1932

Abstract

Fatty acids and lipids, which are major and essential constituents of all plant cells, not only provide structural integrity and energy for various metabolic processes but can also function as signal transduction mediators. Lipids and fatty acids can act as both intracellular and extracellular signals. In addition, cyclic and acyclic products generated during fatty acid metabolism can also function as important chemical signals. This review summarizes the biosynthesis of fatty acids and lipids and their involvement in pathogen defense.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080516-035406
2017-08-04
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/phyto/55/1/annurev-phyto-080516-035406.html?itemId=/content/journals/10.1146/annurev-phyto-080516-035406&mimeType=html&fmt=ahah

Literature Cited

  1. Abbas HK, Duke SO, Paul RN, Riley RT, Tanaka T. 1.  1995. AAL-toxin, a potent natural herbicide which disrupts sphingolipid metabolism of plants. Pestic. Sci. 43:181–87 [Google Scholar]
  2. Abbas HK, Tanaka T, Shier WT. 2.  1995. Biological activities of synthetic analogues of Alternaria alternata toxin (AAL-toxin) and fumonisin in plant and mammalian cell cultures. Phytochemistry 40:1681–89 [Google Scholar]
  3. Andersson MX, Stridh MH, Larsson KE, Liljenberg C, Sandelius AS. 3.  2003. Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett 537:128–32 [Google Scholar]
  4. Andersson MX, Kourtchenko O, Dangl JL, Mackey D, Ellerström M. 4.  2006. Phospholipase‐dependent signalling during the AvrRpm1- and AvrRpt2-induced disease resistance responses in Arabidopsis thaliana. . Plant J. 47:947–59 [Google Scholar]
  5. Arisz SA, van Wijk R, Roels W, Zhu J-K, Haring MA, Munnik T. 5.  2013. Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase. Front. Plant Sci. 4:1 [Google Scholar]
  6. Arisz SA, Testerink C, Munnik T. 6.  2009. Plant PA signaling via diacylglycerol kinase. Biochim. Biophys. Acta 1791:869–75 [Google Scholar]
  7. Awai K, Maréchal E, Block MA, Brun D, Masuda T. 7.  et al. 2001. Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. . PNAS 98:10960–65 [Google Scholar]
  8. Awai K, Xu C, Tamot B, Benning C. 8.  2006. A phosphatidic acid–binding protein of the chloroplast inner envelope membrane involved in lipid trafficking. PNAS 103:10817–22 [Google Scholar]
  9. Babiychuk E, Muller F, Eubel H, Braun HP, Frentzen M, Kushnir S. 9.  2003. Arabidopsis phosphatidylglycerophosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J 33:899–909 [Google Scholar]
  10. Baerson SR, Schröder J, Cook D, Rimando AM, Pan Z. 10.  et al. 2010. Alkylresorcinol biosynthesis in plants: new insights from an ancient enzyme family?. Plant Signal. Behav. 5:1286–89 [Google Scholar]
  11. Baker PR, Lin Y, Schopfer FJ, Woodcock SR, Groeger AL. 11.  et al. 2005. Fatty acid transduction of nitric oxide signaling: multiple nitrated unsaturated fatty acid derivatives exist in human blood and urine and serve as endogenous peroxisome proliferator-activated receptor ligands. J. Biol. Chem. 280:42464–75 [Google Scholar]
  12. Bargmann BO, Munnik T. 12.  2006. The role of phospholipase D in plant stress responses. Curr. Opin. Plant Biol. 9:515–22 [Google Scholar]
  13. Bate NJ, Rothstein SJ. 13.  1998. C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J 16:561–69 [Google Scholar]
  14. Beisson F, Li Y, Bonaventure G, Pollard M, Ohlrogge JB. 14.  2007. The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. . Plant Cell 19:351–68 [Google Scholar]
  15. Bell E, Creelman RA, Mullet JE. 15.  1995. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. . PNAS 92:8675–79 [Google Scholar]
