1932

Abstract

Anoctamin (ANO)/TMEM16 proteins exhibit diverse functions in cells throughout the body and are implicated in several human diseases. Although the founding members ANO1 (TMEM16A) and ANO2 (TMEM16B) are Ca2+-activated Cl channels, most ANO paralogs are Ca2+-dependent phospholipid scramblases that serve as channels facilitating the movement (scrambling) of phospholipids between leaflets of the membrane bilayer. Phospholipid scrambling significantly alters the physical properties of the membrane and its landscape and has vast downstream signaling consequences. In particular, phosphatidylserine exposed on the external leaflet of the plasma membrane functions as a ligand for receptors vital for cell–cell communication. A major consequence of Ca2+-dependent scrambling is the release of extracellular vesicles that function as intercellular messengers by delivering signaling proteins and noncoding RNAs to alter target cell function. We discuss the physiological implications of Ca2+-dependent phospholipid scrambling, the extracellular vesicles associated with this activity, and the roles of ANOs in these processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-022516-034031
2017-02-10
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/physiol/79/1/annurev-physiol-022516-034031.html?itemId=/content/journals/10.1146/annurev-physiol-022516-034031&mimeType=html&fmt=ahah

Literature Cited

  1. Eggermont J. 1.  2004. Calcium-activated chloride channels: (un)known, (un)loved?. Proc. Am. Thorac. Soc. 1:22–27 [Google Scholar]
  2. Hartzell C, Putzier I, Arreola J. 2.  2005. Calcium-activated chloride channels. Annu. Rev. Physiol. 67:719–58 [Google Scholar]
  3. Yang YD, Cho H, Koo JY, Tak MH, Cho Y. 3.  et al. 2008. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–15 [Google Scholar]
  4. Schroeder BC, Cheng T, Jan YN, Jan LY. 4.  2008. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134:1019–29 [Google Scholar]
  5. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C. 5.  et al. 2008. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–94 [Google Scholar]
  6. Duran C, Hartzell HC. 6.  2011. Physiological roles and diseases of tmem16/anoctamin proteins: Are they all chloride channels?. Acta Pharmacol. Sin. 32:685–92 [Google Scholar]
  7. Huang F, Wong X, Jan LY. 7.  2012. International union of basic and clinical pharmacology. LXXXV: calcium-activated chloride channels. Pharmacol. Rev. 64:1–15 [Google Scholar]
  8. Pedemonte N, Galietta LJ. 8.  2014. Structure and function of TMEM16 proteins (anoctamins). Physiol. Rev. 94:419–59 [Google Scholar]
  9. Picollo A, Malvezzi M, Accardi A. 9.  2015. TMEM16 proteins: unknown structure and confusing functions. J. Mol. Biol. 427:94–105 [Google Scholar]
  10. Duran C, Thompson CH, Xiao Q, Hartzell HC. 10.  2010. Chloride channels: often enigmatic, rarely predictable. Annu. Rev. Physiol. 72:95–121 [Google Scholar]
  11. Milenkovic VM, Brockmann M, Stohr H, Weber BH, Strauss O. 11.  2010. Evolution and functional divergence of the anoctamin family of membrane proteins. BMC Evol. Biol. 10:319 [Google Scholar]
  12. Wanitchakool P, Wolf L, Koehl GE, Sirianant L, Schreiber R. 12.  et al. 2014. Role of anoctamins in cancer and apoptosis. Philos. Trans. R. Soc. B 369:20130096 [Google Scholar]
  13. Wang Y, Alam T, Hill-Harfe K, Lopez AJ, Leung CK. 13.  et al. 2013. Phylogenetic, expression, and functional analyses of anoctamin homologs in Caenorhabditis elegans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305:R1376–89 [Google Scholar]
  14. Duran C, Qu Z, Osunkoya AO, Cui Y, Hartzell HC. 14.  2012. ANOs 3–7 in the anoctamin/Tmem16 Cl channel family are intracellular proteins. Am. J. Physiol. Cell Physiol. 302:C482–93 [Google Scholar]
