1932

Abstract

Trefoil factor (TFF) peptides, with a 40-amino acid motif and including six conserved cysteine residues that form intramolecular disulfide bonds, are a family of mucin-associated secretory molecules mediating many physiological roles that maintain and restore gastrointestinal (GI) mucosal homeostasis. TFF peptides play important roles in response to GI mucosal injury and inflammation. In response to acute GI mucosal injury, TFF peptides accelerate cell migration to seal the damaged area from luminal contents, whereas chronic inflammation leads to increased TFF expression to prevent further progression of disease. Although much evidence supports the physiological significance of TFF peptides in mucosal defenses, the molecular and cellular mechanisms of TFF peptides in the GI epithelium remain largely unknown. In this review, we summarize the functional roles of TFF1, 2, and 3 and illustrate their action mechanisms, focusing on defense mechanisms in the GI tract.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021115-105447
2017-02-10
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/physiol/79/1/annurev-physiol-021115-105447.html?itemId=/content/journals/10.1146/annurev-physiol-021115-105447&mimeType=html&fmt=ahah

Literature Cited

  1. Masiakowski P, Breathnach R, Bloch J, Gannon F, Krust A, Chambon P. 1.  1982. Cloning of cDNA sequences of hormone-regulated genes from the MCF-7 human breast cancer cell line. Nucleic Acids Res 10:7895–903 [Google Scholar]
  2. Jørgensen KH, Thim L, Jacobsen HE. 2.  1982. Pancreatic spasmolytic polypeptide (PSP): I. Preparation and initial chemical characterization of a new polypeptide from porcine pancreas. Regul. Pept. 3:207–19 [Google Scholar]
  3. Suemori S, Lynch-Devaney K, Podolsky DK. 3.  1991. Identification and characterization of rat intestinal trefoil factor: tissue- and cell-specific member of the trefoil protein family. PNAS 88:11017–21 [Google Scholar]
  4. Wright NA, Hoffmann W, Otto WR, Rio MC, Thim L. 4.  1997. Rolling in the clover: trefoil factor family (TFF)-domain peptides, cell migration and cancer. FEBS Lett 408:121–23 [Google Scholar]
  5. Thim L. 5.  1989. A new family of growth factor-like peptides. ‘Trefoil’ disulphide loop structures as a common feature in breast cancer associated peptide (pS2), pancreatic spasmolytic polypeptide (PSP), and frog skin peptides (spasmolysins). FEBS Lett. 250:85–90 [Google Scholar]
  6. Xiao P, Ling H, Lan G, Liu J, Hu H, Yang R. 6.  2015. Trefoil factors: gastrointestinal-specific proteins associated with gastric cancer. Clin. Chim. Acta 450:127–34 [Google Scholar]
  7. Chinery R, Bates PA, De A, Freemont PS. 7.  1995. Characterisation of the single copy trefoil peptides intestinal trefoil factor and pS2 and their ability to form covalent dimers. FEBS Lett 357:50–54 [Google Scholar]
  8. Williams MA, Westley BR, May FE, Feeney J. 8.  2001. The solution structure of the disulphide-linked homodimer of the human trefoil protein TFF1. FEBS Lett 493:70–74 [Google Scholar]
  9. Muskett FW, May FE, Westley BR, Feeney J. 9.  2003. Solution structure of the disulfide-linked dimer of human intestinal trefoil factor (TFF3): the intermolecular orientation and interactions are markedly different from those of other dimeric trefoil proteins. Biochemistry 42:15139–47 [Google Scholar]
  10. Kjellev S. 10.  2009. The trefoil factor family—small peptides with multiple functionalities. Cell. Mol. Life Sci. 66:1350–69 [Google Scholar]
  11. Seib T, Blin N, Hilgert K, Seifert M, Theisinger B. 11.  et al. 1997. The three human trefoil genes TFF1, TFF2, and TFF3 are located within a region of 55 kb on chromosome 21q22.3. Genomics 40:200–2 [Google Scholar]
  12. Jakowlew SB, Breathnach R, Jeltsch JM, Masiakowski P, Chambon P. 12.  1984. Sequence of the pS2 mRNA induced by estrogen in the human breast cancer cell line MCF-7. Nucleic Acids Res 12:2861–78 [Google Scholar]
  13. Khan ZE, Wang TC, Cui G, Chi AL, Dimaline R. 13.  2003. Transcriptional regulation of the human trefoil factor, TFF1, by gastrin. Gastroenterology 125:510–21 [Google Scholar]
  14. Hertel SC, Chwieralski CE, Hinz M, Rio MC, Tomasetto C, Hoffmann W. 14.  2004. Profiling trefoil factor family (TFF) expression in the mouse: identification of an antisense TFF1-related transcript in the kidney and liver. Peptides 25:755–62 [Google Scholar]
  15. Hoffmann W, Jagla W, Wiede A. 15.  2001. Molecular medicine of TFF-peptides: from gut to brain. Histol. Histopathol. 16:319–34 [Google Scholar]
