1932

Abstract

Research in the last two decades has identified many synaptic organizers in the central nervous system that directly regulate the assembly of pre- and/or postsynaptic molecules, such as synaptic vesicles, active zone proteins, and neurotransmitter receptors. They are classified into secreted factors and cell adhesion molecules, such as neurexins and neuroligins. Certain secreted factors are termed extracellular scaffolding proteins (ESPs) because they are components of the synaptic extracellular matrix and serve as a scaffold at the synaptic cleft. These include Lgi1, Cbln1, neuronal pentraxins, Hevin, thrombospondins, and glypicans. Diffusible secreted factors, such as Wnts, fibroblast growth factors, and semaphorins, tend to act from a distance. In contrast, ESPs remain at the synaptic cleft and often help synaptic adhesion and/or accumulation of postsynaptic receptors. Many fundamental questions remain about when, how, and why various synaptic organizers establish and modify the vast numbers of connections during development and throughout life.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021317-121322
2018-02-10
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/physiol/80/1/annurev-physiol-021317-121322.html?itemId=/content/journals/10.1146/annurev-physiol-021317-121322&mimeType=html&fmt=ahah

Literature Cited

  1. Zoghbi HY.1.  2003. Postnatal neurodevelopmental disorders: meeting at the synapse?. Science 302:826–30 [Google Scholar]
  2. Brose N, O'Connor V, Skehel P. 2.  2010. Synaptopathy: dysfunction of synaptic function?. Biochem. Soc. Trans. 38:443–44 [Google Scholar]
  3. Satterthwaite TD, Baker JT. 3.  2015. How can studies of resting-state functional connectivity help us understand psychosis as a disorder of brain development?. Curr. Opin. Neurobiol. 30:85–91 [Google Scholar]
  4. Ameis SH, Catani M. 4.  2015. Altered white matter connectivity as a neural substrate for social impairment in Autism Spectrum Disorder. Cortex 62:158–81 [Google Scholar]
  5. Fox MA, Umemori H. 5.  2006. Seeking long-term relationship: axon and target communicate to organize synaptic differentiation. J. Neurochem. 97:1215–31 [Google Scholar]
  6. McAllister AK.6.  2007. Dynamic aspects of CNS synapse formation. Annu. Rev. Neurosci. 30:425–50 [Google Scholar]
  7. Waites CL, Craig AM, Garner CC. 7.  2005. Mechanisms of vertebrate synaptogenesis. Annu. Rev. Neurosci. 28:251–74 [Google Scholar]
  8. Ahmad-Annuar A, Ciani L, Simeonidis I, Herreros J, Fredj NB. 8.  et al. 2006. Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release. J. Cell Biol. 174:127–39 [Google Scholar]
  9. Ciani L, Marzo A, Boyle K, Stamatakou E, Lopes DM. 9.  et al. 2015. Wnt signalling tunes neurotransmitter release by directly targeting Synaptotagmin-1. Nat. Commun. 6:8302 [Google Scholar]
  10. Fu Y, Huang ZJ. 10.  2010. Differential dynamics and activity-dependent regulation of α- and β-neurexins at developing GABAergic synapses. PNAS 107:22699–704 [Google Scholar]
  11. Matsuda K, Miura E, Miyazaki T, Kakegawa W, Emi K. 11.  et al. 2010. Cbln1 is a ligand for an orphan glutamate receptor δ2, a bidirectional synapse organizer. Science 328:363–68 [Google Scholar]
  12. Uemura T, Lee SJ, Yasumura M, Takeuchi T, Yoshida T. 12.  et al. 2010. Trans-synaptic interaction of GluRδ2 and neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141:1068–79 [Google Scholar]