  15. Schreiber R, Uliyakina I, Kongsuphol P, Warth R, Mirza M. 15.  et al. 2010. Expression and function of epithelial anoctamins. J. Biol. Chem. 285:7838–45 [Google Scholar]
  16. Suzuki J, Umeda M, Sims PJ, Nagata S. 16.  2010. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468:834–38 [Google Scholar]
  17. Brooks MB, Catalfamo JL, MacNguyen R, Tim D, Fancher S, McCardle JA. 17.  2015. A TMEM16F point mutation causes an absence of canine platelet TMEM16F and ineffective activation and death-induced phospholipid scrambling. J. Thromb. Haemost. 13:2240–52 [Google Scholar]
  18. Ousingsawat J, Wanitchakool P, Kmit A, Romao AM, Jantarajit W. 18.  et al. 2015. Anoctamin 6 mediates effects essential for innate immunity downstream of P2X7 receptors in macrophages. Nat. Commun. 6:6245 [Google Scholar]
  19. Yang H, Kim A, David T, Palmer D, Jin T. 19.  et al. 2012. TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 151:111–22 [Google Scholar]
  20. Ehlen HW, Chinenkova M, Moser M, Munter HM, Krause Y. 20.  et al. 2013. Inactivation of anoctamin-6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues. J. Bone Miner. Res. 28:246–59 [Google Scholar]
  21. Suzuki J, Fujii T, Imao T, Ishihara K, Kuba H, Nagata S. 21.  2013. Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. J. Biol. Chem. 288:13305–16 [Google Scholar]
  22. Gyobu S, Miyata H, Ikawa M, Yamazaki D, Takeshima H. 22.  et al. 2016. A role of TMEM16E carrying a scrambling domain in sperm motility. Mol. Cell. Biol. 36:645–59 [Google Scholar]
  23. Malvezzi M, Chalat M, Janjusevic R, Picollo A, Terashima H. 23.  et al. 2013. Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel. Nat. Commun. 4:2367 [Google Scholar]
  24. Brunner JD, Lim NK, Schenck S, Duerst A, Dutzler R. 24.  2014. X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516:207–12 [Google Scholar]
  25. van Meer G, Voelker DR, Feigenson GW. 25.  2008. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9:112–24 [Google Scholar]
  26. van Meer G. 26.  2011. Dynamic transbilayer lipid asymmetry. Cold Spring Harb. Perspect. Biol. 3:a004671 [Google Scholar]
  27. Hankins HM, Baldridge RD, Xu P, Graham TR. 27.  2015. Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic 16:35–47 [Google Scholar]
  28. Coleman JA, Quazi F, Molday RS. 28.  2013. Mammalian P4-ATPases and ABC transporters and their role in phospholipid transport. Biochim. Biophys. Acta 1831:555–74 [Google Scholar]
  29. Pomorski T, Menon AK. 29.  2006. Lipid flippases and their biological functions. Cell Mol. Life Sci. 63:2908–21 [Google Scholar]
  30. Bevers EM, Williamson PL. 30.  2016. Getting to the outer leaflet: physiology of phosphatidylserine exposure at the plasma membrane. Physiol. Rev. 96:605–45 [Google Scholar]
  31. Suzuki J, Denning DP, Imanishi E, Horvitz HR, Nagata S. 31.  2013. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 341:403–6 [Google Scholar]
  32. Fadok VA, de Cathelineau A, Daleke DL, Henson PM, Bratton DL. 32.  2001. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J. Biol. Chem. 276:1071–77 [Google Scholar]
  33. Ruggiero L, Connor MP, Chen J, Langen R, Finnemann SC. 33.  2012. Diurnal, localized exposure of phosphatidylserine by rod outer segment tips in wild-type but not Itgb5/− or Mfge8/− mouse retina. PNAS 109:8145–48 [Google Scholar]
  34. Kay JG, Grinstein S. 34.  2013. Phosphatidylserine-mediated cellular signaling. Adv. Exp. Med. Biol. 991:177–93 [Google Scholar]
  35. van Kruchten R, Mattheij NJ, Saunders C, Feijge MA, Swieringa F. 35.  et al. 2013. Both TMEM16F-dependent and TMEM16F-independent pathways contribute to phosphatidylserine exposure in platelet apoptosis and platelet activation. Blood 121:1850–77 [Google Scholar]