  16. Rio MC, Bellocq JP, Daniel JY, Tomasetto C, Lathe R. 16.  et al. 1988. Breast cancer-associated pS2 protein: synthesis and secretion by normal stomach mucosa. Science 241:705–8 [Google Scholar]
  17. Hanby AM, Poulsom R, Singh S, Elia G, Jeffery RE, Wright NA. 17.  1993. Spasmolytic polypeptide is a major antral peptide: distribution of the trefoil peptides human spasmolytic polypeptide and pS2 in the stomach. Gastroenterology 105:1110–16 [Google Scholar]
  18. Lefebvre O, Wolf C, Kédinger M, Chenard MP, Tomasetto C. 18.  et al. 1993. The mouse one P-domain (pS2) and two P-domain (mSP) genes exhibit distinct patterns of expression. J. Cell Biol. 122:191–98 [Google Scholar]
  19. Madsen J, Sorensen GL, Nielsen O, Tornøe I, Thim L. 19.  et al. 2013. A variant form of the human deleted in malignant brain tumor 1 (DMBT1) gene shows increased expression in inflammatory bowel diseases and interacts with dimeric trefoil factor 3 (TFF3). PLOS ONE 8:e64441 [Google Scholar]
  20. Madsen J, Nielsen O, Tornøe I, Thim L, Holmskov U. 20.  2007. Tissue localization of human trefoil factors 1, 2, and 3. J. Histochem. Cytochem. 55:505–13 [Google Scholar]
  21. Lefebvre O, Chenard MP, Masson R, Linares J, Dierich A. 21.  et al. 1996. Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein. Science 274:259–62 [Google Scholar]
  22. Bossenmeyer-Pourié C, Kannan R, Ribieras S, Wendling C, Stoll I. 22.  et al. 2002. The trefoil factor 1 participates in gastrointestinal cell differentiation by delaying G1-S phase transition and reducing apoptosis. J. Cell Biol. 157:761–70 [Google Scholar]
  23. Carvalho R, Kayademir T, Soares P, Canedo P, Sousa S. 23.  et al. 2002. Loss of heterozygosity and promoter methylation, but not mutation, may underlie loss of TFF1 in gastric carcinoma. Lab. Investig. 82:1319–26 [Google Scholar]
  24. Karam SM, Tomasetto C, Rio MC. 24.  2004. Trefoil factor 1 is required for the commitment programme of mouse oxyntic epithelial progenitors. Gut 53:1408–15 [Google Scholar]
  25. Jørgensen KD, Diamant B, Jørgensen KH, Thim L. 25.  1982. Pancreatic spasmolytic polypeptide (PSP): III. Pharmacology of a new porcine pancreatic polypeptide with spasmolytic and gastric acid secretion inhibitory effects. Regul. Pept. 3:231–43 [Google Scholar]
  26. Farrell JJ, Taupin D, Koh TJ, Chen D, Zhao CM. 26.  et al. 2002. TFF2/SP-deficient mice show decreased gastric proliferation, increased acid secretion, and increased susceptibility to NSAID injury. J. Clin. Investig. 109:193–204 [Google Scholar]
  27. Xue L, Aihara E, Podolsky DK, Wang TC, Montrose MH. 27.  2010. In vivo action of trefoil factor 2 (TFF2) to speed gastric repair is independent of cyclooxygenase. Gut 59:1184–91 [Google Scholar]
  28. Quante M, Marrache F, Goldenring JR, Wang TC. 28.  2010. TFF2 mRNA transcript expression marks a gland progenitor cell of the gastric oxyntic mucosa. Gastroenterology 139:2018–27.e2 [Google Scholar]
  29. Podolsky DK, Lynch-Devaney K, Stow JL, Oates P, Murgue B. 29.  et al. 1993. Identification of human intestinal trefoil factor. Goblet cell-specific expression of a peptide targeted for apical secretion. J. Biol. Chem. 268:12230 [Google Scholar]
  30. Hauser F, Poulsom R, Chinery R, Rogers LA, Hanby AM. 30.  et al. 1993. hP1.B, a human P-domain peptide homologous with rat intestinal trefoil factor, is expressed also in the ulcer-associated cell lineage and the uterus. PNAS 90:6961–65 [Google Scholar]
  31. Taupin DR, Kinoshita K, Podolsky DK. 31.  2000. Intestinal trefoil factor confers colonic epithelial resistance to apoptosis. PNAS 97:799–804 [Google Scholar]
  32. Mashimo H, Wu DC, Podolsky DK, Fishman MC. 32.  1996. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science 274:262–65 [Google Scholar]
  33. Nunez AM, Berry M, Imler JL, Chambon P. 33.  1989. The 5′ flanking region of the pS2 gene contains a complex enhancer region responsive to oestrogens, epidermal growth factor, a tumour promoter (TPA), the c-Ha-ras oncoprotein and the c-jun protein. EMBO J 8:823–29 [Google Scholar]
  34. Taupin D, Wu DC, Jeon WK, Devaney K, Wang TC, Podolsky DK. 34.  1999. The trefoil gene family are coordinately expressed immediate-early genes: EGF receptor- and MAP kinase-dependent interregulation. J. Clin. Investig. 103:R31–38 [Google Scholar]
  35. Cook GA, Yeomans ND, Giraud AS. 35.  1997. Temporal expression of trefoil peptides in the TGF-alpha knockout mouse after gastric ulceration. Am. J. Physiol. 272:G1540–49 [Google Scholar]
