1932

Abstract

Macrophages regulate tissue regeneration following injury. They can worsen tissue injury by producing reactive oxygen species and other toxic mediators that disrupt cell metabolism, induce apoptosis, and exacerbate ischemic injury. However, they also produce a variety of growth factors, such as IGF-1, VEGF-α, TGF-β, and Wnt proteins that regulate epithelial and endothelial cell proliferation, myofibroblast activation, stem and tissue progenitor cell differentiation, and angiogenesis. Proresolving macrophages in turn restore tissue homeostasis by functioning as anti-inflammatory cells, and macrophage-derived matrix metalloproteinases regulate fibrin and collagen turnover. However, dysregulated macrophage function impairs wound healing and contributes to the development of fibrosis. Consequently, the mechanisms that regulate these different macrophage activation states have become active areas of research. In this review, we discuss the common and unique mechanisms by which macrophages instruct tissue repair in the liver, nervous system, heart, lung, skeletal muscle, and intestine and illustrate how macrophages might be exploited therapeutically.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-022516-034356
2017-02-10
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/physiol/79/1/annurev-physiol-022516-034356.html?itemId=/content/journals/10.1146/annurev-physiol-022516-034356&mimeType=html&fmt=ahah

Literature Cited

  1. Wynn TA, Chawla A, Pollard JW. 1.  2013. Macrophage biology in development, homeostasis and disease. Nature 496:445–55 [Google Scholar]
  2. Wynn TA, Vannella KM. 2.  2016. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44:450–62 [Google Scholar]
  3. Wynn TA, Barron L. 3.  2010. Macrophages: master regulators of inflammation and fibrosis. Semin. Liver Dis. 30:245–57 [Google Scholar]
  4. Peiser L, Mukhopadhyay S, Gordon S. 4.  2002. Scavenger receptors in innate immunity. Curr. Opin. Immunol. 14:123–28 [Google Scholar]
  5. Gordon S. 5.  2016. Phagocytosis: an immunobiologic process. Immunity 44:463–75 [Google Scholar]
  6. Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M. 6.  et al. 2005. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Investig. 115:56–65 [Google Scholar]
  7. Zhang MZ, Yao B, Yang S, Jiang L, Wang S. 7.  et al. 2012. CSF-1 signaling mediates recovery from acute kidney injury. J. Clin. Investig. 122:4519–32 [Google Scholar]
  8. Rappolee DA, Mark D, Banda MJ, Werb Z. 8.  1988. Wound macrophages express TGF-α and other growth factors in vivo: analysis by mRNA phenotyping. Science 241:708–12 [Google Scholar]
  9. Berse B, Brown LF, Van de Water L, Dvorak HF, Senger DR. 9.  1992. Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol. Biol. Cell 3:211–20 [Google Scholar]
  10. Shimokado K, Raines EW, Madtes DK, Barrett TB, Benditt EP, Ross R. 10.  1985. A significant part of macrophage-derived growth factor consists of at least two forms of PDGF. Cell 43:277–86 [Google Scholar]
  11. Chujo S, Shirasaki F, Kondo-Miyazaki M, Ikawa Y, Takehara K. 11.  2009. Role of connective tissue growth factor and its interaction with basic fibroblast growth factor and macrophage chemoattractant protein-1 in skin fibrosis. J. Cell. Physiol. 220:189–95 [Google Scholar]
  12. Willenborg S, Lucas T, van Loo G, Knipper JA, Krieg T. 12.  et al. 2012. CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood 120:613–25 [Google Scholar]
  13. Akhurst RJ, Hata A. 13.  2012. Targeting the TGFβ signalling pathway in disease. Nat. Rev. Drug Discov. 11:790–811 [Google Scholar]