  36. Bratton DL, Fadok VA, Richter DA, Kailey JM, Guthrie LA, Henson PM. 36.  1997. Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J. Biol. Chem. 272:26159–65 [Google Scholar]
  37. Orrenius S, Zhivotovsky B, Nicotera P. 37.  2003. Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4:552–65 [Google Scholar]
  38. Williamson P, Bevers EM, Smeets EF, Comfurius P, Schlegel RA, Zwaal RF. 38.  1995. Continuous analysis of the mechanism of activated transbilayer lipid movement in platelets. Biochemistry 34:10448–55 [Google Scholar]
  39. Whitlock JM, Hartzell HC. 39.  2016. A pore idea: the ion conduction pathway of TMEM16/ANO proteins is composed partly of lipid. Pflugers Arch 468:455–73 [Google Scholar]
  40. Yu K, Whitlock JM, Lee K, Ortlund EA, Cui YY, Hartzell HC. 40.  2015. Identification of a lipid scrambling domain in ANO6/TMEM16F. eLife 4:e06901 [Google Scholar]
  41. Yu K, Zhu J, Qu Z, Cui YY, Hartzell HC. 41.  2014. Activation of the Ano1 (TMEM16A) chloride channel by calcium is not mediated by calmodulin. J. Gen. Physiol. 143:253–67 [Google Scholar]
  42. Yu K, Duran C, Qu Z, Cui YY, Hartzell HC. 42.  2012. Explaining calcium-dependent gating of anoctamin-1 chloride channels requires a revised topology. Circ Res 110:990–99 [Google Scholar]
  43. Tien J, Peters CJ, Wong XM, Cheng T, Jan YN. 43.  et al. 2014. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity. eLife 3:e02772 [Google Scholar]
  44. Kmit A, van Kruchten R, Ousingsawat J, Mattheij NJ, Senden-Gijsbers B. 44.  et al. 2013. Calcium-activated and apoptotic phospholipid scrambling induced by Ano6 can occur independently of Ano6 ion currents. Cell Death Dis 4:e611 [Google Scholar]
  45. Moller-Tank S, Maury W. 45.  2014. Phosphatidylserine receptors: enhancers of enveloped virus entry and infection. Virology 468–470:565–80 [Google Scholar]
  46. Zenarruzabeitia O, Vitalle J, Eguizabal C, Simhadri VR, Borrego F. 46.  2015. The biology and disease relevance of CD300a, an inhibitory receptor for phosphatidylserine and phosphatidylethanolamine. J. Immunol. 194:5053–60 [Google Scholar]
  47. Murakami Y, Tian L, Voss OH, Margulies DH, Krzewski K, Coligan JE. 47.  2014. CD300b regulates the phagocytosis of apoptotic cells via phosphatidylserine recognition. Cell Death Differ 21:1746–57 [Google Scholar]
  48. Toda S, Hanayama R, Nagata S. 48.  2012. Two-step engulfment of apoptotic cells. Mol. Cell. Biol. 32:118–25 [Google Scholar]
  49. Segawa K, Suzuki J, Nagata S. 49.  2011. Constitutive exposure of phosphatidylserine on viable cells. PNAS 108:19246–51 [Google Scholar]
  50. Simhadri VR, Andersen JF, Calvo E, Choi SC, Coligan JE, Borrego F. 50.  2012. Human CD300a binds to phosphatidylethanolamine and phosphatidylserine, and modulates the phagocytosis of dead cells. Blood 119:2799–809 [Google Scholar]
  51. Andersen OS, Koeppe RE 2nd. 51.  2007. Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36:107–30 [Google Scholar]
  52. Frolov VA, Shnyrova AV, Zimmerberg J. 52.  2011. Lipid polymorphisms and membrane shape. Cold Spring Harb. Perspect. Biol. 3:a004747 [Google Scholar]
  53. Bigay J, Antonny B. 53.  2012. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev. Cell 23:886–95 [Google Scholar]
  54. Suetsugu S, Kurisu S, Takenawa T. 54.  2014. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins. Physiol. Rev. 94:1219–48 [Google Scholar]
  55. Chernomordik LV, Melikyan GB, Chizmadzhev YA. 55.  1987. Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers. Biochim. Biophys. Acta 906:309–52 [Google Scholar]
  56. van den Brink-van der Laan E, Killian JA, de Kruijff B. 56.  2004. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim. Biophys. Acta 1666:275–88 [Google Scholar]