  16. Benning C, Beatty JT, Prince RC, Somerville CR. 16.  1993. The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodobacter sphaeroides but enhances growth under phosphate limitation. PNAS 90:1561–65 [Google Scholar]
  17. Benning C, Ohta H. 17.  2005. Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J. Biol. Chem. 280:2397–400 [Google Scholar]
  18. Berkey R, Dipti Bendigeri D, Xiao S. 18.  2012. Sphingolipids and plant defense/disease: the “death” connection and beyond. Front. . Plant Sci. 3:68 [Google Scholar]
  19. Bessire M, Chassot C, Jacquat AC, Humphry M, Borel S. 19.  et al. 2007. A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea. . EMBO J. 26:2158–68 [Google Scholar]
  20. Bi F-C, Zhang Q-F, Liu Z, Fang C, Li J. 20.  et al. 2011. A conserved cysteine motif is critical for rice ceramide kinase activity and function. PLOS ONE 6:e18079 [Google Scholar]
  21. Bourtsala A, Farmaki T, Galanopoulou D. 21.  2017. Phospholipases Dα and δ are involved in local and systemic wound responses of cotton (G. hirsutum). Biochem. Biophys. Rep. 9:133–39 [Google Scholar]
  22. Brandwagt BF, Mesbah LA, Takken FL, Laurent PL, Kneppers TJ. 22.  et al. 2000. A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1. PNAS 97:4961–66 [Google Scholar]
  23. Brodersen P, Petersen M, Pike HM, Olszak B, Skov S. 23.  et al. 2002. Knockout of Arabidopsis ACCELERATED-CELL-DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev 16:490–502 [Google Scholar]
  24. Browse J. 24.  2005. Jasmonate: an oxylipin signal with many roles in plants. Vitam. Horm. 72:431–56 [Google Scholar]
  25. Calzada E, Onguka O, Claypool SM. 25.  2016. Phosphatidylethanolamine metabolism in health and disease. Int. Rev. Cell Mol. Biol. 321:29–88 [Google Scholar]
  26. Carr J, Lewsey MG, Palukaitis P. 26.  2010. Signaling in induced resistance. Adv. Virus Res. 76:57–121 [Google Scholar]
  27. Canonne J, Froidure-Nicolas S, Rivas S. 27.  2011. Phospholipases in action during plant defense signaling. Plant Signal. Behav. 6:13–18 [Google Scholar]
  28. Cecchini NM, Steffes K, Schlappi MR, Gifford AN, Greenberg JT. 28.  2015. Arabidopsis AZI1 family proteins mediate signal mobilization for systemic defence priming. Nat. Commun. 6:7658 [Google Scholar]
  29. Chanda B, Venugopal SC, Kulshrestha S, Navarre D, Downie B. 29.  et al. 2008. Glycerol-3-phosphate levels are associated with basal resistance to the hemibiotrophic fungus Colletotrichum higginsianum in Arabidopsis. Plant Physiol 147:2017–29 [Google Scholar]
  30. Chanda B, Xia Y, Mandal M, Yu K, Sekine K. 30.  et al. 2011. Glycerol-3-phosphate, a critical mobile inducer of systemic immunity in plants. Nat. Genet. 43:421–27 [Google Scholar]
  31. Chandra-Shekara AC, Venugopal SC, Barman SR, Kachroo A, Kachroo P. 31.  2007. Plastidal fatty acid levels regulate resistance gene-dependent defense signaling in Arabidopsis. . PNAS 104:7277–82 [Google Scholar]
  32. Chapman KD, Lu S, Hong Y. 32.  2012. The rice diacylglycerol kinase family: functional analysis using transient RNA interference. Lipid Signal. Plants 3:47 [Google Scholar]
  33. Chassot C, Nawrath C, Métraux JP. 33.  2007. Cuticular defects lead to full immunity to a major plant pathogen. Plant J 49:972–80 [Google Scholar]
  34. Chaturvedi R, Venables B, Petros R, Nalam V, Li M. 34.  et al. 2012. An abietane diterpenoid is a potent activator of systemic acquired resistance. Plant J 71:161–72 [Google Scholar]
  35. Crawford NM. 35.  2006. Mechanism of nitric oxide synthesis in plants. J. Exp. Bot. 57:471–78 [Google Scholar]
  36. Cui H, Gobbato E, Kracher B, Qiu J, Bautor J, Parker JE. 36.  2016. A core function of EDS1 and PAD4 is to protect the salicylic acid defense section in Arabidopsis immunity. New Phytol 213:41802–17 [Google Scholar]