  14. Stappenbeck TS, Miyoshi H. 14.  2009. The role of stromal stem cells in tissue regeneration and wound repair. Science 324:1666–69 [Google Scholar]
  15. Ramachandran P, Iredale JP, Fallowfield JA. 15.  2015. Resolution of liver fibrosis: basic mechanisms and clinical relevance. Semin. Liver Dis. 35:119–31 [Google Scholar]
  16. Zigmond E, Bernshtein B, Friedlander G, Walker CR, Yona S. 16.  et al. 2014. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity 40:720–33 [Google Scholar]
  17. Shouval DS, Biswas A, Goettel JA, McCann K, Conaway E. 17.  et al. 2014. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity 40:706–19 [Google Scholar]
  18. Khalil N, Bereznay O, Sporn M, Greenberg AH. 18.  1989. Macrophage production of transforming growth factor beta and fibroblast collagen synthesis in chronic pulmonary inflammation. J. Exp. Med. 170:727–37 [Google Scholar]
  19. Said EA, Dupuy FP, Trautmann L, Zhang Y, Shi Y. 19.  et al. 2010. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat. Med. 16:452–59 [Google Scholar]
  20. Wynn TA, Ramalingam TR. 20.  2012. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18:1028–40 [Google Scholar]
  21. Mosser DM, Edwards JP. 21.  2008. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8:958–69 [Google Scholar]
  22. Getts DR, Terry RL, Getts MT, Deffrasnes C, Müller M. 22.  et al. 2014. Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci. Transl. Med. 6:219ra7 [Google Scholar]
  23. Happle C, Lachmann N, Škuljec J, Wetzke M, Ackermann M. 23.  et al. 2014. Pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for hereditary pulmonary alveolar proteinosis. Sci. Transl. Med. 6:250ra113 [Google Scholar]
  24. Gundra UM, Girgis NM, Ruckerl D, Jenkins S, Ward LN. 24.  et al. 2014. Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct. Blood 123:e110–22 [Google Scholar]
  25. Vannella KM, Barron L, Borthwick LA, Kindrachuk KN, Narasimhan PB. 25.  et al. 2014. Incomplete deletion of IL-4Rα by LysMCre reveals distinct subsets of M2 macrophages controlling inflammation and fibrosis in chronic schistosomiasis. PLOS Pathog 10:e1004372 [Google Scholar]
  26. Perdiguero EG, Klapproth K, Schulz C, Busch K, de Bruijn M. 26.  et al. 2015. The origin of tissue-resident macrophages: when an erythro-myeloid progenitor is an erythro-myeloid progenitor. Immunity 43:1023–24 [Google Scholar]
  27. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB. 27.  et al. 2013. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38:792–804 [Google Scholar]
  28. Hoeffel G, Chen J, Lavin Y, Low D, Almeida FF. 28.  et al. 2015. C-Myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42:665–78 [Google Scholar]
  29. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N. 29.  et al. 2012. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90 [Google Scholar]
  30. Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD. 30.  et al. 2011. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332:1284–88 [Google Scholar]
  31. Jenkins SJ, Ruckerl D, Thomas GD, Hewitson JP, Duncan S. 31.  et al. 2013. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J. Exp. Med. 210:2477–91 [Google Scholar]
  32. Murray PJ, Wynn TA. 32.  2011. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11:723–37 [Google Scholar]
  33. Ramachandran P, Pellicoro A, Vernon MA, Boulter L, Aucott RL. 33.  et al. 2012. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. PNAS 109:E3186–95 [Google Scholar]
  34. Fallowfield JA, Mizuno M, Kendall TJ, Constandinou CM, Benyon RC. 34.  et al. 2007. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J. Immunol. 178:5288–95 [Google Scholar]
