15 [Google Scholar]
  64. Lin JH, Chiba M, Baillie TA. 64.  1999. Is the role of the small intestine in first-pass metabolism overemphasized?. Pharmacol. Rev. 51:135–58 [Google Scholar]
  65. Binder HJ. 65.  2009. Mechanisms of diarrhea in inflammatory bowel diseases. Ann. N.Y. Acad. Sci. 1165:285–93 [Google Scholar]
  66. Gareau MG, Barrett KE. 66.  2013. Fluid and electrolyte secretion in the inflamed gut: novel targets for treatment of inflammation-induced diarrhea. Curr. Opin. Pharmacol. 13:895–99 [Google Scholar]
  67. Keely SJ, Montrose MH, Barrett KE. 67.  2009. Electrolyte secretion and absorption: small intestine and colon. Textbook of Gastroenterology T Yamada 330–67 Chichester, UK: Wiley-Blackwell [Google Scholar]
  68. Welsh MJ, Smith PL, Fromm M, Frizzell RA. 68.  1982. Crypts are the site of intestinal fluid and electrolyte secretion. Science 218:1219–21 [Google Scholar]
  69. Serebro HA, Iber FL, Yardley JH, Hendrix TR. 69.  1969. Inhibition of cholera toxin action in the rabbit by cycloheximide. Gastroenterology 56:506–11 [Google Scholar]
  70. Roggin GM, Banwell JG, Yardley JH, Hendrix TR. 70.  1972. Unimpaired response of rabbit jejunum to cholera toxin after selective damage to villus epithelium. Gastroenterology 63:981–89 [Google Scholar]
  71. Jakab RL, Collaco AM, Ameen NA. 71.  2011. Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 300:G82–98 [Google Scholar]
  72. De Jonge HR. 72.  1975. The response of small intestinal villous and crypt epithelium to choleratoxin in rat and guinea pig. Evidence against a specific role of the crypt cells in choleragen-induced secretion. Biochim. Biophys. Acta 381:128–43 [Google Scholar]
  73. Kockerling A, Fromm M. 73.  1993. Origin of cAMP-dependent Cl- secretion from both crypts and surface epithelia of rat intestine. Am. J. Physiol. 264:C1294–301 [Google Scholar]
  74. McNicholas CM, Brown CD, Turnberg LA. 74.  1994. Na-K-Cl cotransport in villus and crypt cells from rat duodenum. Am. J. Physiol. 267:G1004–11 [Google Scholar]
  75. Field M. 75.  1976. Regulation of active ion transport in the small intestine. Acute Diarrhoea in Childhood Ciba Found. Symp. 42 109–27 Amsterdam: Elsevier [Google Scholar]
  76. Ishiguro H, Namkung W, Yamamoto A, Wang Z, Worrell RT. 76.  et al. 2007. Effect of Slc26a6 deletion on apical Cl/HCO3 exchanger activity and cAMP-stimulated bicarbonate secretion in pancreatic duct. Am. J. Physiol. Gastrointest. Liver Physiol. 292:G447–55 [Google Scholar]
  77. Musch MW, Arvans DL, Wu GD, Chang EB. 77.  2009. Functional coupling of the downregulated in adenoma Cl/base exchanger DRA and the apical Na+/H+ exchangers NHE2 and NHE3. Am. J. Physiol. Gastrointest. Liver Physiol. 296:G202–10 [Google Scholar]
  78. Schweinfest CW, Spyropoulos DD, Henderson KW, Kim J-H, Chapman JM. 78.  et al. 2006. slc26a3 (dra)-deficient mice display chloride-losing diarrhea, enhanced colonic proliferation, and distinct up-regulation of ion transporters in the colon. J. Biol. Chem. 281:37962–71 [Google Scholar]
  79. Shcheynikov N, Wang Y, Park M, Ko SBH, Dorwart M. 79.  et al. 2006. Coupling modes and stoichiometry of Cl/HCO3 exchange by slc26a3 and slc26a6. J. Gen. Physiol. 127:511–24 [Google Scholar]
  80. Singh AK, Riederer B, Chen M, Xiao F, Krabbenhöft A. 80.  et al. 2010. The switch of intestinal Slc26 exchangers from anion absorptive to HCO3 secretory mode is dependent on CFTR anion channel function. Am. J. Physiol. Cell Physiol. 298:C1057–65 [Google Scholar]
  81. Walker NM, Simpson JE, Brazill JM, Gill RK, Dudeja PK. 81.  et al. 2009. Role of down-regulated in adenoma anion exchanger in HCO3 secretion across murine duodenum. Gastroenterology 136:893–901.e2 [Google Scholar]