  13. Kakegawa W, Mitakidis N, Miura E, Abe M, Matsuda K. 13.  et al. 2015. Anterograde C1ql1 signaling is required in order to determine and maintain a single-winner climbing fiber in the mouse cerebellum. Neuron 85:316–29 [Google Scholar]
  14. Matsuda K, Budisantoso T, Mitakidis N, Sugaya Y, Miura E. 14.  et al. 2016. Transsynaptic modulation of kainate receptor functions by C1q-like proteins. Neuron 90:752–67 [Google Scholar]
  15. Fukata Y, Adesnik H, Iwanaga T, Bredt DS, Nicoll RA, Fukata M. 15.  2006. Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science 313:1792–95 [Google Scholar]
  16. Schlimgen AK, Helms JA, Vogel H, Perin MS. 16.  1995. Neuronal pentraxin, a secreted protein with homology to acute phase proteins of the immune system. Neuron 14:519–26 [Google Scholar]
  17. Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW. 17.  et al. 2005. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–33 [Google Scholar]
  18. Singhal N, Martin PT. 18.  2011. Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Dev. Neurobiol. 71:982–1005 [Google Scholar]
  19. Cowell JK.19.  2014. LGI1: from zebrafish to human epilepsy. Prog. Brain Res. 213:159–79 [Google Scholar]
  20. Kegel L, Aunin E, Meijer D, Bermingham JR. 20.  2013. LGI proteins in the nervous system. ASN Neuro 5:e001115 [Google Scholar]
  21. Schulte U, Thumfart JO, Klöcker N, Sailer CA, Bildl W. 21.  et al. 2006. The epilepsy-linked Lgi1 protein assembles into presynaptic Kv1 channels and inhibits inactivation by Kvβ1. Neuron 49:697–706 [Google Scholar]
  22. Fukata Y, Lovero KL, Iwanaga T, Watanabe A, Yokoi N. 22.  et al. 2010. Disruption of LGI1-linked synaptic complex causes abnormal synaptic transmission and epilepsy. PNAS 107:3799–804 [Google Scholar]
  23. Ohkawa T, Fukata Y, Yamasaki M, Miyazaki T, Yokoi N. 23.  et al. 2013. Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors. J. Neurosci. 33:18161–74 [Google Scholar]
  24. Sagane K, Hayakawa K, Kai J, Hirohashi T, Takahashi E. 24.  et al. 2005. Ataxia and peripheral nerve hypomyelination in ADAM22-deficient mice. BMC Neurosci 6:33 [Google Scholar]
  25. Owuor K, Harel NY, Englot DJ, Hisama F, Blumenfeld H, Strittmatter SM. 25.  2009. LGI1-associated epilepsy through altered ADAM23-dependent neuronal morphology. Mol. Cell. Neurosci. 42:448–57 [Google Scholar]
  26. Lovero KL, Fukata Y, Granger AJ, Fukata M, Nicoll RA. 26.  2015. The LGI1-ADAM22 protein complex directs synapse maturation through regulation of PSD-95 function. PNAS 112:E4129–37 [Google Scholar]
  27. Irani SR, Alexander S, Waters P, Kleopa KA, Pettingill P. 27.  et al. 2010. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan's syndrome and acquired neuromyotonia. Brain 133:2734–48 [Google Scholar]
  28. Lai M, Huijbers MG, Lancaster E, Graus F, Bataller L. 28.  et al. 2010. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol 9:776–85 [Google Scholar]
  29. Kalachikov S, Evgrafov O, Ross B, Winawer M, Barker-Cummings C. 29.  et al. 2002. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat. Genet. 30:335–41 [Google Scholar]
  30. Morante-Redolat JM, Gorostidi-Pagola A, Piquer-Sirerol S, Saénz A, Poza JJ. 30.  et al. 2002. Mutations in the LGI1/Epitempin gene on 10q24 cause autosomal dominant lateral temporal epilepsy. Hum. Mol. Genet. 11:1119–28 [Google Scholar]