  35. Mitchell C, Couton D, Couty JP, Anson M, Crain AM. 35.  et al. 2009. Dual role of CCR2 in the constitution and the resolution of liver fibrosis in mice. Am. J. Pathol. 174:1766–75 [Google Scholar]
  36. Pellicoro A, Aucott RL, Ramachandran P, Robson AJ, Fallowfield JA. 36.  et al. 2012. Elastin accumulation is regulated at the level of degradation by macrophage metalloelastase (MMP-12) during experimental liver fibrosis. Hepatology 55:1965–75 [Google Scholar]
  37. Bleriot C, Dupuis T, Jouvion G, Eberl G, Disson O, Lecuit M. 37.  2015. Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 42:145–58 [Google Scholar]
  38. Dal-Secco D, Wang J, Zeng Z, Kolaczkowska E, Wong CH. 38.  et al. 2015. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J. Exp. Med. 212:447–56 [Google Scholar]
  39. Heymann F, Hammerich L, Storch D, Bartneck M, Huss S. 39.  et al. 2012. Hepatic macrophage migration and differentiation critical for liver fibrosis is mediated by the chemokine receptor C-C motif chemokine receptor 8 in mice. Hepatology 55:898–909 [Google Scholar]
  40. Borthwick LA, Barron L, Hart KM, Vannella KM, Thompson RW. 40.  et al. 2015. Macrophages are critical to the maintenance of IL-13-dependent lung inflammation and fibrosis. Mucosal Immunol 9:38–55 [Google Scholar]
  41. Negash AA, Ramos HJ, Crochet N, Lau DT, Doehle B. 41.  et al. 2013. IL-1β production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease. PLOS Pathog 9:e1003330 [Google Scholar]
  42. Pradere JP, Kluwe J, De Minicis S, Jiao JJ, Gwak GY. 42.  et al. 2013. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology 58:1461–73 [Google Scholar]
  43. Ostuni R, Kratochvill F, Murray PJ, Natoli G. 43.  2015. Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol 36:229–39 [Google Scholar]
  44. Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC. 44.  et al. 2009. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLOS Pathog 5:e1000371 [Google Scholar]
  45. Hesse M, Cheever AW, Jankovic D, Wynn TA. 45.  2000. NOS-2 mediates the protective anti-inflammatory and antifibrotic effects of the Th1-inducing adjuvant, IL-12, in a Th2 model of granulomatous disease. Am. J. Pathol. 157:945–55 [Google Scholar]
  46. Lang R, Patel D, Morris JJ, Rutschman RL, Murray PJ. 46.  2002. Shaping gene expression in activated and resting primary macrophages by IL-10. J. Immunol. 169:2253–63 [Google Scholar]
  47. Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J. 47.  et al. 2014. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat. Immunol. 15:423–30 [Google Scholar]
  48. Murray PJ, Rathmell J, Pearce E. 48.  2015. SnapShot: immunometabolism. Cell Metab 22:190–90.e1 [Google Scholar]
  49. Pesce J, Kaviratne M, Ramalingam TR, Thompson RW, Urban JF. 49.  et al. 2006. The IL-21 receptor augments Th2 effector function and alternative macrophage activation. J. Clin. Investig. 116:2044–55 [Google Scholar]
  50. Antoniades CG, Quaglia A, Taams LS, Mitry RR, Hussain M. 50.  et al. 2012. Source and characterization of hepatic macrophages in acetaminophen-induced acute liver failure in humans. Hepatology 56:735–46 [Google Scholar]
  51. Stutchfield BM, Antoine DJ, Mackinnon AC, Gow DJ, Bain CC. 51.  et al. 2015. CSF1 restores innate immunity after liver injury in mice and serum levels indicate outcomes of patients with acute liver failure. Gastroenterology 149:1896–909.e14 [Google Scholar]
  52. Boulter L, Govaere O, Bird TG, Radulescu S, Ramachandran P. 52.  et al. 2012. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat. Med. 18:572–79 [Google Scholar]
  53. Diehl AM. 53.  2012. Neighborhood watch orchestrates liver regeneration. Nat. Med. 18:497–99 [Google Scholar]