  57. Allan D, Michell RH. 57.  1975. Accumulation of 1,2-diacylglycerol in the plasma membrane may lead to echinocyte transformation of erythrocytes. Nature 258:348–49 [Google Scholar]
  58. Comfurius P, Senden JM, Tilly RH, Schroit AJ, Bevers EM, Zwaal RF. 58.  1990. Loss of membrane phospholipid asymmetry in platelets and red cells may be associated with calcium-induced shedding of plasma membrane and inhibition of aminophospholipid translocase. Biochim. Biophys. Acta 1026:153–60 [Google Scholar]
  59. Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. 59.  1999. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and α-granules. Blood 94:3791–99 [Google Scholar]
  60. Allan D, Thomas P. 60.  1981. Ca2+-induced biochemical changes in human erythrocytes and their relation to microvesiculation. Biochem. J. 198:433–40 [Google Scholar]
  61. de Souza PS, Faccion RS, Bernardo PS, Maia RC. 61.  2016. Membrane microparticles: shedding new light into cancer cell communication. J. Cancer Res. Clin. Oncol. 142:1395–1406 [Google Scholar]
  62. Suades R, Padro T, Badimon L. 62.  2015. The role of blood-borne microparticles in inflammation and hemostasis. Semin. Thromb. Hemost. 41:590–606 [Google Scholar]
  63. Cocucci E, Meldolesi J. 63.  2015. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 25:364–72 [Google Scholar]
  64. Colombo M, Raposo G, Thery C. 64.  2014. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30:255–89 [Google Scholar]
  65. Machtinger R, Laurent LC, Baccarelli AA. 65.  2016. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum. Reprod. Update 22:182–93 [Google Scholar]
  66. Raposo G, Stoorvogel W. 66.  2013. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200:373–83 [Google Scholar]
  67. Sadallah S, Eken C, Schifferli JA. 67.  2011. Ectosomes as modulators of inflammation and immunity. Clin. Exp. Immunol. 163:26–32 [Google Scholar]
  68. Abels ER, Breakefield XO. 68.  2016. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol. Neurobiol. 36:301–12 [Google Scholar]
  69. Ibrahim A, Marban E. 69.  2016. Exosomes: fundamental biology and roles in cardiovascular physiology. Annu. Rev. Physiol. 78:67–83 [Google Scholar]
  70. Boilard E, Duchez A-C, Brisson A. 70.  2015. The diversity of platelet microparticles. Curr. Opin. Hematol. 22:437–44 [Google Scholar]
  71. Gong J, Jaiswal R, Dalla P, Luk F, Bebawy M. 71.  2015. Microparticles in cancer: a review of recent developments and the potential for clinical application. Semin. Cell Dev. Biol. 40:35–40 [Google Scholar]
  72. Varon D, Shai E. 72.  2015. Platelets and their microparticles as key players in pathophysiological responses. J. Thromb. Haemost. 13:Suppl. 1S40–46 [Google Scholar]
  73. Forterre A, Jalabert A, Berger E, Baudet M, Chikh K. 73.  et al. 2014. Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk?. PLOS ONE 9:e84153 [Google Scholar]
  74. Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L. 74.  et al. 2009. Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J 28:1043–54 [Google Scholar]
  75. Toti F, Satta N, Fressinaud E, Meyer D, Freyssinet JM. 75.  1996. Scott syndrome, characterized by impaired transmembrane migration of procoagulant phosphatidylserine and hemorrhagic complications, is an inherited disorder. Blood 87:1409–15 [Google Scholar]
  76. Sims PJ, Wiedmer T, Esmon CT, Weiss HJ, Shattil SJ. 76.  1989. Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity. J. Biol. Chem. 264:17049–57 [Google Scholar]
  77. Dachary-Prigent J, Pasquet JM, Fressinaud E, Toti F, Freyssinet JM, Nurden AT. 77.  1997. Aminophospholipid exposure, microvesiculation and abnormal protein tyrosine phosphorylation in the platelets of a patient with Scott syndrome: a study using physiologic agonists and local anaesthetics. Br. J. Haematol. 99:959–67 [Google Scholar]