  31. Fukata Y, Yokoi N, Miyazaki Y, Fukata M. 31.  2017. The LGI1-ADAM22 protein complex in synaptic transmission and synaptic disorders. Neurosci. Res. 116:39–45 [Google Scholar]
  32. Thomas R, Favell K, Morante-Redolat J, Pool M, Kent C. 32.  et al. 2010. LGI1 is a Nogo receptor 1 ligand that antagonizes myelin-based growth inhibition. J. Neurosci. 30:6607–12 [Google Scholar]
  33. Carland TM, Gerwick L. 33.  2010. The C1q domain containing proteins: Where do they come from and what do they do?. Dev. Comp. Immunol. 34:785–90 [Google Scholar]
  34. Miura E, Iijima T, Yuzaki M, Watanabe M. 34.  2006. Distinct expression of Cbln family mRNAs in developing and adult mouse brains. Eur. J. Neurosci. 24:750–60 [Google Scholar]
  35. Hirai H, Pang Z, Bao D, Miyazaki T, Li L. 35.  et al. 2005. Cbln1 is essential for synaptic integrity and plasticity in the cerebellum. Nat. Neurosci. 8:1534–41 [Google Scholar]
  36. Ito-Ishida A, Miura E, Emi K, Matsuda K, Iijima T. 36.  et al. 2008. Cbln1 regulates rapid formation and maintenance of excitatory synapses in mature cerebellar Purkinje cells in vitro and in vivo. . J. Neurosci. 28:5920–30 [Google Scholar]
  37. Takeuchi T, Miyazaki T, Watanabe M, Mori H, Sakimura K, Mishina M. 37.  2005. Control of synaptic connection by glutamate receptor δ2 in the adult cerebellum. J. Neurosci. 25:2146–56 [Google Scholar]
  38. Elegheert J, Kakegawa W, Clay JE, Shanks NF, Behiels E. 38.  et al. 2016. Structural basis for integration of GluD receptors within synaptic organizer complexes. Science 353:295–99 [Google Scholar]
  39. Cheng S, Seven AB, Wang J, Skiniotis G, Ozkan E. 39.  2016. Conformational plasticity in the transsynaptic neurexin-cerebellin-glutamate receptor adhesion complex. Structure 24:2163–73 [Google Scholar]
  40. Otsuka S, Konno K, Abe M, Motohashi J, Kohda K. 40.  et al. 2016. Roles of Cbln1 in non-motor functions of mice. J. Neurosci. 36:11801–16 [Google Scholar]
  41. Kusnoor SV, Parris J, Muly EC, Morgan JI, Deutch AY. 41.  2010. Extracerebellar role for Cerebellin1: modulation of dendritic spine density and synapses in striatal medium spiny neurons. J. Comp. Neurol. 518:2525–37 [Google Scholar]
  42. Krishnan V, Stoppel DC, Nong Y, Johnson MA, Nadler MJ. 42.  et al. 2017. Autism gene Ube3a and seizures impair sociability by repressing VTA Cbln1. . Nature 543:507–12 [Google Scholar]
  43. Iijima T, Emi K, Yuzaki M. 43.  2009. Activity-dependent repression of Cbln1 expression: mechanism for developmental and homeostatic regulation of synapses in the cerebellum. J. Neurosci. 29:5425–34 [Google Scholar]
  44. Bao D, Pang Z, Morgan MA, Parris J, Rong Y. 44.  et al. 2006. Cbln1 is essential for interaction-dependent secretion of Cbln3. Mol. Cell. Biol. 26:9327–37 [Google Scholar]
  45. Iijima T, Miura E, Matsuda K, Kamekawa Y, Watanabe M, Yuzaki M. 45.  2007. Characterization of a transneuronal cytokine family Cbln—regulation of secretion by heteromeric assembly. Eur. J. Neurosci. 25:1049–57 [Google Scholar]
  46. Miura E, Matsuda K, Morgan JI, Yuzaki M, Watanabe M. 46.  2009. Cbln1 accumulates and colocalizes with Cbln3 and GluRδ2 at parallel fiber-Purkinje cell synapses in the mouse cerebellum. Eur. J. Neurosci. 29:693–706 [Google Scholar]