  36. Tu S, Chi AL, Lim S, Cui G, Dubeykovskaya Z. 36.  et al. 2007. Gastrin regulates the TFF2 promoter through gastrin-responsive cis-acting elements and multiple signaling pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 292:G1726–37 [Google Scholar]
  37. Kang B, Alderman BM, Nicoll AJ, Cook GA, Giraud AS. 37.  2001. Effect of omeprazole-induced achlorhydria on trefoil peptide expression in the rat stomach. J. Gastroenterol. Hepatol. 16:1222–27 [Google Scholar]
  38. Wu X, Conlin VS, Morampudi V, Ryz NR, Nasser Y. 38.  et al. 2015. Vasoactive intestinal polypeptide promotes intestinal barrier homeostasis and protection against colitis in mice. PLOS ONE 10:e0125225 [Google Scholar]
  39. Poulsen SS, Thulesen J, Nexø E, Thim L. 39.  1998. Distribution and metabolism of intravenously administered trefoil factor 2/porcine spasmolytic polypeptide in the rat. Gut 43:240–47 [Google Scholar]
  40. Poulsen SS, Thulesen J, Hartmann B, Kissow HL, Nexø E, Thim L. 40.  2003. Injected TFF1 and TFF3 bind to TFF2-immunoreactive cells in the gastrointestinal tract in rats. Regul. Pept. 115:91–99 [Google Scholar]
  41. Tan XD, Hsueh W, Chang H, Wei KR, Gonzalez-Crussi F. 41.  1997. Characterization of a putative receptor for intestinal trefoil factor in rat small intestine: identification by in situ binding and ligand blotting. Biochem. Biophys. Res. Commun. 237:673–77 [Google Scholar]
  42. Thim L, Mortz E. 42.  2000. Isolation and characterization of putative trefoil peptide receptors. Regul. Pept. 90:61–68 [Google Scholar]
  43. Rosenstiel P, Sina C, End C, Renner M,. 43.  et al. 2007. Regulation of DMBT1 via NOD2 and TLR4 in intestinal epithelial cells modulates bacterial recognition and invasion. J. Immunol. 178:8203–11 [Google Scholar]
  44. Dubeykovskaya Z, Dubeykovskiy A, Solal-Cohen J, Wang TC. 44.  2009. Secreted trefoil factor 2 activates the CXCR4 receptor in epithelial and lymphocytic cancer cell lines. J. Biol. Chem. 284:3650–62 [Google Scholar]
  45. Aikou S, Ohmoto Y, Gunji T, Matsuhashi N, Ohtsu H. 45.  et al. 2011. Tests for serum levels of trefoil factor family proteins can improve gastric cancer screening. Gastroenterology 141:837–45.e7 [Google Scholar]
  46. Kjellev S, Nexø E, Thim L, Poulsen SS. 46.  2006. Systemically administered trefoil factors are secreted into the gastric lumen and increase the viscosity of gastric contents. Br. J. Pharmacol. 149:92–99 [Google Scholar]
  47. Xue L, Aihara E, Wang TC, Montrose MH. 47.  2011. Trefoil factor 2 requires Na/H exchanger 2 activity to enhance mouse gastric epithelial repair. J. Biol. Chem. 286:38375–82 [Google Scholar]
  48. Playford RJ, Marchbank T, Chinery R, Evison R, Pignatelli M. 48.  et al. 1995. Human spasmolytic polypeptide is a cytoprotective agent that stimulates cell migration. Gastroenterology 108:108–16 [Google Scholar]
  49. McKenzie C, Marchbank T, Playford RJ, Otto W, Thim L, Parsons ME. 49.  1997. Pancreatic spasmolytic polypeptide protects the gastric mucosa but does not inhibit acid secretion or motility. Am. J. Physiol. 273:G112–17 [Google Scholar]
  50. Babyatsky MW, deBeaumont M, Thim L, Podolsky DK. 50.  1996. Oral trefoil peptides protect against ethanol- and indomethacin-induced gastric injury in rats. Gastroenterology 110:489–97 [Google Scholar]
  51. McKenzie C, Thim L, Parsons ME. 51.  2000. Topical and intravenous administration of trefoil factors protect the gastric mucosa from ethanol-induced injury in the rat. Aliment. Pharmacol. Ther. 14:1033–40 [Google Scholar]
  52. Beck PL, Wong JF, Li Y, Swaminathan S, Xavier RJ. 52.  et al. 2004. Chemotherapy- and radiotherapy-induced intestinal damage is regulated by intestinal trefoil factor. Gastroenterology 126:796–808 [Google Scholar]
  53. Carrasco R, Pera M, May FE, Westley BR, Martinez A, Morales L. 53.  2004. Trefoil factor family peptide 3 prevents the development and promotes healing of ischemia-reperfusion injury in weanling rats. J. Pediatr. Surg. 39:1693–700 [Google Scholar]
  54. Xu LF, Teng X, Guo J, Sun M. 54.  2012. Protective effect of intestinal trefoil factor on injury of intestinal epithelial tight junction induced by platelet activating factor. Inflammation 35:308–15 [Google Scholar]
  55. Meyer zum Büschenfelde D, Tauber R, Huber O. 55.  2006. TFF3-peptide increases transepithelial resistance in epithelial cells by modulating claudin-1 and -2 expression. Peptides 27:3383–90 [Google Scholar]
  56. Poulsen SS, Kissow H, Hare K, Hartmann B, Thim L. 56.  2005. Luminal and parenteral TFF2 and TFF3 dimer and monomer in two models of experimental colitis in the rat. Regul. Pept. 126:163–71 [Google Scholar]