  78. Fujii T, Sakata A, Nishimura S, Eto K, Nagata S. 78.  2015. TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets. PNAS 112:12800–5 [Google Scholar]
  79. Brooks MB, Randolph J, Warner K, Center S. 79.  2009. Evaluation of platelet function screening tests to detect platelet procoagulant deficiency in dogs with Scott syndrome. Vet. Clin. Pathol. 38:306–15 [Google Scholar]
  80. Thouverey C, Strzelecka-Kiliszek A, Balcerzak M, Buchet R, Pikula S. 80.  2009. Matrix vesicles originate from apical membrane microvilli of mineralizing osteoblast-like Saos-2 cells. J. Cell Biochem. 106:127–38 [Google Scholar]
  81. Wuthier RE, Lipscomb GF. 81.  2011. Matrix vesicles: structure, composition, formation and function in calcification. Front. Biosci. 16:2812–902 [Google Scholar]
  82. Sprague DL, Elzey BD, Crist SA, Waldschmidt TJ, Jensen RJ, Ratliff TL. 82.  2008. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood 111:5028–36 [Google Scholar]
  83. Laffont B, Corduan A, Ple H, Duchez AC, Cloutier N. 83.  et al. 2013. Activated platelets can deliver mRNA regulatory Ago2·microRNA complexes to endothelial cells via microparticles. Blood 122:253–61 [Google Scholar]
  84. Jy W, Mao WW, Horstman L, Tao J, Ahn YS. 84.  1995. Platelet microparticles bind, activate and aggregate neutrophils in vitro. Blood Cells Mol. Dis. 21:217–31 [Google Scholar]
  85. Dashevsky O, Varon D, Brill A. 85.  2009. Platelet-derived microparticles promote invasiveness of prostate cancer cells via upregulation of MMP-2 production. Int. J. Cancer 124:1773–77 [Google Scholar]
  86. Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D. 86.  2005. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc. Res. 67:30–38 [Google Scholar]
  87. Huynh N, VonMoss L, Smith D, Rahman I, Felemban MF. 87.  et al. 2016. Characterization of regulatory extracellular vesicles from osteoclasts. J. Dent. Res. 95:673–79 [Google Scholar]
  88. Familari M, Cronqvist T, Masoumi Z, Hansson SR. 88.  2015. Placenta-derived extracellular vesicles: their cargo and possible functions. Reprod. Fertil. Dev. In press. doi: http://dx.doi.org/10.1071/RD15143
  89. Pajcini KV, Pomerantz JH, Alkan O, Doyonnas R, Blau HM. 89.  2008. Myoblasts and macrophages share molecular components that contribute to cell-cell fusion. J. Cell Biol. 180:1005–19 [Google Scholar]
  90. Willkomm L, Bloch W. 90.  2015. State of the art in cell-cell fusion. Methods Mol. Biol. 1313:1–19 [Google Scholar]
  91. van den Eijnde SM, Luijsterburg AJ, Boshart L, De Zeeuw CI, van Dierendonck JH. 91.  et al. 1997. In situ detection of apoptosis during embryogenesis with annexin V: from whole mount to ultrastructure. Cytometry 29:313–20 [Google Scholar]
  92. van den Eijnde SM, van den Hoff MJ, Reutelingsperger CP, van Heerde WL, Henfling ME. 92.  et al. 2001. Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation. J. Cell Sci. 114:3631–42 [Google Scholar]
  93. Jeong J, Conboy IM. 93.  2011. Phosphatidylserine directly and positively regulates fusion of myoblasts into myotubes. Biochem. Biophys. Res. Commun. 414:9–13 [Google Scholar]
  94. Hamoud N, Tran V, Croteau LP, Kania A, Cote JF. 94.  2014. G-protein coupled receptor BAI3 promotes myoblast fusion in vertebrates. PNAS 111:3745–50 [Google Scholar]
  95. Hochreiter-Hufford AE, Lee CS, Kinchen JM, Sokolowski JD, Arandjelovic S. 95.  et al. 2013. Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature 497:263–67 [Google Scholar]
  96. Abmayr SM, Pavlath GK. 96.  2012. Myoblast fusion: lessons from flies and mice. Development 139:641–56 [Google Scholar]
  97. Bolduc V, Marlow G, Boycott KM, Saleki K, Inoue H. 97.  et al. 2010. Recessive mutations in the putative calcium-activated chloride channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies. Am. J. Hum. Genet. 86:213–21 [Google Scholar]