  37. Dayan FE. 37.  2006. Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor. Planta 224:339–46 [Google Scholar]
  38. Dayan FE, Rimando AM, Pan Z, Baerson SR, Gimsing AL, Duke SO. 38.  2010. Sorgoleone. Phytochemistry 71:1032–39 [Google Scholar]
  39. Deng W, Hamilton-Kemp TR, Nielsen MT, Andersen RA, Collins GB, Hildebrand DF. 39.  1993. Effects of six-carbon aldehydes and alcohols on bacterial proliferation. J. Agric. Food. Chem. 41:506–10 [Google Scholar]
  40. Delage E, Ruelland E, Guillas I, Zachowski A, Puyaubert J. 40.  2012. Arabidopsis type-III phosphatidylinositol 4-kinases β1 and β2 are upstream of the phospholipase C pathway triggered by cold exposure. Plant Cell Physiol 53:565–76 [Google Scholar]
  41. Ding S-W. 41.  2010. RNA-based antiviral immunity. Nat. Rev. Immun. 10:632–44 [Google Scholar]
  42. Dörmann P, Balbo I, Benning C. 42.  1999. Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1. Science 284:2181–84 [Google Scholar]
  43. Dubots E, Audry M, Yamaryo Y, Block MA. 43.  2010. Activation of the chloroplast monogalactosyldiacylglycerol synthase MGD1 by phosphatidic acid and phosphatidylglycerol. J. Biol. Chem. 285:6003–11 [Google Scholar]
  44. Durrant WE, Dong X. 44.  2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42:185–209 [Google Scholar]
  45. Edoga MO, Fadipe L, Edoga RN. 45.  2006. Extraction of polyphenols from cashew nut shell. Leonardo Electron. J. Pract. Technol. 9:107–12 [Google Scholar]
  46. Eigenbrode SD, Espelie KE. 46.  1995. Effects of plant epicuticular lipids on insect herbivores. Annu. Rev. Entomol. 40:171–94 [Google Scholar]
  47. Elmore JM, Liu J, Smith B, Phinney B, Coaker G. 47.  2012. Quantitative proteomics reveals dynamic changes in the plasma membrane during Arabidopsis immune signaling. Mol. Cell. Proteom. 11:M111.014555 [Google Scholar]
  48. Essigmann B, Güler S, Narang RA, Linke D, Benning C. 48.  1998. Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. . PNAS 95:1950–55 [Google Scholar]
  49. Fabbri AA, Fanelli C, Reverberi M, Ricelli A, Camera E. 49.  et al. 2000. Early physiological and cytological events induced by wounding in potato tuber. J. Exp. Bot. 51:1267–75 [Google Scholar]
  50. Farmer EE, Almeras E, Krishnamurthy V. 50.  2003. Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr. Opin. Plant Biol. 6:372–78 [Google Scholar]
  51. Fauconnier ML, Williams TD, Marlier M, Welti R. 51.  2003. Potato tuber phospholipids contain colneleic acid in the 2-position. FEBS Lett 538:155–58 [Google Scholar]
  52. Fazzari M, Trostchansky A, Schopfer FJ, Salvatore SR, Sánchez-Calvo B. 52.  et al. 2014. Olives and olive oil are sources of electrophilic fatty acid nitroalkenes. PLOS ONE 9:e84884 [Google Scholar]
  53. Flor HH. 53.  1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275–96 [Google Scholar]
  54. Flores-Sanchez IJ, Verpoorte R. 54.  2008. PKS activities and biosynthesis of cannabinoids and flavonoids in Cannabis sativa L. plants. Plant Cell Physiol 49:1767–82 [Google Scholar]
  55. Froehlich J, Benning C, Dörmann P. 55.  2001. The digalactosyldiacylglycerol synthase DGD1 is inserted into the outer envelope membrane of chloroplasts in a manner independent of the general import pathway and does not depend on direct interaction with MGDG synthase for DGDG biosynthesis. J. Biol. Chem. 276:31806–12 [Google Scholar]
  56. Gao Q-M, Kachroo A, Kachroo P. 56.  2014. Chemical inducers of systemic immunity in plants. J. Exp. Bot. 65:1849–55 [Google Scholar]
  57. Gao Q-M, Venugopal S, Navarre R, Kachroo A. 57.  2011. Low oleic acid–derived repression of jasmonic acid–inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiol 155:464–76 [Google Scholar]