  57. Kurt-Jones EA, Cao L, Sandor F, Rogers AB, Whary MT. 57.  et al. 2007. Trefoil family factor 2 is expressed in murine gastric and immune cells and controls both gastrointestinal inflammation and systemic immune responses. Infect. Immun. 75:471–80 [Google Scholar]
  58. Marchbank T, Westley BR, May FE, Calnan DP, Playford RJ. 58.  1998. Dimerization of human pS2 (TFF1) plays a key role in its protective/healing effects. J Pathol 185:15–58 [Google Scholar]
  59. Poulsen SS, Thulesen J, Christensen L, Nexø E, Thim L. 59.  1999. Metabolism of oral trefoil factor 2 (TFF2) and the effect of oral and parenteral TFF2 on gastric and duodenal ulcer healing in the rat. Gut 45:516–22 [Google Scholar]
  60. FitzGerald AJ, Pu M, Marchbank T, Westley BR, May FEB. 60.  et al. 2004. Synergistic effects of systemic trefoil factor family 1 (TFF1) peptide and epidermal growth factor in a rat model of colitis. Peptides 25:793–801 [Google Scholar]
  61. Playford RJ, Marchbank T, Goodlad RA, Chinery RA, Poulsom R, Hanby AM. 61.  1996. Transgenic mice that overexpress the human trefoil peptide pS2 have an increased resistance to intestinal damage. PNAS 93:2137–42 [Google Scholar]
  62. Laine L, Takeuchi K, Tarnawski A. 62.  2008. Gastric mucosal defense and cytoprotection: bench to bedside. Gastroenterology 135:41–60 [Google Scholar]
  63. Wallace JL. 63.  2008. Prostaglandins, NSAIDs, and gastric mucosal protection: Why doesn't the stomach digest itself?. Physiol. Rev. 88:1547–65 [Google Scholar]
  64. Konturek PC, Brzozowski T, Pierzchalski P, Kwiecien S, Pajdo R. 64.  et al. 1998. Activation of genes for spasmolytic peptide, transforming growth factor alpha and for cyclooxygenase (COX)-1 and COX-2 during gastric adaptation to aspirin damage in rats. Aliment. Pharmacol. Ther. 12:767–77 [Google Scholar]
  65. Tanaka S, Podolsky DK, Engel E, Guth PH, Kaunitz JD. 65.  1997. Human spasmolytic polypeptide decreases proton permeation through gastric mucus in vivo and in vitro. Am. J. Physiol. 272:G1473–80 [Google Scholar]
  66. Longman RJ, Douthwaite J, Sylvester PA, Poulsom R, Corfield AP. 66.  et al. 2000. Coordinated localisation of mucins and trefoil peptides in the ulcer associated cell lineage and the gastrointestinal mucosa. Gut 47:792–800 [Google Scholar]
  67. Ruchaud-Sparagano MH, Westley BR, May FE. 67.  2004. The trefoil protein TFF1 is bound to MUC5AC in human gastric mucosa. Cell. Mol. Life Sci. 61:1946–54 [Google Scholar]
  68. Hanisch FG, Bonar D, Schloerer N, Schroten H. 68.  2014. Human trefoil factor 2 is a lectin that binds α-GlcNAc-capped mucin glycans with antibiotic activity against Helicobacter pylori. J. Biol. Chem. 289:27363–75 [Google Scholar]
  69. Newton JL, Allen A, Westley BR, May FE. 69.  2000. The human trefoil peptide, TFF1, is present in different molecular forms that are intimately associated with mucus in normal stomach. Gut 46:312–20 [Google Scholar]
  70. Thim L, Madsen F, Poulsen SS. 70.  2002. Effect of trefoil factors on the viscoelastic properties of mucus gels. Eur. J. Clin. Investig. 32:519–27 [Google Scholar]
  71. Kindon H, Pothoulakis C, Thim L, Lynch-Devaney K, Podolsky DK. 71.  1995. Trefoil peptide protection of intestinal epithelial barrier function: cooperative interaction with mucin glycoprotein. Gastroenterology 109:516–23 [Google Scholar]
  72. Tomasetto C, Masson R, Linares JL, Wendling C, Lefebvre O. 72.  et al. 2000. pS2/TFF1 interacts directly with the VWFC cysteine-rich domains of mucins. Gastroenterology 118:70–80 [Google Scholar]
  73. Albert TK, Laubinger W, Müller S, Hanisch FG, Kalinski T. 73.  et al. 2010. Human intestinal TFF3 forms disulfide-linked heteromers with the mucus-associated FCGBP protein and is released by hydrogen sulfide. J. Proteome Res. 9:3108–17 [Google Scholar]
  74. Sellers LA, Allen A, Bennett MK. 74.  1987. Formation of a fibrin based gelatinous coat over repairing rat gastric epithelium after acute ethanol damage: interaction with adherent mucus. Gut 28:835–43 [Google Scholar]
  75. Ota H, Hayama M, Momose M, El-Zimaity HM, Matsuda K. 75.  et al. 2006. Co-localization of TFF2 with gland mucous cell mucin in gastric mucous cells and in extracellular mucous gel adherent to normal and damaged gastric mucosa. Histochem. Cell Biol. 126:617–25 [Google Scholar]