  47. Rong Y, Wei P, Parris J, Guo H, Pattarini R. 47.  et al. 2012. Comparison of Cbln1 and Cbln2 functions using transgenic and knockout mice. J. Neurochem. 120:528–40 [Google Scholar]
  48. Wei P, Pattarini R, Rong Y, Guo H, Bansal PK. 48.  et al. 2012. The Cbln family of proteins interact with multiple signaling pathways. J. Neurochem. 121:717–29 [Google Scholar]
  49. Yasumura M, Yoshida T, Lee SJ, Uemura T, Joo JY, Mishina M. 49.  2012. Glutamate receptor δ1 induces preferentially inhibitory presynaptic differentiation of cortical neurons by interacting with neurexins through cerebellin precursor protein subtypes. J. Neurochem. 121:705–16 [Google Scholar]
  50. Joo JY, Lee SJ, Uemura T, Yoshida T, Yasumura M. 50.  et al. 2011. Differential interactions of cerebellin precursor protein (Cbln) subtypes and neurexin variants for synapse formation of cortical neurons. Biochem. Biophys. Res. Commun. 406:627–32 [Google Scholar]
  51. Yuzaki M, Aricescu AR. 51.  2017. A GluD coming-of-age story. Trends Neurosci 40:138–50 [Google Scholar]
  52. Yuzaki M.52.  2017. The C1q complement family of synaptic organizers: not just complementary. Curr. Opin. Neurobiol. 45:9–15 [Google Scholar]
  53. Iijima T, Miura E, Watanabe M, Yuzaki M. 53.  2010. Distinct expression of C1q-like family mRNAs in mouse brain and biochemical characterization of their encoded proteins. Eur. J. Neurosci. 31:1606–15 [Google Scholar]
  54. Ressl S, Vu BK, Vivona S, Martinelli DC, Sudhof TC, Brunger AT. 54.  2015. Structures of C1q-like proteins reveal unique features among the C1q/TNF superfamily. Structure 23:688–99 [Google Scholar]
  55. Hamann J, Aust G, Arac D, Engel FB, Formstone C. 55.  et al. 2015. International union of basic and clinical pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacol. Rev. 67:338–67 [Google Scholar]
  56. Bolliger MF, Martinelli DC, Sudhof TC. 56.  2011. The cell-adhesion G protein-coupled receptor BAI3 is a high-affinity receptor for C1q-like proteins. PNAS 108:2534–39 [Google Scholar]
  57. Sigoillot SM, Iyer K, Binda F, González-Calvo I, Talleur M. 57.  et al. 2015. The secreted protein C1QL1 and its receptor BAI3 control the synaptic connectivity of excitatory inputs converging on cerebellar Purkinje cells. Cell Rep 10:820–32 [Google Scholar]
  58. Shimono C, Manabe R, Yamada T, Fukuda S, Kawai J. 58.  et al. 2010. Identification and characterization of nCLP2, a novel C1q family protein expressed in the central nervous system. J. Biochem. 147:565–79 [Google Scholar]
  59. Martinelli DC, Chew KS, Rohlmann A, Lum MY, Ressl S. 59.  et al. 2016. Expression of C1ql3 in discrete neuronal populations controls efferent synapse numbers and diverse behaviors. Neuron 91:1034–51 [Google Scholar]
  60. Martinez de la Torre Y, Fabbri M, Jaillon S, Bastone A, Nebuloni M. 60.  et al. 2010. Evolution of the pentraxin family: the new entry PTX4. J. Immunol. 184:5055–64 [Google Scholar]
  61. Cho RW, Park JM, Wolff SB, Xu D, Hopf C. 61.  et al. 2008. mGluR1/5-dependent long-term depression requires the regulated ectodomain cleavage of neuronal pentraxin NPR by TACE. Neuron 57:858–71 [Google Scholar]
  62. Kirkpatrick LL, Matzuk MM, Dodds DC, Perin MS. 62.  2000. Biochemical interactions of the neuronal pentraxins. Neuronal pentraxin (NP) receptor binds to taipoxin and taipoxin-associated calcium-binding protein 49 via NP1 and NP2. J. Biol. Chem. 275:17786–92 [Google Scholar]