  82. Walker NM, Simpson JE, Yen PF, Gill RK, Rigsby EV. 82.  et al. 2008. Down-regulated in adenoma Cl/HCO3 exchanger couples with Na/H exchanger 3 for NaCl absorption in murine small intestine. Gastroenterology 135:1645–53.e3 [Google Scholar]
  83. Turnberg LA, Bieberdorf FA, Morawski SG, Fordtran JS. 83.  1970. Interrelationships of chloride, bicarbonate, sodium, and hydrogen transport in the human ileum. J. Clin. Investig. 49:557–67 [Google Scholar]
  84. Turnberg LA, Fordtran JS, Carter NW, Rector FC Jr. 84.  1970. Mechanism of bicarbonate absorption and its relationship to sodium transport in the human jejunum. J. Clin. Investig. 49:548–56 [Google Scholar]
  85. Turnberg LA, Bieberdorf FA, Fordtran JS. 85.  1969. Electrolyte transport in the human ileum. Gut 10:1044 [Google Scholar]
  86. Dekkers JF, Wiegerinck CL, de Jonge HR, Bronsveld I, Janssens HM. 86.  et al. 2013. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 19:939–45 [Google Scholar]
  87. Dekkers JF, Gogorza Gondra RA, Kruisselbrink E, Vonk AM, Janssens HM. 87.  et al. 2016. Optimal correction of distinct CFTR folding mutants in rectal cystic fibrosis organoids. Eur. Respirat. J. In press. doi: 10.1183/13993003.01192-2015
  88. Vidović D, Carlon MS, da Cunha MF, Dekkers JF, Hollenhorst MI. 88.  et al. 2015. rAAV-CFTRΔR rescues the cystic fibrosis phenotype in human intestinal organoids and cystic fibrosis mice. Am. J. Respir. Crit. Care Med. 193:288–98 [Google Scholar]
  89. Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R. 89.  et al. 2015. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521:43–47 [Google Scholar]
  90. VanDussen KL, Marinshaw JM, Shaikh N, Miyoshi H, Moon C. 90.  et al. 2015. Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut 64:911–20 [Google Scholar]
  91. Yin Y, Bijvelds M, Dang W, Xu L, van der Eijk AA. 91.  et al. 2015. Modeling rotavirus infection and antiviral therapy using primary intestinal organoids. Antivir. Res. 123:120–31 [Google Scholar]
  92. Saxena K, Blutt SE, Ettayebi K, Zeng XL, Broughman JR. 92.  et al. 2016. Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J. Virol. 90:43–56 [Google Scholar]
  93. Finkbeiner SR, Zeng XL, Utama B, Atmar RL, Shroyer NF, Estes MK. 93.  2012. Stem cell-derived human intestinal organoids as an infection model for rotaviruses. mBio 3:e00159–12 [Google Scholar]
  94. Lundgren O, Peregrin AT, Persson K, Kordasti S, Uhnoo I, Svensson L. 94.  2000. Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea. Science 287:491–95 [Google Scholar]
  95. Zachos NC, Foulke-Abel J, Biswas RS, In J, Wang P. 95.  et al. 2014. Rotavirus inhibits NHE3 activity via clathrin-independent endocytosis resulting in increased NHE3 degradation. Gastroenterology 146:Suppl. 1696–97 [Google Scholar]
  96. Kuehne SA, Cartman ST, Heap JT, Kelly ML, Cockayne A, Minton NP. 96.  2010. The role of toxin A and toxin B in Clostridium difficile infection. Nature 467:711–13 [Google Scholar]
  97. Dillon ST, Rubin EJ, Yakubovich M, Pothoulakis C, LaMont JT. 97.  et al. 1995. Involvement of Ras-related Rho proteins in the mechanisms of action of Clostridium difficile toxin A and toxin B. Infect. Immun. 63:1421–26 [Google Scholar]
  98. Leslie JL, Huang S, Opp JS, Nagy MS, Kobayashi M. 98.  et al. 2015. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect. Immun. 83:138–45 [Google Scholar]
  99. Engevik MA, Engevik KA, Yacyshyn MB, Wang J, Hassett DJ. 99.  et al. 2015. Human Clostridium difficile infection: inhibition of NHE3 and microbiota profile. Am. J. Physiol. Gastrointest. Liver Physiol. 308:G497–509 [Google Scholar]
  100. Hayashi H, Szaszi K, Coady-Osberg N, Furuya W, Bretscher AP. 100.  et al. 2004. Inhibition and redistribution of NHE3, the apical Na+/H+ exchanger, by Clostridium difficile toxin B. J. Gen. Physiol. 123:491–504 [Google Scholar]