  54. O'Brien AJ, Fullerton JN, Massey KA, Auld G, Sewell G. 54.  et al. 2014. Immunosuppression in acutely decompensated cirrhosis is mediated by prostaglandin E2. Nat. Med. 20:518–23 [Google Scholar]
  55. Beggs S, Salter MW. 55.  2016. SnapShot: microglia in disease. Cell 165:1294–94.e1 [Google Scholar]
  56. Morsch M, Radford R, Lee A, Don EK, Badrock AP. 56.  et al. 2015. In vivo characterization of microglial engulfment of dying neurons in the zebrafish spinal cord. Front. Cell. Neurosci. 9:321 [Google Scholar]
  57. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P. 57.  et al. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–45 [Google Scholar]
  58. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C. 58.  et al. 2013. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16:273–80 [Google Scholar]
  59. Bruttger J, Karram K, Wörtge S, Regen T, Marini F. 59.  et al. 2015. Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity 43:92–106 [Google Scholar]
  60. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S. 60.  et al. 2013. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493:674–77 [Google Scholar]
  61. Shichita T, Hasegawa E, Kimura A, Morita R, Sakaguchi R. 61.  et al. 2012. Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat. Med. 18:911–17 [Google Scholar]
  62. Jonas A, Thiem S, Kuhlmann T, Wagener R, Aszodi A. 62.  et al. 2014. Axonally derived matrilin-2 induces proinflammatory responses that exacerbate autoimmune neuroinflammation. J. Clin. Investig. 124:5042–56 [Google Scholar]
  63. Kroner A, Greenhalgh AD, Zarruk JG, Passos dos Santos R, Gaestel M, David S. 63.  2014. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron 83:1098–116 [Google Scholar]
  64. Lévesque SA, Paré A, Mailhot B, Bellver-Landete V, Kébir H. 64.  et al. 2016. Myeloid cell transmigration across the CNS vasculature triggers IL-1β-driven neuroinflammation during autoimmune encephalomyelitis in mice. J. Exp. Med. 213:929 [Google Scholar]
  65. Gadani SP, Walsh JT, Smirnov I, Zheng J, Kipnis J. 65.  2015. The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron 85:703–9 [Google Scholar]
  66. Jiang HR, Milovanovic M, Allan D, Niedbala W, Besnard AG. 66.  et al. 2012. IL-33 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages. Eur J. Immunol. 42:1804–14 [Google Scholar]
  67. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM. 67.  et al. 2013. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16:1211–18 [Google Scholar]
  68. Shechter R, Miller O, Yovel G, Rosenzweig N, London A. 68.  et al. 2013. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38:555–69 [Google Scholar]
  69. Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM. 69.  et al. 2014. Differential roles of microglia and monocytes in the inflamed central nervous system. J. Exp. Med. 211:1533–49 [Google Scholar]
  70. Evans TA, Barkauskas DS, Myers JT, Hare EG, You JQ. 70.  et al. 2014. High-resolution intravital imaging reveals that blood-derived macrophages but not resident microglia facilitate secondary axonal dieback in traumatic spinal cord injury. Exp. Neurol. 254:109–20 [Google Scholar]
  71. Liu C. 71.  2016. Macrophages mediate the repair of brain vascular rupture through direct physical adhesion and mechanical traction. Immunity 44:1162–76 [Google Scholar]
  72. Baruch K, Deczkowska A, Rosenzweig N, Tsitsou-Kampeli A, Sharif AM. 72.  et al. 2016. PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer's disease. Nat. Med. 22:135–37 [Google Scholar]
  73. Jay TR, Miller CM, Cheng PJ, Graham LC, Bemiller S. 73.  et al. 2015. TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models. J. Exp. Med. 212:287–95 [Google Scholar]