  58. Gao Q-M, Yu K, Xia Y, Shine MB, Navarre D. 58.  et al. 2014. Mono- and digalactosyldiacylglycerol lipids function nonredundantly to regulate systemic acquired resistance in plants. Cell Rep 9:1681–91 [Google Scholar]
  59. Gao Q-M, Zhu S, Kachroo P, Kachroo A. 59.  2015. Signal regulators of systemic acquired resistance. Front. Plant Sci. 6:00228 [Google Scholar]
  60. Gibellini F, Smith TK. 60.  2010. The Kennedy pathway: de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. Life 62:414–28 [Google Scholar]
  61. Gobel C, Feussner I, Hamberg M, Rosahl S. 61.  2002. Oxylipin profiling in pathogen-infected potato leaves. Biochim. Biophys. Acta. 1584:55–64 [Google Scholar]
  62. Gobel C, Feussner I, Rosahl S. 62.  2003. Lipid peroxidation during the hypersensitive response in potato in the absence of 9-lipoxygenases. J. Biol. Chem. 278:52834–40 [Google Scholar]
  63. Gobel C, Feussner I, Schmidt A, Scheel D, Sanchez-Serrano J. 63.  et al. 2001. Oxylipin profiling reveals the preferential stimulation of the 9-lipoxygenase pathway in elicitor-treated potato cells. J. Biol. Chem. 276:6267–73 [Google Scholar]
  64. Gómez-Merino FC, Arana-Ceballos FA, Trejo-Téllez LI, Skirycz A, Brearley CA. 64.  et al. 2005. Arabidopsis AtDGK7, the smallest member of plant diacylglycerol kinases (DGKs), displays unique biochemical features and saturates at low substrate concentration: The DGK inhibitor R59022 differentially affects AtDGK2 and AtDGK7 activity in vitro and alters plant growth and development. J. Biol. Chem. 280:34888–99 [Google Scholar]
  65. Gray WM. 65.  2002. Plant defence: a new weapon in the arsenal. Curr. Biol. 12:R352–54 [Google Scholar]
  66. Güler S, Seeliger A, Hartel H, Renger G, Benning C. 66.  1996. A null mutant of Synechococcus sp. PCC7942 deficient in the sulfolipid sulfoquinovosyl diacylglycerol. J. Biol. Chem. 271:7501–7 [Google Scholar]
  67. Hagio M, Sakurai I, Sato S, Kato T, Tabata S, Wada H. 67.  2002. Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. . Plant Cell Physiol. 43:1456–64 [Google Scholar]
  68. Hartel H, Dormann P, Benning C. 68.  2000. DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. PNAS 97:10649–54 [Google Scholar]
  69. Harwood JL. 69.  1996. Recent advances in the biosynthesis of plant fatty acids. Biochim. Biophys. Acta 1310:7–56 [Google Scholar]
  70. Haselier A, Akbari H, Weth A, Baumgartner W, Frentzen M. 70.  2010. Two closely related genes of Arabidopsis encode plastidial cytidinediphosphate diacylglycerol synthases essential for photoautotrophic growth. Plant Physiol 153:1372–84 [Google Scholar]
  71. Heemskerk JWM, Wintermans JFGM, Joyard J, Block MA, Dorne A-J, Douce R. 71.  1986. Localization of galactolipid: galactolipid galactosyltransferase and acyltransferase in outer envelope membrane of spinach chloroplasts. Biochim. Biophys. Acta. 877:281–89 [Google Scholar]
  72. Hemshekhar M, Sebastin Santhosh M, Kemparaju K, Girish KS. 72.  2012. Emerging roles of anacardic acid and its derivatives: a pharmacological overview. Basic Clin. Pharmacol. Toxicol. 110:122–32 [Google Scholar]
  73. Heinz E, Roughan PG. 73.  1983. Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol 72:273–79 [Google Scholar]
  74. Hou Q, Ufer G, Bartels D. 74.  2016. Lipid signalling in plant responses to abiotic stress. Plant Cell Environ 5:1029–48 [Google Scholar]
  75. Jain K, Siddam A, Marathi A, Roy U, Falck JR, Balazy M. 75.  2008. Mechanism of oleic acid nitration by ·NO2. Free Radic. Biol. Med. 45:269–83 [Google Scholar]
  76. Jarvis P, Dörmann P, Peto CA, Lutes J, Benning C, Chory J. 76.  2000. Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. PNAS 97:8175–79 [Google Scholar]
  77. Jenks MA, Tuttle HA, Eigenbrode SD, Feldmann KA. 77.  1995. Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. . Plant Physiol. 108:369–77 [Google Scholar]