  98. Hicks D, Sarkozy A, Muelas N, Koehler K, Huebner A. 98.  et al. 2011. A founder mutation in Anoctamin 5 is a major cause of limb-girdle muscular dystrophy. Brain 134:171–82 [Google Scholar]
  99. Mahjneh I, Jaiswal J, Lamminen A, Somer M, Marlow G. 99.  et al. 2010. A new distal myopathy with mutation in anoctamin 5. Neuromuscul. Disord. 20:791–95 [Google Scholar]
  100. Savarese M, Di Fruscio G, Tasca G, Ruggiero L, Janssens S. 100.  et al. 2015. Next generation sequencing on patients with LGMD and nonspecific myopathies: findings associated with ANO5 mutations. Neuromuscul. Disord. 25:533–41 [Google Scholar]
  101. Mizuta K, Tsutsumi S, Inoue H, Sakamoto Y, Miyatake K. 101.  et al. 2007. Molecular characterization of GDD1/TMEM16E, the gene product responsible for autosomal dominant gnathodiaphyseal dysplasia. Biochem. Biophys. Res. Commun. 357:126–32 [Google Scholar]
  102. Griffin DA, Johnson RW, Whitlock JM, Pozsgai ER, Heller KN. 102.  et al. 2016. Defective membrane fusion and repair in Anoctamin5-deficient muscular dystrophy. Hum. Mol. Genet. In press. doi: 10.1093/hmg/ddw063
  103. Xu P, Baldridge RD, Chi RJ, Burd CG, Graham TR. 103.  2013. Phosphatidylserine flipping enhances membrane curvature and negative charge required for vesicular transport. J. Cell Biol. 202:875–86 [Google Scholar]
  104. Xu J, El Refaey M, Xu L, Zhao L, Gao Y. 104.  et al. 2015. Genetic disruption of Ano5 in mice does not recapitulate human ANO5-deficient muscular dystrophy. Skelet. Muscle 5:43 [Google Scholar]
  105. McNeil PL, Kirchhausen T. 105.  2005. An emergency response team for membrane repair. Nat. Rev. Mol. Cell Biol. 6:499–505 [Google Scholar]
  106. Sonnemann KJ, Bement WM. 106.  2011. Wound repair: toward understanding and integration of single-cell and multicellular wound responses. Annu. Rev. Cell Dev. Biol. 27:237–63 [Google Scholar]
  107. McDade JR, Archambeau A, Michele DE. 107.  2014. Rapid actin-cytoskeleton-dependent recruitment of plasma membrane-derived dysferlin at wounds is critical for muscle membrane repair. FASEB J 28:3660–70 [Google Scholar]
  108. McDade JR, Michele DE. 108.  2014. Membrane damage-induced vesicle-vesicle fusion of dysferlin-containing vesicles in muscle cells requires microtubules and kinesin. Hum. Mol. Genet. 23:1677–86 [Google Scholar]
  109. Idone V, Tam C, Andrews NW. 109.  2008. Two-way traffic on the road to plasma membrane repair. Trends Cell Biol 18:552–59 [Google Scholar]
  110. Jimenez AJ, Maiuri P, Lafaurie-Janvore J, Divoux S, Piel M, Perez F. 110.  2014. ESCRT machinery is required for plasma membrane repair. Science 343:1247136 [Google Scholar]
  111. Gerasimenko JV, Gerasimenko OV, Petersen OH. 111.  2001. Membrane repair: Ca2+-elicited lysosomal exocytosis. Curr. Biol. 11:R971–74 [Google Scholar]
  112. Bansal D, Miyake K, Vogel SS, Groh S, Chen CC. 112.  et al. 2003. Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423:168–72 [Google Scholar]
  113. Murray D, Honig B. 113.  2002. Electrostatic control of the membrane targeting of C2 domains. Mol. Cell 9:145–54 [Google Scholar]
  114. Shahin V, Datta D, Hui E, Henderson RM, Chapman ER, Edwardson JM. 114.  2008. Synaptotagmin perturbs the structure of phospholipid bilayers. Biochemistry 47:2143–52 [Google Scholar]
  115. Lai AL, Tamm LK, Ellena JF, Cafiso DS. 115.  2011. Synaptotagmin 1 modulates lipid acyl chain order in lipid bilayers by demixing phosphatidylserine. J. Biol. Chem. 286:25291–300 [Google Scholar]
  116. Marty NJ, Holman CL, Abdullah N, Johnson CP. 116.  2013. The C2 domains of otoferlin, dysferlin, and myoferlin alter the packing of lipid bilayers. Biochemistry 52:5585–92 [Google Scholar]