  74. Busch SA, Hamilton JA, Horn KP, Cuascut FX, Cutrone R. 74.  et al. 2011. Multipotent adult progenitor cells prevent macrophage-mediated axonal dieback and promote regrowth after spinal cord injury. J. Neurosci. 31:944–53 [Google Scholar]
  75. London A, Itskovich E, Benhar I, Kalchenko V, Mack M. 75.  et al. 2011. Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. J. Exp. Med. 208:23–39 [Google Scholar]
  76. Freytes DO, Kang JW, Marcos-Campos I, Vunjak-Novakovic G. 76.  2013. Macrophages modulate the viability and growth of human mesenchymal stem cells. J. Cell. Biochem. 114:220–29 [Google Scholar]
  77. Mounier R, Théret M, Arnold L, Cuvellier S, Bultot L. 77.  et al. 2013. AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab 18:251–64 [Google Scholar]
  78. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G. 78.  et al. 2010. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–61 [Google Scholar]
  79. Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. 79.  2015. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 349:316–20 [Google Scholar]
  80. Kobayashi M, Usui F, Karasawa T, Kawashima A, Kimura H. 80.  et al. 2016. NLRP3 deficiency reduces macrophage interleukin-10 production and enhances the susceptibility to doxorubicin-induced cardiotoxicity. Sci. Rep. 6:26489 [Google Scholar]
  81. Endo J, Sano M, Isobe Y, Fukuda K, Kang JX. 81.  et al. 2014. 18-HEPE, an n-3 fatty acid metabolite released by macrophages, prevents pressure overload-induced maladaptive cardiac remodeling. J. Exp. Med. 211:1673–87 [Google Scholar]
  82. Horckmans M, Ring L, Duchene J, Santovito D, Schloss MJ. 82.  et al. 2016. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur. Heart J. In press. http://dx.doi.org/10.1093/eurheartj/ehw002
  83. Shiraishi M, Shintani Y, Shintani Y, Ishida H, Saba R. 83.  et al. 2016. Alternatively activated macrophages determine repair of the infarcted adult murine heart. J. Clin. Investig. 126:2151–66 [Google Scholar]
  84. Falkenham A, de Antueno R, Rosin N, Betsch D, Lee TD. 84.  et al. 2015. Nonclassical resident macrophages are important determinants in the development of myocardial fibrosis. Am. J. Pathol. 185:927–42 [Google Scholar]
  85. Patel AN, Henry TD, Quyyumi AA, Schaer GL, Anderson RD. 85.  et al. 2016. Ixmyelocel-T for patients with ischaemic heart failure: a prospective randomised double-blind trial. Lancet 387:2412–21 [Google Scholar]
  86. Moore JP, Vinh A, Tuck KL, Sakkal S, Krishnan SM. 86.  et al. 2015. M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure. Am. J. Physiol. Heart Circ. Physiol. 309:H906–17 [Google Scholar]
  87. de Couto G, Liu W, Tseliou E, Sun B, Makkar N. 87.  et al. 2015. Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. J. Clin. Investig. 125:3147–62 [Google Scholar]
  88. Korf-Klingebiel M, Reboll MR, Klede S, Brod T, Pich A. 88.  et al. 2015. Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction. Nat. Med. 21:140–49 [Google Scholar]
  89. Hara M, Yuasa S, Shimoji K, Onizuka T, Hayashiji N. 89.  et al. 2011. G-CSF influences mouse skeletal muscle development and regeneration by stimulating myoblast proliferation. J. Exp. Med. 208:715–27 [Google Scholar]
  90. Villalta SA, Deng B, Rinaldi C, Wehling-Henricks M, Tidball JG. 90.  2011. IFN-γ promotes muscle damage in the mdx mouse model of Duchenne muscular dystrophy by suppressing M2 macrophage activation and inhibiting muscle cell proliferation. J. Immunol. 187:5419–28 [Google Scholar]
  91. Deng B, Wehling-Henricks M, Villalta SA, Wang Y, Tidball JG. 91.  2012. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J. Immunol. 189:3669–80 [Google Scholar]