  78. Jiang CJ, Shimono M, Maeda S, Inoue H, Mori M. 78.  et al. 2009. Suppression of the rice fatty acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol. Plant-Microbe Interact. 22:820–29 [Google Scholar]
  79. Jung HW, Tschaplinkski TJ, Wang L, Glazebrook J, Greenberg JT. 79.  2009. Priming in systemic plant immunity. Science 324:89–91 [Google Scholar]
  80. Kachroo A, Fu DQ, Havens W, Navarre D, Kachroo P, Ghabrial SA. 80.  2008. An oleic acid–mediated pathway induces constitutive defense signaling and enhanced resistance to multiple pathogens in soybean. Mol. Plant-Microbe Interact. 21:564–75 [Google Scholar]
  81. Kachroo A, Kachroo P. 81.  2009. Fatty acid derived signals in plant defense. Annu. Rev. Phytopathol. 47:153–76 [Google Scholar]
  82. Kachroo P, Kachroo A, Lapchyk L, Hildebrand D, Klessig DF. 82.  2003. Restoration of defective cross talk in ssi2 mutants: role of salicylic acid, jasmonic acid, and fatty acids in SSI2-mediated signaling. Mol. Plant-Microbe Interact. 16:1022–29 [Google Scholar]
  83. Kachroo A, Robin G. 83.  2013. Systemic signaling during plant defense. Curr. Opin. Plant Biol. 16:527–33 [Google Scholar]
  84. Kachroo A, Shanklin J, Whittle E, Lapchyk L, Hildebrand D, Kachroo P. 84.  2007. The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis. Plant Mol. Biol. 63:257–71 [Google Scholar]
  85. Kachroo A, Venugopal SC, Lapchyk L, Falcone D, Hildebrand D, Kachroo P. 85.  2004. Oleic acid levels regulated by glycerolipid metabolism modulate defense gene expression in Arabidopsis. . PNAS 101:5152–57 [Google Scholar]
  86. Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF. 86.  2001. A fatty acid desaturase modulates the activation of defense signaling pathways in plants. PNAS 98:9448–53 [Google Scholar]
  87. Kachroo P, Srivathsa CV, Navarre DA, Lapchyk L, Kachroo A. 87.  2005. Role of salicylic acid and fatty acid desaturation pathways in ssi2-mediated signaling. Plant Physiol 139:1717–35 [Google Scholar]
  88. Kang L, Li J, Zhao T, Xiao F, Tang X. 88.  et al. 2003. Interplay of the Arabidopsis nonhost resistance gene NHO1 with bacterial virulence. PNAS 100:3519–24 [Google Scholar]
  89. Katagiri T, Takahashi S, Shinozaki K. 89.  2001. Involvement of a novel Arabidopsis phospholipase D, AtPLDδ, in dehydration‐inducible accumulation of phosphatidic acid in stress signaling. Plant J 26:595–605 [Google Scholar]
  90. Kelly AA, Dörmann P. 90.  2002. DGD2, an Arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions. J. Biol. Chem 272:1166–73 [Google Scholar]
  91. Kelly AA, Froehlich JE, Dormann P. 91.  2003. Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15:2694–706 [Google Scholar]
  92. Kelly AA, Kalisch B, Hölzl G, Schulze S, Theile J. 92.  et al. 2016. Synthesis and transfer of galactolipids in the chloroplast envelope membranes of Arabidopsis thaliana. . PNAS 113:10714–19 [Google Scholar]
  93. Kim DS, Jeun Y, Hwang BK. 93.  2014. The pepper patatin-like phospholipase CaPLP1 functions in plant cell death and defense signaling. Plant Mol. Biol. 84:329–44 [Google Scholar]
  94. Kobayashi K, Kondo M, Fukuda H, Nishimura M, Ohta H. 94.  2007. Galactolipid synthesis in chloroplast inner is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis. PNAS 43:17216–21 [Google Scholar]
  95. Kocourková D, Krčková Z, Pejchar P, Veselková Š, Valentová O. 95.  et al. 2011. The phosphatidylcholine-hydrolysing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. J. Exp. Bot. 62:3753–63 [Google Scholar]
  96. Kolattukudy PE. 96.  1996. Biosynthetic pathway of cutin and waxes, and their sensitivity to environmental stresses. Plant Cuticles: An Integrated Functional Approach G Kersteins 83–108 Oxford, UK: BIOS Sci. Publ. [Google Scholar]