  63. Xu D, Hopf C, Reddy R, Cho RW, Guo L. 63.  et al. 2003. Narp and NP1 form heterocomplexes that function in developmental and activity-dependent synaptic plasticity. Neuron 39:513–28 [Google Scholar]
  64. Dodds DC, Omeis IA, Cushman SJ, Helms JA, Perin MS. 64.  1997. Neuronal pentraxin receptor, a novel putative integral membrane pentraxin that interacts with neuronal pentraxin 1 and 2 and taipoxin-associated calcium-binding protein 49. J. Biol. Chem. 272:21488–94 [Google Scholar]
  65. Tsui CC, Copeland NG, Gilbert DJ, Jenkins NA, Barnes C, Worley PF. 65.  1996. Narp, a novel member of the pentraxin family, promotes neurite outgrowth and is dynamically regulated by neuronal activity. J. Neurosci. 16:2463–78 [Google Scholar]
  66. O'Brien RJ, Xu D, Petralia RS, Steward O, Huganir RL, Worley P. 66.  1999. Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron 23:309–23 [Google Scholar]
  67. O'Brien R, Xu D, Mi R, Tang X, Hopf C, Worley P. 67.  2002. Synaptically targeted Narp plays an essential role in the aggregation of AMPA receptors at excitatory synapses in cultured spinal neurons. J. Neurosci. 22:4487–98 [Google Scholar]
  68. Chang MC, Park JM, Pelkey KA, Grabenstatter HL, Xu D. 68.  et al. 2010. Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nat. Neurosci. 13:1090–97 [Google Scholar]
  69. Gu Y, Huang S, Chang MC, Worley P, Kirkwood A, Quinlan EM. 69.  2013. Obligatory role for the immediate early gene NARP in critical period plasticity. Neuron 79:335–46 [Google Scholar]
  70. Bjartmar L, Huberman AD, Ullian EM, Renteria RC, Liu X. 70.  et al. 2006. Neuronal pentraxins mediate synaptic refinement in the developing visual system. J. Neurosci. 26:6269–81 [Google Scholar]
  71. Koch SM, Ullian EM. 71.  2010. Neuronal pentraxins mediate silent synapse conversion in the developing visual system. J. Neurosci. 30:5404–14 [Google Scholar]
  72. Pelkey KA, Barksdale E, Craig MT, Yuan X, Sukumaran M. 72.  et al. 2015. Pentraxins coordinate excitatory synapse maturation and circuit integration of parvalbumin interneurons. Neuron 85:1257–72 [Google Scholar]
  73. Reti IM, Miskimon M, Dickson M, Petralia RS, Takamiya K. 73.  et al. 2008. Activity-dependent secretion of neuronal activity regulated pentraxin from vasopressin neurons into the systemic circulation. Neuroscience 151:352–60 [Google Scholar]
  74. Lee SJ, Wei M, Zhang C, Maxeiner S, Pak C. 74.  et al. 2017. Presynaptic neuronal pentraxin receptor organizes excitatory and inhibitory synapses. J. Neurosci. 37:1062–80 [Google Scholar]
  75. Allen NJ.75.  2013. Role of glia in developmental synapse formation. Curr. Opin. Neurobiol. 23:1027–33 [Google Scholar]
  76. Stogsdill JA, Eroglu C. 76.  2017. The interplay between neurons and glia in synapse development and plasticity. Curr. Opin. Neurobiol. 42:1–8 [Google Scholar]
  77. Risher WC, Eroglu C. 77.  2012. Thrombospondins as key regulators of synaptogenesis in the central nervous system. Matrix Biol 31:170–77 [Google Scholar]
  78. Adams JC, Lawler J. 78.  2011. The thrombospondins. Cold Spring Harb. Perspect. Biol. 3:a009712 [Google Scholar]
  79. Eroglu C.79.  2009. The role of astrocyte-secreted matricellular proteins in central nervous system development and function. J. Cell Commun. Signal. 3:167–76 [Google Scholar]