  92. Saclier M, Yacoub-Youssef H, Mackey AL, Arnold L, Ardjoune H. 92.  et al. 2013. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cells 31:384–96 [Google Scholar]
  93. Heredia JE, Mukundan L, Chen FM, Mueller AA, Deo RC. 93.  et al. 2013. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153:376–88 [Google Scholar]
  94. Kuswanto W, Burzyn D, Panduro M, Wang KK, Jang YC. 94.  et al. 2016. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 44:355–67 [Google Scholar]
  95. Cai B, Thorp EB, Doran AC, Subramanian M, Sansbury BE. 95.  et al. 2016. MerTK cleavage limits proresolving mediator biosynthesis and exacerbates tissue inflammation. PNAS 113:6526–31 [Google Scholar]
  96. Westphalen K, Gusarova GA, Islam MN, Subramanian M, Cohen TS. 96.  et al. 2014. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506:503–6 [Google Scholar]
  97. Harmsen AG. 97.  1988. Role of alveolar macrophages in lipopolysaccharide-induced neutrophil accumulation. Infect. Immun. 56:1858–63 [Google Scholar]
  98. Dagvadorj J, Shimada K, Chen S, Jones HD, Tumurkhuu G. 98.  et al. 2015. Lipopolysaccharide induces alveolar macrophage necrosis via CD14 and the P2X7 receptor leading to interleukin-1α release. Immunity 42:640–53 [Google Scholar]
  99. Cao Z, Lis R, Ginsberg M, Chavez D, Shido K. 99.  et al. 2016. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nat. Med. 22:154–62 [Google Scholar]
  100. Larson-Casey JL, Deshane JS, Ryan AJ, Thannickal VJ, Carter AB. 100.  2016. Macrophage Akt1 kinase-mediated mitophagy modulates apoptosis resistance and pulmonary fibrosis. Immunity 44:582–96 [Google Scholar]
  101. Zhou Y, Peng H, Sun H, Peng X, Tang C. 101.  et al. 2014. Chitinase 3-like 1 suppresses injury and promotes fibroproliferative responses in mammalian lung fibrosis. Sci. Transl. Med. 6:240ra76 [Google Scholar]
  102. Seo SU, Kamada N, Muñoz-Planillo R, Kim YG, Kim D. 102.  et al. 2015. Distinct commensals induce interleukin-1β via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity 42:744–55 [Google Scholar]
  103. Pearson C, Thornton EE, McKenzie B, Schaupp AL, Huskens N. 103.  et al. 2016. ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation. eLife 5:e10066 [Google Scholar]
  104. Däbritz J, Weinhage T, Varga G, Wirth T, Walscheid K. 104.  et al. 2015. Reprogramming of monocytes by GM-CSF contributes to regulatory immune functions during intestinal inflammation. J. Immunol. 194:2424–38 [Google Scholar]
  105. D'Alessio S, Correale C, Tacconi C, Gandelli A, Pietrogrande G. 105.  et al. 2014. VEGF-C-dependent stimulation of lymphatic function ameliorates experimental inflammatory bowel disease. J. Clin. Investig. 124:3863–78 [Google Scholar]
  106. Scheibe K, Backert I, Wirtz S, Hueber A, Schett G. 106.  et al. 2016. IL-36R signalling activates intestinal epithelial cells and fibroblasts and promotes mucosal healing in vivo. Gut In press. doi: 10.1136/gutjnl-2015-310374
  107. Esser-von Bieren J, Volpe B, Sutherland DB, Bürgi J, Verbeek JS. 107.  et al. 2015. Immune antibodies and helminth products drive CXCR2-dependent macrophage-myofibroblast crosstalk to promote intestinal repair. PLOS Pathog 11:e1004778 [Google Scholar]
  108. Yeh MH, Chang YH, Tsai YC, Chen SL, Huang TS. 108.  et al. 2016. Bone marrow derived macrophages fuse with intestine stromal cells and contribute to chronic fibrosis after radiation. Radiother. Oncol. 119:250–58 [Google Scholar]
  109. Hume DA, Freeman TC. 109.  2014. Transcriptomic analysis of mononuclear phagocyte differentiation and activation. Immunol. Rev. 262:74–84 [Google Scholar]