  76. Svanes K, Ito S, Takeuchi K, Silen W. 76.  1982. Restitution of the surface epithelium of the in vitro frog gastric mucosa after damage with hyperosmolar sodium chloride. Morphologic and physiologic characteristics. Gastroenterology 82:1409–26 [Google Scholar]
  77. Svanes K, Takeuchi K, Ito S, Silen W. 77.  1983. Effect of luminal pH and nutrient bicarbonate concentration on restitution after gastric surface cell injury. Surgery 94:494–500 [Google Scholar]
  78. Schumacher MA, Aihara E, Feng R, Engevik A, Shroyer NF. 78.  et al. 2015. The use of murine-derived fundic organoids in studies of gastric physiology. J. Physiol. 593:1809–27 [Google Scholar]
  79. Dignass A, Lynch-Denaney K, Kindon H, Thim L, Podolsky DK. 79.  1994. Trefoil peptides promote epithelial migration through a transforming growth factor beta-independent pathway. J. Clin. Investig 94:376–83 [Google Scholar]
  80. Le J, Zhang DY, Zhao Y, Qiu W, Wang P, Sun Y. 80.  2016. ITF promotes migration of intestinal epithelial cells through crosstalk between the ERK and JAK/STAT3 pathways. Sci. Rep 6:33014 [Google Scholar]
  81. Kinoshita K, Taupin DR, Itoh H, Podolsky DK. 81.  2000. Distinct pathways of cell migration and antiapoptotic response to epithelial injury: structure-function analysis of human intestinal trefoil factor. Mol. Cell. Biol. 20:4680–90 [Google Scholar]
  82. Szabo S. 82.  2014. “Gastric cytoprotection” is still relevant. J. Gastroenterol. Hepatol. 29:Suppl. 4124–32 [Google Scholar]
  83. Taupin D, Podolsky DK. 83.  2003. Trefoil factors: initiators of mucosal healing. Nat. Rev. Mol. Cell Biol. 4:721–32 [Google Scholar]
  84. Kim SA, Tai CY, Mok LP, Mosser EA, Schuman EM. 84.  2011. Calcium-dependent dynamics of cadherin interactions at cell-cell junctions. PNAS 108:9857–62 [Google Scholar]
  85. Liu D, El-Hariry I, Karayiannakis AJ, Wilding J, Chinery R. 85.  et al. 1997. Phosphorylation of β-catenin and epidermal growth factor receptor by intestinal trefoil factor. Lab. Investig. 77:557–63 [Google Scholar]
  86. Aihara E, Hentz CL, Korman AM, Perry NP, Prasad V. 86.  et al. 2013. In vivo epithelial wound repair requires mobilization of endogenous intracellular and extracellular calcium. J. Biol. Chem. 288:33585–97 [Google Scholar]
  87. Chen HC, Appeddu PA, Isoda H, Guan JL. 87.  1996. Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J. Biol. Chem. 271:26329–34 [Google Scholar]
  88. Efstathiou JA, Pignatelli M. 88.  1998. Modulation of epithelial cell adhesion in gastrointestinal homeostasis. Am. J. Pathol. 153:341–47 [Google Scholar]
  89. Buda A, Jepson MA, Pignatelli M. 89.  2012. Regulatory function of trefoil peptides (TFF) on intestinal cell junctional complexes. Cell Commun. Adhes. 19:63–68 [Google Scholar]
  90. Nobes CD, Hall A. 90.  1995. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62 [Google Scholar]
  91. Machesky LM, Hall A. 91.  1997. Role of actin polymerization and adhesion to extracellular matrix in Rac- and Rho-induced cytoskeletal reorganization. J. Cell Biol. 138:913–26 [Google Scholar]
  92. Timpson P, Jones GE, Frame MC, Brunton VG. 92.  2001. Coordination of cell polarization and migration by the Rho family GTPases requires Src tyrosine kinase activity. Curr. Biol. 11:1836–46 [Google Scholar]
  93. Emami S. Floch N, Bruyneel E, Thim L, May F. 93. , Le et al. 2001. Induction of scattering and cellular invasion by trefoil peptides in src- and RhoA-transformed kidney and colonic epithelial cells. FASEB J. 15:351–61 [Google Scholar]
  94. Emami S, Rodrigues S, Rodrigue CM. Floch N, Rivat C. 94. , Le et al. 2004. Trefoil factor family (TFF) peptides and cancer progression. Peptides 25:885–98 [Google Scholar]
  95. Xu LF, Xu C, Mao ZQ, Teng X, Ma L, Sun M. 95.  2011. Disruption of the F-actin cytoskeleton and monolayer barrier integrity induced by PAF and the protective effect of ITF on intestinal epithelium. Arch. Pharmacal Res. 34:245–51 [Google Scholar]
  96. Graness A, Chwieralski CE, Reinhold D, Thim L, Hoffmann W. 96.  2002. Protein kinase C and ERK activation are required for TFF-peptide-stimulated bronchial epithelial cell migration and tumor necrosis factor-α-induced interleukin-6 (IL-6) and IL-8 secretion. J. Biol. Chem. 277:18440–46 [Google Scholar]
  97. Baus-Loncar M, Giraud AS. 97.  2005. Multiple regulatory pathways for trefoil factor (TFF) genes. Cell. Mol. Life Sci. 62:2921–31 [Google Scholar]
  98. Sun Z, Liu H, Yang Z, Shao D, Zhang W. 98.  et al. 2014. Intestinal trefoil factor activates the PI3K/Akt signaling pathway to protect gastric mucosal epithelium from damage. Int. J. Oncol. 45:1123–32 [Google Scholar]