  80. Eroglu C, Allen NJ, Susman MW, O'Rourke NA, Park CY. 80.  et al. 2009. Gabapentin receptor α2δ-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139:380–92 [Google Scholar]
  81. Hughes EG, Elmariah SB, Balice-Gordon RJ. 81.  2010. Astrocyte secreted proteins selectively increase hippocampal GABAergic axon length, branching, and synaptogenesis. Mol. Cell. Neurosci. 43:136–45 [Google Scholar]
  82. Xu J, Xiao N, Xia J. 82.  2010. Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1. Nat. Neurosci. 13:22–24 [Google Scholar]
  83. Hambrock HO, Nitsche DP, Hansen U, Bruckner P, Paulsson M. 83.  et al. 2003. SC1/hevin: an extracellular calcium-modulated protein that binds collagen I. J. Biol. Chem. 278:11351–58 [Google Scholar]
  84. Lively S, Ringuette MJ, Brown IR. 84.  2007. Localization of the extracellular matrix protein SC1 to synapses in the adult rat brain. Neurochem. Res. 32:65–71 [Google Scholar]
  85. Kucukdereli H, Allen NJ, Lee AT, Feng A, Ozlu MI. 85.  et al. 2011. Control of excitatory CNS synapto-genesis by astrocyte-secreted proteins Hevin and SPARC. PNAS 108:E440–49 [Google Scholar]
  86. Risher WC, Patel S, Kim IH, Uezu A, Bhagat S. 86.  et al. 2014. Astrocytes refine cortical connectivity at dendritic spines. eLife 3:e04047 [Google Scholar]
  87. Singh SK, Stogsdill JA, Pulimood NS, Dingsdale H, Kim YH. 87.  et al. 2016. Astrocytes assemble thalamo-cortical synapses by bridging NRX1α and NL1 via hevin. Cell 164:183–96 [Google Scholar]
  88. Filmus J, Capurro M, Rast J. 88.  2008. Glypicans. Genome Biol 9:224 [Google Scholar]
  89. Ko JS, Pramanik G, Um JW, Shim JS, Lee D. 89.  et al. 2015. PTPσ functions as a presynaptic receptor for the glypican-4/LRRTM4 complex and is essential for excitatory synaptic transmission. PNAS 112:1874–79 [Google Scholar]
  90. Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C. 90.  et al. 2012. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486:410–14 [Google Scholar]
  91. Siddiqui TJ, Tari PK, Connor SA, Zhang P, Dobie FA. 91.  et al. 2013. An LRRTM4-HSPG complex mediates excitatory synapse development on dentate gyrus granule cells. Neuron 79:680–95 [Google Scholar]
  92. Fox MA, Sanes JR, Borza DB, Eswarakumar VP, Fassler R. 92.  et al. 2007. Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell 129:179–93 [Google Scholar]
  93. Su J, Stenbjorn RS, Gorse K, Su K, Hauser KF. 93.  et al. 2012. Target-derived matricryptins organize cerebellar synapse formation through α3β1 integrins. Cell Rep 2:223–30 [Google Scholar]
  94. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A. 94.  et al. 2007. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–76 [Google Scholar]
  95. Dow DJ, Huxley-Jones J, Hall JM, Francks C, Maycox PR. 95.  et al. 2011. ADAMTSL3 as a candidate gene for schizophrenia: gene sequencing and ultra-high density association analysis by imputation. Schizophr. Res. 127:28–34 [Google Scholar]
  96. Dickins EM, Salinas PC. 96.  2013. Wnts in action: from synapse formation to synaptic maintenance. Front. Cell. Neurosci. 7:162 [Google Scholar]
  97. Rosso SB, Inestrosa NC. 97.  2013. WNT signaling in neuronal maturation and synaptogenesis. Front. Cell. Neurosci. 7:103 [Google Scholar]
  98. Hall AC, Lucas FR, Salinas PC. 98.  2000. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100:525–35 [Google Scholar]