  117. Andrews NW. 117.  2005. Membrane resealing: synaptotagmin VII keeps running the show. Sci. STKE 2005:282pe19 [Google Scholar]
  118. Fuson K, Rice A, Mahling R, Snow A, Nayak K. 118.  et al. 2014. Alternate splicing of dysferlin C2A confers Ca2+-dependent and Ca2+-independent binding for membrane repair. Structure 22:104–15 [Google Scholar]
  119. Lennon NJ, Kho A, Bacskai BJ, Perlmutter SL, Hyman BT, Brown RH Jr. 119.  2003. Dysferlin interacts with annexins A1 and A2 and mediates sarcolemmal wound-healing. J. Biol. Chem. 278:50466–73 [Google Scholar]
  120. Roostalu U, Strahle U. 120.  2012. In vivo imaging of molecular interactions at damaged sarcolemma. Dev. Cell 22:515–29 [Google Scholar]
  121. Swaggart KA, Demonbreun AR, Vo AH, Swanson KE, Kim EY. 121.  et al. 2014. Annexin A6 modifies muscular dystrophy by mediating sarcolemmal repair. PNAS 111:6004–9 [Google Scholar]
  122. Rahimov F, Kunkel LM. 122.  2013. The cell biology of disease: cellular and molecular mechanisms underlying muscular dystrophy. J. Cell Biol. 201:499–510 [Google Scholar]
  123. Glover L, Brown RH Jr. 123.  2007. Dysferlin in membrane trafficking and patch repair. Traffic 8:785–94 [Google Scholar]
  124. Jarry J, Rioux MF, Bolduc V, Robitaille Y, Khoury V. 124.  et al. 2007. A novel autosomal recessive limb-girdle muscular dystrophy with quadriceps atrophy maps to 11p13–p12. Brain 130:368–80 [Google Scholar]
  125. Jaiswal JK, Marlow G, Summerill G, Mahjneh I, Mueller S. 125.  et al. 2007. Patients with a non-dysferlin Miyoshi myopathy have a novel membrane repair defect. Traffic 8:77–88 [Google Scholar]
  126. Monjaret F, Suel-Petat L, Bourg-Alibert N, Vihola A, Marchand S. 126.  et al. 2013. The phenotype of dysferlin-deficient mice is not rescued by adeno-associated virus-mediated transfer of anoctamin 5. Hum. Gene Ther. Clin. Dev. 24:65–76 [Google Scholar]
  127. Davis BK, Byrne R, Bedigian K. 127.  1980. Studies on the mechanism of capacitation: albumin-mediated changes in plasma membrane lipids during in vitro incubation of rat sperm cells. PNAS 77:1546–50 [Google Scholar]
  128. Ávalos-Rodríguez A, Ortíz-Muñíz AR, Ortega-Camarillo C, Vergara-Onofre M, Rosado-García A, Rosales-Torres AM. 128.  2004. Fluorometric study of rabbit sperm head membrane phospholipid asymmetry during capacitation and acrosome reaction using Annexin-V FITC. Arch. Androl. 50:273–85 [Google Scholar]
  129. Ensslin MA, Shur BD. 129.  2003. Identification of mouse sperm SED1, a bimotif EGF repeat and discoidin-domain protein involved in sperm-egg binding. Cell 114:405–17 [Google Scholar]
  130. Miyado K, Yoshida K, Yamagata K, Sakakibara K, Okabe M. 130.  et al. 2008. The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. PNAS 105:12921–26 [Google Scholar]
  131. Helming L, Gordon S. 131.  2009. Molecular mediators of macrophage fusion. Trends Cell Biol 19:514–22 [Google Scholar]
  132. Helming L, Winter J, Gordon S. 132.  2009. The scavenger receptor CD36 plays a role in cytokine-induced macrophage fusion. J. Cell Sci. 122:453–59 [Google Scholar]
  133. Riddell MR, Winkler-Lowen B, Jiang Y, Davidge ST, Guilbert LJ. 133.  2013. Pleiotropic actions of forskolin result in phosphatidylserine exposure in primary trophoblasts. PLOS ONE 8:e81273 [Google Scholar]
  134. Das M, Xu B, Lin L, Chakrabarti S, Shivaswamy V, Rote NS. 134.  2004. Phosphatidylserine efflux and intercellular fusion in a BeWo model of human villous cytotrophoblast. Placenta 25:396–407 [Google Scholar]
  135. Adler RR, Ng AK, Rote NS. 135.  1995. Monoclonal antiphosphatidylserine antibody inhibits intercellular fusion of the choriocarcinoma line, JAR. Biol. Reprod. 53:905–10 [Google Scholar]