  99. Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P, Cheresh DA. 99.  1997. Regulation of cell motility by mitogen-activated protein kinase. J. Cell Biol. 137:481–92 [Google Scholar]
  100. Hansson HA, Hong L, Helander HF. 100.  1990. Changes in gastric EGF, EGF receptors and acidity during healing of gastric ulcer in the rat. Acta Physiol. Scand. 138:241–42 [Google Scholar]
  101. Furukawa O, Matsui H, Suzuki N, Okabe S. 101.  1999. Epidermal growth factor protects rat epithelial cells against acid-induced damage through the activation of Na+/H+ exchangers. J. Pharmacol. Exp. Ther. 288:620–26 [Google Scholar]
  102. Sato T, Amano H, Eshima K, Minamino T, Abe T. 102.  et al. 2013. NSAID, aspirin delays gastric ulcer healing with reduced accumulation of CXCR4+VEGFR1+ cells to the ulcer granulation tissues. Biomed Pharmacother 67:607–13 [Google Scholar]
  103. Aihara E, Matthis AL, Karns RA, Engevik KA, Jiang P. 103.  et al. 2016. Epithelial regeneration after gastric ulceration causes prolonged cell type alterations. Cell. Mol. Gastroenterol. Hepatol. 2:625–47 [Google Scholar]
  104. Agle KA, Vongsa RA, Dwinell MB. 104.  2010. Calcium mobilization triggered by the chemokine CXCL12 regulates migration in wounded intestinal epithelial monolayers. J. Biol. Chem. 285:16066–75 [Google Scholar]
  105. Smith JM, Johanesen PA, Wendt MK, Binion DG, Dwinell MB. 105.  2005. CXCL12 activation of CXCR4 regulates mucosal host defense through stimulation of epithelial cell migration and promotion of intestinal barrier integrity. Am. J. Physiol. Gastrointest. Liver Physiol. 288:G316–26 [Google Scholar]
  106. Hwang S, Zimmerman NP, Agle KA, Turner JR, Kumar SN, Dwinell MB. 106.  2012. E-cadherin is critical for collective sheet migration and is regulated by the chemokine CXCL12 protein during restitution. J. Biol. Chem. 287:22227–40 [Google Scholar]
  107. Yanaka A, Suzuki H, Shibahara T, Matsui H, Nakahara A, Tanaka N. 107.  2002. EGF promotes gastric mucosal restitution by activating Na+/H+ exchange of epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 282:G866–76 [Google Scholar]
  108. Moeser AJ, Nighot PK, Ryan KA, Simpson JE, Clarke LL, Blikslager AT. 108.  2008. Mice lacking the Na+/H+ exchanger 2 have impaired recovery of intestinal barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 295:G791–97 [Google Scholar]
  109. Moeser AJ, Nighot PK, Ryan KA, Wooten JG, Blikslager AT. 109.  2006. Prostaglandin-mediated inhibition of Na+/H+ exchanger isoform 2 stimulates recovery of barrier function in ischemia-injured intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 291:G885–94 [Google Scholar]
  110. Wright NA, Poulsom R, Stamp G, Van Noorden S, Sarraf C. 110.  et al. 1993. Trefoil peptide gene expression in gastrointestinal epithelial cells in inflammatory bowel disease. Gastroenterology 104:12–20 [Google Scholar]
  111. Alison MR, Chinery R, Poulsom R, Ashwood P, Longcroft JM, Wright NA. 111.  1995. Experimental ulceration leads to sequential expression of spasmolytic polypeptide, intestinal trefoil factor, epidermal growth factor and transforming growth factor alpha mRNAs in rat stomach. J. Pathol. 175:405–14 [Google Scholar]
  112. Riaño A, Ortiz-Masià D, Velazquez M, Calatayud S, Esplugues JV, Barrachina MD. 112.  2011. Nitric oxide induces HIF-1α stabilization and expression of intestinal trefoil factor in the damaged rat jejunum and modulates ulcer healing. J. Gastroenterol. 46:565–76 [Google Scholar]
  113. Koike T, Shimada T, Fujii Y, Chen G, Tabei K. 113.  et al. 2007. Up-regulation of TFF1 (pS2) expression by TNF-α in gastric epithelial cells. J. Gastroenterol. Hepatol. 22:936–42 [Google Scholar]
  114. Dossinger V, Kayademir T, Blin N, Gött P. 114.  2002. Down-regulation of TFF expression in gastrointestinal cell lines by cytokines and nuclear factors. Cell. Physiol. Biochem. 12:197–206 [Google Scholar]
  115. Cobler L, Mejías-Luque R, Garrido M, Pera M, Badia-Garrido E, de Bolós C. 115.  2013. Activation of the NF-kB pathway downregulates TFF-1 in gastric carcinogenesis. Virchows Arch. 463:497–507 [Google Scholar]
  116. Loncar MB, Al-azzeh ED, Sommer PS, Marinovic M, Schmehl K. 116.  et al. 2003. Tumour necrosis factor α and nuclear factor κB inhibit transcription of human TFF3 encoding a gastrointestinal healing peptide. Gut 52:1297–303 [Google Scholar]
  117. Tarnawski A, Stachura J, Krause WJ, Douglass TG, Gergely H. 117.  1991. Quality of gastric ulcer healing: a new, emerging concept. J. Clin. Gastroenterol. 13:Suppl. 1S42–47 [Google Scholar]