  99. Sahores M, Gibb A, Salinas PC. 99.  2010. Frizzled-5, a receptor for the synaptic organizer Wnt7a, regulates activity-mediated synaptogenesis. Development 137:2215–25 [Google Scholar]
  100. Gogolla N, Galimberti I, Deguchi Y, Caroni P. 100.  2009. Wnt signaling mediates experience-related regulation of synapse numbers and mossy fiber connectivities in the adult hippocampus. Neuron 62:510–25 [Google Scholar]
  101. Ciani L, Boyle KA, Dickins E, Sahores M, Anane D. 101.  et al. 2011. Wnt7a signaling promotes dendritic spine growth and synaptic strength through Ca2+/Calmodulin-dependent protein kinase II. PNAS 108:10732–37 [Google Scholar]
  102. Cerpa W, Godoy JA, Alfaro I, Farias GG, Metcalfe MJ. 102.  et al. 2008. Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons. J. Biol. Chem. 283:5918–27 [Google Scholar]
  103. Farias GG, Alfaro IE, Cerpa W, Grabowski CP, Godoy JA. 103.  et al. 2009. Wnt-5a/JNK signaling promotes the clustering of PSD-95 in hippocampal neurons. J. Biol. Chem. 284:15857–66 [Google Scholar]
  104. Varela-Nallar L, Alfaro IE, Serrano FG, Parodi J, Inestrosa NC. 104.  2010. Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses. PNAS 107:21164–69 [Google Scholar]
  105. Cerpa W, Gambrill A, Inestrosa NC, Barria A. 105.  2011. Regulation of NMDA-receptor synaptic transmission by Wnt signaling. J. Neurosci. 31:9466–71 [Google Scholar]
  106. Davis EK, Zou Y, Ghosh A. 106.  2008. Wnts acting through canonical and noncanonical signaling pathways exert opposite effects on hippocampal synapse formation. Neural Dev 3:32 [Google Scholar]
  107. Itoh N, Ornitz DM. 107.  2004. Evolution of the Fgf and Fgfr gene families. Trends Genet 20:563–69 [Google Scholar]
  108. Umemori H, Linhoff MW, Ornitz DM, Sanes JR. 108.  2004. FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell 118:257–70 [Google Scholar]
  109. Dabrowski A, Terauchi A, Strong C, Umemori H. 109.  2015. Distinct sets of FGF receptors sculpt excitatory and inhibitory synaptogenesis. Development 142:1818–30 [Google Scholar]
  110. Terauchi A, Johnson-Venkatesh EM, Toth AB, Javed D, Sutton MA, Umemori H. 110.  2010. Distinct FGFs promote differentiation of excitatory and inhibitory synapses. Nature 465:783–87 [Google Scholar]
  111. Terauchi A, Timmons KM, Kikuma K, Pechmann Y, Kneussel M, Umemori H. 111.  2015. Selective synaptic targeting of the excitatory and inhibitory presynaptic organizers FGF22 and FGF7. J. Cell Sci. 128:281–92 [Google Scholar]
  112. Lee CH, Umemori H. 112.  2013. Suppression of epileptogenesis-associated changes in response to seizures in FGF22-deficient mice. Front. Cell. Neurosci. 7:43 [Google Scholar]
  113. Lee CH, Javed D, Althaus AL, Parent JM, Umemori H. 113.  2012. Neurogenesis is enhanced and mossy fiber sprouting arises in FGF7-deficient mice during development. Mol. Cell. Neurosci. 51:61–67 [Google Scholar]
  114. Yamashita N, Morita A, Uchida Y, Nakamura F, Usui H. 114.  et al. 2007. Regulation of spine development by semaphorin3A through cyclin-dependent kinase 5 phosphorylation of collapsin response mediator protein 1. J. Neurosci. 27:12546–54 [Google Scholar]
  115. Tran TS, Rubio ME, Clem RL, Johnson D, Case L. 115.  et al. 2009. Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS. Nature 462:1065–69 [Google Scholar]