  101. Steele J, Parry N, Tzipori S. 101.  2014. The roles of toxin A and toxin B in Clostridium difficile infection. Gut Microbes 5:53–7 [Google Scholar]
  102. Lyras D, O'Connor JR, Howarth PM, Sambol SP, Carter GP. 102.  et al. 2009. Toxin B is essential for virulence of Clostridium difficile. Nature 458:1176–79 [Google Scholar]
  103. Chen S, Sun C, Wang H, Wang J. 103.  2015. The Role of Rho GTPases in Toxicity of Clostridium difficile Toxins. Toxins 7:5254–67 [Google Scholar]
  104. Mather AE, Reid SWJ, Maskell DJ, Parkhill J, Fookes MC. 104.  et al. 2013. Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium dt104 in different hosts. Science 341:1514–17 [Google Scholar]
  105. Forbester JL, Goulding D, Vallier L, Hannan N, Hale C. 105.  et al. 2015. Interaction of Salmonella enterica Serovar Typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect. Immun. 83:2926–34 [Google Scholar]
  106. Law RJ, Gur-Arie L, Rosenshine I, Finlay BB. 106.  2013. In vitro and in vivo model systems for studying enteropathogenic Escherichia coli infections. Cold Spring Harb. Perspect. Med. 3:a009977 [Google Scholar]
  107. Mohawk KL, O'Brien AD, J Biomed Biotechnol. 107.  2011. Mouse models of Escherichia coli O157:H7 infection and shiga toxin injection. J. Biomed. Biotechnol. 2011:25818 [Google Scholar]
  108. Ermund A, Schutte A, Johansson ME, Gustafsson JK, Hansson GC. 108.  2013. Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer's patches. Am. J. Physiol. Gastrointest. Liver Physiol. 305:G341–47 [Google Scholar]
  109. Johansson ME, Sjövall H, Hansson GC. 109.  2013. The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 10:352–61 [Google Scholar]
  110. Erdem AL, Avelino F, Xicohtencatl-Cortes J, Girón JA. 110.  2007. Host protein binding and adhesive properties of H6 and H7 flagella of attaching and effacing Escherichia coli. J. Bacteriol. 189:7426–35 [Google Scholar]
  111. Wang J, Cortina G, Wu SV, Tran R, Cho J-H. 111.  et al. 2006. Mutant Neurogenin-3 in congenital malabsorptive diarrhea. N. Engl. J. Med. 355:270–80 [Google Scholar]
  112. Overeem AW, Posovszky C, Rings EHMM, Giepmans BNG, van Ijzendoorn SCD. 112.  2016. The role of enterocyte defects in the pathogenesis of congenital diarrheal disorders. Dis. Models Mech. 9:1–12 [Google Scholar]
  113. Müller T, Rasool I, Heinz-Erian P, Mildenberger E, Hülstrunk C. 113.  et al. 2016. Congenital secretory diarrhoea caused by activating germline mutations in GUCY2C. Gut 65:1306–13 [Google Scholar]
  114. Canani RB, Castaldo G, Bacchetta R, Martin MG, Goulet O. 114.  2015. Congenital diarrhoeal disorders: advances in this evolving web of inherited enteropathies. Nat. Rev. Gastroenterol. Hepatol. 12:293–302 [Google Scholar]
  115. Janecke AR, Heinz-Erian P, Yin J, Petersen BS, Franke A. 115.  et al. 2015. Reduced sodium/proton exchanger NHE3 activity causes congenital sodium diarrhea. Hum. Mol. Genet. 24:6614–23 [Google Scholar]
  116. Schneeberger K, Vogel GF, Teunissen H, van Ommen DD, Begthel H. 116.  et al. 2015. An inducible mouse model for microvillus inclusion disease reveals a role for myosin Vb in apical and basolateral trafficking. PNAS 112:12408–13 [Google Scholar]
  117. Weis GV, Knowles BC, Choi E, Goldstein AE, Williams JA. 117.  et al. 2016. Loss of MYO5B in mice recapitulates microvillus inclusion disease and reveals an apical trafficking pathway distinct to neonatal duodenum. Cell. Mol. Gastroenterol. Hepatol. 2:131–57 [Google Scholar]
  118. Wiegerinck CL, Janecke AR, Schneeberger K, Vogel GF, van Haaften-Visser DY. 118.  et al. 2014. Loss of syntaxin 3 causes variant microvillus inclusion disease. Gastroenterology 147:65–68.e10 [Google Scholar]