  118. Okabe S, Amagase K. 118.  2005. An overview of acetic acid ulcer models—the history and state of the art of peptic ulcer research. Biol. Pharm. Bull. 28:1321–41 [Google Scholar]
  119. Nam KT, Lee HJ, Mok H, Romero-Gallo J, Crowe JE Jr.. 119.  et al. 2009. Amphiregulin-deficient mice develop spasmolytic polypeptide expressing metaplasia and intestinal metaplasia. Gastroenterology 136:1288–96 [Google Scholar]
  120. Ulaganathan M, Familari M, Yeomans ND, Giraud AS, Cook GA. 120.  2001. Spatio-temporal expression of trefoil peptide following severe gastric ulceration in the rat implicates it in late-stage repair processes. J. Gastroenterol. Hepatol. 16:506–12 [Google Scholar]
  121. Aihara E, Closson C, Matthis AL, Schumacher MA, Engevik AC. 121.  et al. 2014. Motility and chemotaxis mediate the preferential colonization of gastric injury sites by Helicobacter pylori. PLOS Pathog 10:e1004275 [Google Scholar]
  122. Kikuchi M, Nagata H, Watanabe N, Watanabe H, Tatemichi M, Hibi T. 122.  2010. Altered expression of a putative progenitor cell marker DCAMKL1 in the rat gastric mucosa in regeneration, metaplasia and dysplasia. BMC Gastroenterol 10:65 [Google Scholar]
  123. Nozaki K, Ogawa M, Williams JA, Lafleur BJ, Ng V. 123.  et al. 2008. A molecular signature of gastric metaplasia arising in response to acute parietal cell loss. Gastroenterology 134:511–22 [Google Scholar]
  124. Nomura S, Baxter T, Yamaguchi H, Leys C, Vartapetian AB. 124.  et al. 2004. Spasmolytic polypeptide expressing metaplasia to preneoplasia in H. felis-infected mice. Gastroenterology 127:582–94 [Google Scholar]
  125. Ogawa M, Nomura S, Varro A, Wang TC, Goldenring JR. 125.  2006. Altered metaplastic response of waved-2 EGF receptor mutant mice to acute oxyntic atrophy. Am. J. Physiol. Gastrointest. Liver Physiol. 290:G793–804 [Google Scholar]
  126. Sasaki E, Tominaga K, Watanabe T, Fujiwara Y, Oshitani N. 126.  et al. 2003. COX-2 is essential for EGF induction of cell proliferation in gastric RGM1 cells. Dig. Dis. Sci. 48:2257–62 [Google Scholar]
  127. Alderman BM, Ulaganathan M, Judd LM, Howlett M, Parker LM. 127.  et al. 2003. Insights into the mechanisms of gastric adaptation to aspirin-induced injury: a role for regenerating protein but not trefoil peptides. Lab. Investig. 83:1415–25 [Google Scholar]
  128. Koitabashi A, Shimada T, Fujii Y, Hashimoto T, Hosaka K. 128.  et al. 2004. Indometacin up-regulates TFF2 expression in gastric epithelial cells. Aliment. Pharmacol. Ther. 20:Suppl. 1171–76 [Google Scholar]
  129. Azarschab P, Al-Azzeh E, Kornberger W, Gott P. 129.  2001. Aspirin promotes TFF2 gene activation in human gastric cancer cell lines. FEBS Lett 488:206–10 [Google Scholar]
  130. Lehmann JM, Lenhard JM, Oliver BB, Ringold GM, Kliewer SA. 130.  1997. Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem. 272:3406–10 [Google Scholar]
  131. Wada K, Nakajima A, Takahashi H, Yoneda M, Fujisawa N. 131.  et al. 2004. Protective effect of endogenous PPARγ against acute gastric mucosal lesions associated with ischemia-reperfusion. Am. J. Physiol. Gastrointest. Liver Physiol. 287:G452–58 [Google Scholar]
  132. Konturek PC, Brzozowski T, Kania J, Konturek SJ, Kwiecien S. 132.  et al. 2003. Pioglitazone, a specific ligand of peroxisome proliferator-activated receptor-gamma, accelerates gastric ulcer healing in rat. Eur. J. Pharmacol. 472:213–20 [Google Scholar]
  133. Shimada T, Koitabashi A, Kuniyoshi T, Hashimoto T, Yoshiura K. 133.  et al. 2003. Up-regulation of TFF expression by PPARγ ligands in gastric epithelial cells. Aliment. Pharmacol. Ther. 18:Suppl. 1119–25 [Google Scholar]
  134. Clyne M, Dillon P, Daly S, O'Kennedy R, May FE. 134.  et al. 2004. Helicobacter pylori interacts with the human single-domain trefoil protein TFF1. PNAS 101:7409–14 [Google Scholar]
  135. Reeves EP, Ali T, Leonard P, Hearty S, O'Kennedy R. 135.  et al. 2008. Helicobacter pylori lipopolysaccharide interacts with TFF1 in a pH-dependent manner. Gastroenterology 135:2043–54.e2 [Google Scholar]
  136. Montefusco S, Esposito R, D'Andrea L, Monti MC, Dunne C. 136.  et al. 2013. Copper promotes TFF1-mediated Helicobacter pylori colonization. PLOS ONE 8:e79455 [Google Scholar]
  137. Schmitz JM, Durham CG, Ho SB, Lorenz RG. 137.  2009. Gastric mucus alterations associated with murine Helicobacter infection. J. Histochem. Cytochem. 57:457–67 [Google Scholar]