  116. Pecho-Vrieseling E, Sigrist M, Yoshida Y, Jessell TM, Arber S. 116.  2009. Specificity of sensory-motor connections encoded by Sema3e-Plxnd1 recognition. Nature 459:842–46 [Google Scholar]
  117. Uesaka N, Uchigashima M, Mikuni T, Nakazawa T, Nakao H. 117.  et al. 2014. Retrograde semaphorin signaling regulates synapse elimination in the developing mouse brain. Science 344:1020–23 [Google Scholar]
  118. Harwell CC, Parker PR, Gee SM, Okada A, McConnell SK. 118.  et al. 2012. Sonic hedgehog expression in corticofugal projection neurons directs cortical microcircuit formation. Neuron 73:1116–26 [Google Scholar]
  119. Gottmann K, Mittmann T, Lessmann V. 119.  2009. BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses. Exp. Brain Res. 199:203–34 [Google Scholar]
  120. Pozzo-Miller LD, Gottschalk W, Zhang L, McDermott K, Du J. 120.  et al. 1999. Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. J. Neurosci. 19:4972–83 [Google Scholar]
  121. Itami C, Kimura F, Kohno T, Matsuoka M, Ichikawa M. 121.  et al. 2003. Brain-derived neurotrophic factor-dependent unmasking of “silent” synapses in the developing mouse barrel cortex. PNAS 100:13069–74 [Google Scholar]
  122. Hong EJ, McCord AE, Greenberg ME. 122.  2008. A biological function for the neuronal activity-dependent component of Bdnf transcription in the development of cortical inhibition. Neuron 60:610–24 [Google Scholar]
  123. Rico B, Xu B, Reichardt LF. 123.  2002. TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum. Nat. Neurosci. 5:225–33 [Google Scholar]
  124. Luikart BW, Nef S, Virmani T, Lush ME, Liu Y. 124.  et al. 2005. TrkB has a cell-autonomous role in the establishment of hippocampal Schaffer collateral synapses. J. Neurosci. 25:3774–86 [Google Scholar]
  125. Diniz LP, Almeida JC, Tortelli V, Vargas Lopes C, Setti-Perdigão P. 125.  et al. 2012. Astrocyte-induced synaptogenesis is mediated by transforming growth factor β signaling through modulation of D-serine levels in cerebral cortex neurons. J. Biol. Chem. 287:41432–45 [Google Scholar]
  126. Fuentes-Medel Y, Ashley J, Barria R, Maloney R, Freeman M, Budnik V. 126.  2012. Integration of a retrograde signal during synapse formation by glia-secreted TGF-β ligand. Curr. Biol. 22:1831–38 [Google Scholar]
  127. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd. 127.  et al. 2013. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–609 [Google Scholar]
  128. Ledda F, Paratcha G, Sandoval-Guzman T, Ibanez CF. 128.  2007. GDNF and GFRα1 promote formation of neuronal synapses by ligand-induced cell adhesion. Nat. Neurosci. 10:293–300 [Google Scholar]
  129. Hu HT, Umemori H, Hsueh YP. 129.  2016. Postsynaptic SDC2 induces transsynaptic signaling via FGF22 for bidirectional synaptic formation. Sci. Rep. 6:33592 [Google Scholar]
  130. Lin YL, Lei YT, Hong CJ, Hsueh YP. 130.  2007. Syndecan-2 induces filopodia and dendritic spine formation via the neurofibromin-PKA-Ena/VASP pathway. J. Cell Biol. 177:829–41 [Google Scholar]
  131. Poulain FE, Yost HJ. 131.  2015. Heparan sulfate proteoglycans: a sugar code for vertebrate development?. Development 142:3456–67 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021317-121322
Loading
/content/journals/10.1146/annurev-physiol-021317-121322
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error