  119. Agarwal NS, Northrop L, Anyane-Yeboa K, Aggarwal VS, Nagy PL, Demirdag YY. 119.  2014. Tetratricopeptide repeat domain 7A (TTC7A) mutation in a newborn with multiple intestinal atresia and combined immunodeficiency. J. Clin. Immunol. 34:607–10 [Google Scholar]
  120. Avitzur Y, Guo C, Mastropaolo LA, Bahrami E, Chen H. 120.  et al. 2014. Mutations in Tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology 146:1028–39 [Google Scholar]
  121. Lemoine R, Pachlopnik-Schmid J, Farin HF, Bigorgne A, Debré M. 121.  et al. 2014. Immune deficiency–related enteropathy-lymphocytopenia-alopecia syndrome results from tetratricopeptide repeat domain 7A deficiency. J. Allergy Clin. Immunol. 134:1354–64.e6 [Google Scholar]
  122. Bigorgne AE, Farin HF, Lemoine R, Mahlaoui N, Lambert N. 122.  et al. 2014. TTC7A mutations disrupt intestinal epithelial apicobasal polarity. J. Clin. Investig. 124:328–37 [Google Scholar]
  123. Hartley JL, Zachos NC, Dawood B, Donowitz M, Forman J. 123.  et al. 2010. Mutations in TTC37 cause trichohepatoenteric syndrome (phenotypic diarrhea of infancy). Gastroenterology 138:2388–98e1–2 [Google Scholar]
  124. Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I. 124.  et al. 2013. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–58 [Google Scholar]
  125. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr., Kinzler KW. 125.  2013. Cancer genome landscapes. Science 339:1546–58 [Google Scholar]
  126. Garraway LA, Lander ES. 126.  2013. Lessons from the cancer genome. Cell 153:17–37 [Google Scholar]
  127. Fearon ER, Vogelstein B. 127.  1990. A genetic model for colorectal tumorigenesis. Cell 61:759–67 [Google Scholar]
  128. Fearon ER. 128.  2011. Molecular genetics of colorectal cancer. Annu. Rev. Pathol. 6:479–507 [Google Scholar]
  129. van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F. 129.  et al. 2015. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161:933–45 [Google Scholar]
  130. Madan B, Ke Z, Harmston N, Ho SY, Frois AO. 130.  et al. 2016. Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene 35:2197–207 [Google Scholar]
  131. Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T. 131.  et al. 2012. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med. 18:618–23 [Google Scholar]
  132. Fattahi F, Steinbeck JA, Kriks S, Tchieu J, Zimmer B. 132.  et al. 2016. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature 531:105–9 [Google Scholar]
  133. Wieck MM, El-Nachef WN, Hou X, Spurrier RG, Holoyda KA. 133.  et al. 2016. Human and murine tissue-engineered colon exhibit diverse neuronal subtypes and can be populated by enteric nervous system progenitor cells when donor colon is aganglionic. Tissue Eng. A 22:53–64 [Google Scholar]
  134. Mahe MM, Workman M, Poling H, Watson CL, Sundaram N. 134.  et al. 2016. Functional enteric nervous system in human small intestine derived from pluripotent stem cells. Gastroenterology 150:A144–45 [Google Scholar]
  135. Woodcock J, Woosley R. 135.  2008. The FDA critical path initiative and its influence on new drug development. Annu. Rev. Med. 59:1–12 [Google Scholar]
  136. Rogoz A, Reis BS, Karssemeijer RA, Mucida D. 136.  2015. A 3-D enteroid-based model to study T-cell and epithelial cell interaction. J. Immunol. Methods 421:89–95 [Google Scholar]
  137. Fiskerstrand T, Arshad N, Haukanes BI, Tronstad RR, Pham KD. 137.  et al. 2012. Familial diarrhea syndrome caused by an activating GUCY2C mutation. N. Engl. J. Med. 366:1586–95 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021115-105211
Loading
/content/journals/10.1146/annurev-physiol-021115-105211
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error