  110. Alexander KA, Flynn R, Lineburg KE, Kuns RD, Teal BE. 110.  et al. 2014. CSF-1-dependant donor-derived macrophages mediate chronic graft-versus-host disease. J. Clin. Investig. 124:4266–80 [Google Scholar]
  111. MacDonald KP, Palmer JS, Cronau S, Seppanen E, Olver S. 111.  et al. 2010. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood 116:3955–63 [Google Scholar]
  112. Gow DJ, Sauter KA, Pridans C, Moffat L, Sehgal A. 112.  et al. 2014. Characterisation of a novel Fc conjugate of macrophage colony-stimulating factor. Mol. Ther. 22:1580–92 [Google Scholar]
  113. Luo J, Elwood F, Britschgi M, Villeda S, Zhang H. 113.  et al. 2013. Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J. Exp. Med. 210:157–72 [Google Scholar]
  114. Baeck C, Wehr A, Karlmark KR, Heymann F, Vucur M. 114.  et al. 2012. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 61:416–26 [Google Scholar]
  115. Chen L, Zhou X, Fan LX, Yao Y, Swenson-Fields KI. 115.  et al. 2015. Macrophage migration inhibitory factor promotes cyst growth in polycystic kidney disease. J. Clin. Investig. 125:2399–412 [Google Scholar]
  116. Wehr A, Baeck C, Ulmer F, Gassler N, Hittatiya K. 116.  et al. 2014. Pharmacological inhibition of the chemokine CXCL16 diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. PLOS ONE 9:e112327 [Google Scholar]
  117. Baeck C, Wei X, Bartneck M, Fech V, Heymann F. 117.  et al. 2014. Pharmacological inhibition of the chemokine C-C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly-6C+ macrophage infiltration in mice. Hepatology 59:1060–72 [Google Scholar]
  118. Murray LA, Chen Q, Kramer MS, Hesson DP, Argentieri RL. 118.  et al. 2011. TGF-β driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P. Int. J. Biochem. Cell Biol. 43:154–62 [Google Scholar]
  119. Ueno M, Maeno T, Nishimura S, Ogata F, Masubuchi H. 119.  et al. 2015. Alendronate inhalation ameliorates elastase-induced pulmonary emphysema in mice by induction of apoptosis of alveolar macrophages. Nat. Commun. 6:6332 [Google Scholar]
  120. Thomas JA, Pope C, Wojtacha D, Robson AJ, Gordon-Walker TT. 120.  et al. 2011. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology 53:2003–15 [Google Scholar]
  121. Suzuki T, Arumugam P, Sakagami T, Lachmann N, Chalk C. 121.  et al. 2014. Pulmonary macrophage transplantation therapy. Nature 514:450–54 [Google Scholar]
  122. Cao Q, Wang Y, Zheng D, Sun Y, Wang Y. 122.  et al. 2010. IL-10/TGF-β-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis. J. Am. Soc. Nephrol. 21:933–42 [Google Scholar]
  123. Zheng D, Wang Y, Cao Q, Lee VW, Zheng G. 123.  et al. 2011. Transfused macrophages ameliorate pancreatic and renal injury in murine diabetes mellitus. Nephron Exp. Nephrol. 118:e87–99 [Google Scholar]
  124. Cao Q, Wang C, Zheng D, Wang Y, Lee VW. 124.  et al. 2011. IL-25 induces M2 macrophages and reduces renal injury in proteinuric kidney disease. J. Am. Soc. Nephrol. 22:1229–39 [Google Scholar]
  125. Boehler RM, Kuo R, Shin S, Goodman AG, Pilecki MA. 125.  et al. 2014. Lentivirus delivery of IL-10 to promote and sustain macrophage polarization towards an anti-inflammatory phenotype. Biotechnol. Bioeng. 111:1210–21 [Google Scholar]
  126. Harel-Adar T, Ben Mordechai T, Amsalem Y, Feinberg MS, Leor J, Cohen S. 126.  2011. Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. PNAS 108:1827–32 [Google Scholar]
  127. De Nardo D, Labzin LI, Kono H, Seki R, Schmidt SV. 127.  et al. 2014. High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat. Immunol. 15:152–60 [Google Scholar]
/content/journals/10.1146/annurev-physiol-022516-034356
Loading
/content/journals/10.1146/annurev-physiol-022516-034356
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error