  138. Soutto M, Chen Z, Katsha AM, Romero-Gallo J, Krishna US. 138.  et al. 2015. Trefoil factor 1 expression suppresses Helicobacter pylori-induced inflammation in gastric carcinogenesis. Cancer 121:4348–58 [Google Scholar]
  139. Peterson AJ, Menheniott TR, O'Connor L, Walduck AK, Fox JG. 139.  et al. 2010. Helicobacter pylori infection promotes methylation and silencing of trefoil factor 2, leading to gastric tumor development in mice and humans. Gastroenterology 139:2005–17 [Google Scholar]
  140. Fox JG, Rogers AB, Whary MT, Ge Z, Ohtani M. 140.  et al. 2007. Accelerated progression of gastritis to dysplasia in the pyloric antrum of TFF2−/−C57BL6 × Sv129 Helicobacter pylori-infected mice. Am. J. Pathol. 171:1520–28 [Google Scholar]
  141. Matsuda K, Yamauchi K, Matsumoto T, Sano K, Yamaoka Y, Ota H. 141.  2008. Quantitative analysis of the effect of Helicobacter pylori on the expressions of SOX2, CDX2, MUC2, MUC5AC, MUC6, TFF1, TFF2, and TFF3 mRNAs in human gastric carcinoma cells. Scand. J. Gastroenterol. 43:25–33 [Google Scholar]
  142. Xian CJ, Howarth GS, Mardell CE, Cool JC, Familari M. 142.  et al. 1999. Temporal changes in TFF3 expression and jejunal morphology during methotrexate-induced damage and repair. Am. J. Physiol. 277:G785–95 [Google Scholar]
  143. Itoh H, Tomita M, Uchino H, Kobayashi T, Kataoka H. 143.  et al. 1996. cDNA cloning of rat pS2 peptide and expression of trefoil peptides in acetic acid-induced colitis. Biochem. J. 318:Pt. 3939–44 [Google Scholar]
  144. Kjellev S, Thim L, Pyke C, Poulsen SS. 144.  2007. Cellular localization, binding sites, and pharmacologic effects of TFF3 in experimental colitis in mice. Dig. Dis. Sci. 52:1050–59 [Google Scholar]
  145. Chen YH, Lu Y, De Plaen IG, Wang LY, Tan XD. 145.  2000. Transcription factor NF-κB signals antianoikic function of trefoil factor 3 on intestinal epithelial cells. Biochem. Biophys. Res. Commun. 274:576–82 [Google Scholar]
  146. Teng X, Xu LF, Zhou P, Sun HW, Sun M. 146.  2009. Effects of trefoil peptide 3 on expression of TNF-α, TLR4, and NF-κB in trinitrobenzene sulphonic acid induced colitis mice. Inflammation 32:120–29 [Google Scholar]
  147. Shi L, Zhou PH, Xi JL, Yu HG, Zhang BH. 147.  2014. Recombinant human trefoil factor 3 ameliorates bowel injury: its anti-inflammatory effect on experimental necrotizing enterocolitis. Int. J. Pept. 2014:634135 [Google Scholar]
  148. Barrera GJ, Sanchez G, Gonzalez JE. 148.  2012. Trefoil factor 3 isolated from human breast milk downregulates cytokines (IL8 and IL6) and promotes human beta defensin (hBD2 and hBD4) expression in intestinal epithelial cells HT-29. Bosn. J. Basic Med. Sci. 12:256–64 [Google Scholar]
  149. Podolsky DK, Gerken G, Eyking A, Cario E. 149.  2009. Colitis-associated variant of TLR2 causes impaired mucosal repair because of TFF3 deficiency. Gastroenterology 137:209–20 [Google Scholar]
  150. Lin N, Xu LF, Sun M. 150.  2013. The protective effect of trefoil factor 3 on the intestinal tight junction barrier is mediated by toll-like receptor 2 via a PI3K/Akt dependent mechanism. Biochem. Biophys. Res. Commun. 440:143–49 [Google Scholar]
  151. Tran CP, Cook GA, Yeomans ND, Thim L, Giraud AS. 151.  1999. Trefoil peptide TFF2 (spasmolytic polypeptide) potently accelerates healing and reduces inflammation in a rat model of colitis. Gut 44:636–42 [Google Scholar]
  152. Ando K, Fujiya M, Konishi H, Ueno N, Inaba Y. 152.  et al. 2015. Heterogeneous nuclear ribonucleoprotein A1 improves the intestinal injury by regulating apoptosis through trefoil factor 2 in mice with anti-CD3-induced enteritis. Inflamm. Bowel Dis. 21:1541–52 [Google Scholar]
  153. Vandenbroucke K, Hans W, Van Huysse J, Neirynck S, Demetter P. 153.  et al. 2004. Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice. Gastroenterology 127:502–13 [Google Scholar]
  154. Giraud AS, Pereira PM, Thim L, Parker LM, Judd LM. 154.  2004. TFF-2 inhibits iNOS/NO in monocytes, and nitrated protein in healing colon after colitis. Peptides 25:803–9 [Google Scholar]
  155. Judd LM, Chalinor HV, Walduck A, Pavlic DI, Dabritz J. 155.  et al. 2015. TFF2 deficiency exacerbates weight loss and alters immune cell and cytokine profiles in DSS colitis, and this cannot be rescued by wild-type bone marrow. Am. J. Physiol. Gastrointest. Liver Physiol. 308:G12–24 [Google Scholar]
  156. Playford RJ. 156.  1995. Peptides and gastrointestinal mucosal integrity. Gut 37:595–97 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021115-105447
Loading
/content/journals/10.1146/annurev-physiol-021115-105447
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error