  136. Huppertz B, Gauster M. 136.  2011. Trophoblast fusion. Adv. Exp. Med. Biol. 713:81–95 [Google Scholar]
  137. Rodríguez-García V, Ioannou Y, Fernández-Nebro A, Isenberg DA, Giles IP. 137.  2015. Examining the prevalence of non-criteria anti-phospholipid antibodies in patients with anti-phospholipid syndrome: a systematic review. Rheumatology 54:2042–50 [Google Scholar]
  138. Rand JH, Wu XX, Quinn AS, Taatjes DJ. 138.  2010. The annexin A5-mediated pathogenic mechanism in the antiphospholipid syndrome: role in pregnancy losses and thrombosis. Lupus 19:460–69 [Google Scholar]
  139. Wolf W, Kilic A, Schrul B, Lorenz H, Schwappach B, Seedorf M. 139.  2012. Yeast Ist2 recruits the endoplasmic reticulum to the plasma membrane and creates a ribosome-free membrane microcompartment. PLOS ONE 7:e39703 [Google Scholar]
  140. Manford AG, Stefan CJ, Yuan HL, Macgurn JA, Emr SD. 140.  2012. ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology. Dev. Cell 23:1129–40 [Google Scholar]
  141. Lavieu G, Orci L, Shi L, Geiling M, Ravazzola M. 141.  et al. 2010. Induction of cortical endoplasmic reticulum by dimerization of a coatomer-binding peptide anchored to endoplasmic reticulum membranes. PNAS 107:6876–81 [Google Scholar]
  142. Kralt A, Carretta M, Mari M, Reggiori F, Steen A. 142.  et al. 2015. Intrinsically disordered linker and plasma membrane-binding motif sort Ist2 and Ssy1 to junctions. Traffic 16:135–47 [Google Scholar]
  143. Fischer MA, Temmerman K, Ercan E, Nickel W, Seedorf M. 143.  2009. Binding of plasma membrane lipids recruits the yeast integral membrane protein Ist2 to the cortical ER. Traffic 10:1084–97 [Google Scholar]
  144. Quon E, Beh CT. 144.  2015. Membrane contact sites: complex zones for membrane association and lipid exchange. Lipid Insights 8:55–63 [Google Scholar]
  145. Leikina E, Defour A, Melikov K, Van der Meulen JH, Nagaraju K. 145.  et al. 2015. Annexin A1 deficiency does not affect myofiber repair but delays regeneration of injured muscles. Sci. Rep. 5:18246 [Google Scholar]
  146. Leikina E, Melikov K, Sanyal S, Verma SK, Eun B. 146.  et al. 2013. Extracellular annexins and dynamin are important for sequential steps in myoblast fusion. J. Cell Biol. 200:109–23 [Google Scholar]
  147. Gerke V, Creutz CE, Moss SE. 147.  2005. Annexins: linking Ca2+ signalling to membrane dynamics. Nat. Rev. Mol. Cell Biol. 6:449–61 [Google Scholar]
  148. Rintala-Dempsey AC, Rezvanpour A, Shaw GS. 148.  2008. S100-annexin complexes–structural insights. FEBS J 275:4956–66 [Google Scholar]
  149. Lee G, Pollard HB. 149.  1997. Highly sensitive and stable phosphatidylserine liposome aggregation assay for annexins. Anal. Biochem. 252:160–64 [Google Scholar]
  150. Meers P, Mealy T, Tauber AI. 150.  1993. Annexin I interactions with human neutrophil specific granules: fusogenicity and coaggregation with plasma membrane vesicles. Biochim. Biophys. Acta 1147:177–84 [Google Scholar]
  151. Lee BC, Menon AK, Accardi A. 151.  2016. The nhTMEM16 scramblase is also a nonselective ion channel. Biophys. J. 111:91919–24 [Google Scholar]
  152. Lim NK, Lam AK, Dutzler R. 152.  2016. Independent activation of ion conduction pores in the double-barreled calcium-activated chloride channel TMEM16A. J. Gen. Physiol. 148:5375–92 [Google Scholar]
  153. Jeng G, Aggarwal M, Yu WP, Chen TY. 153.  2016. Independent activation of distinct pores in dimeric TMEM16A channels. J. Gen. Physiol. 148:5393–404 [Google Scholar]
  154. Hartzell HC, Whitlock JM. 154.  2016. TMEM16 chloride channels are two-faced. J. Gen. Physiol. 148:5367–73 [Google Scholar]
/content/journals/10.1146/annurev-physiol-022516-034031
Loading
/content/journals/10.1146/annurev-physiol-022516-034031
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error