  97. Kolomiets MV, Chen H, Gladon RJ, Braun EJ, Hannapel DJ. 97.  2000. A leaf lipoxygenase of potato induced specifically by pathogen infection. Plant Physiol 124:1121–30 [Google Scholar]
  98. Korkina LG, Pastore S, De Luca C, Kostyuk VA. 98.  2008. Metabolism of plant polyphenols in the skin: beneficial versus deleterious effects. Curr. Drug Metabol. 9:710–29 [Google Scholar]
  99. Kozubek A, Tyman JH. 99.  1999. Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem. Rev. 99:1–26 [Google Scholar]
  100. Krolikowski KA, Victor JL, Wagler TN, Lolle SJ, Pruitt RE. 100.  2003. Isolation and characterization of the Arabidopsis organ fusion gene HOTHEAD. . Plant J. 35:501–11 [Google Scholar]
  101. Labusch C, Shishova M, Effendi Y, Li M, Wang X, Scherer GF. 101.  2013. Patterns and timing in expression of early auxin-induced genes imply involvement of phospholipases A (pPLAs) in the regulation of auxin responses. Mol. Plant 6:1473–86 [Google Scholar]
  102. Lam P, Zhao L, McFarlane HE, Aiga M, Lam V. 102.  et al. 2012. RDR1 and SGS3, components of RNA-mediated gene silencing, are required for the regulation of cuticular wax biosynthesis in developing inflorescence stems of Arabidopsis. Plant Physiol 159:1385–95 [Google Scholar]
  103. Lee SB, Suh MC. 103.  2013. Recent advances in cuticular wax biosynthesis and its regulation in Arabidopsis. . Mol. Plant 6:246–49 [Google Scholar]
  104. Leon J, Royo J, Vancanneyt G, Sanz C, Silkowski H. 104.  et al. 2002. Lipoxygenase H1 gene silencing reveals a specific role in supplying fatty acid hydroperoxides for aliphatic aldehyde production. J. Biol. Chem. 277:416–23 [Google Scholar]
  105. L'Haridon F, Besson-Bard A, Binda M, Serrano M, Abou-Mansour E. 105.  et al. 2011. A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PLOS Pathog 7:e1002148 [Google Scholar]
  106. Li M, Hong Y, Wang X. 106.  2009. Phospholipase D- and phosphatidic acid–mediated signaling in plants. Biochim. Biophys. Acta 1791:927–35 [Google Scholar]
  107. Li Y, Beisson F, Koo AJ, Molina I, Pollard M, Ohlrogge J. 107.  2007. Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. PNAS 104:18339–44 [Google Scholar]
  108. Li Y, Beisson F, Ohlrogge J, Pollard M. 108.  2007. Monoacylglycerols are components of root waxes and can be produced in the aerial cuticle by ectopic expression of a suberin-associated acyltransferase. Plant Physiol 144:1267–77 [Google Scholar]
  109. Liang H, Yao N, Song JT, Luo S, Lu H, Greenberg JT. 109.  2003. Ceramides modulate programmed cell death in plants. Genes Dev 17:2636–41 [Google Scholar]
  110. Lim G-H, Shine MB, de Lorenzo L, Yu K, Cui W. 110.  et al. 2016. Plasmodesmata localizing proteins regulate transport and signaling during systemic acquired immunity in plants. Cell Host Microbe 19:541–49 [Google Scholar]
  111. Luttgeharm KD, Kimberlin AN, Cahoon EB. 111.  2016. Plant sphingolipid metabolism and function. Lipids in Plant and Algae Development Y Nakamura, Y Li-Beisson 249–86 Cham, Switz.: Springer [Google Scholar]
  112. Lynch DV. 112.  1993. Sphingolipids. Lipid Metab. Plants 1993:285–308 [Google Scholar]
  113. Lynch DV, Dunn TM. 113.  2004. An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function. New Phytol 161:677–702 [Google Scholar]
  114. Madi L, Wang X, Kobiler I, Lichter A, Prusky D. 114.  2003. Stress on avocado fruits regulates Δ 9-stearoyl ACP desaturase expression, fatty acid composition, antifungal diene level and resistance to Colletotrichum gloeosporioides attack. Physiol. Mol. Plant Pathol. 62:277–83 [Google Scholar]
  115. Mandal MK, Chanda B, Xia Y, Yu K, Sekine K. 115.  et al. 2011. Glycerol-3-phosphate and systemic immunity. Plant Signal. Behav. 6:1871–74 [Google Scholar]
  116. Mandal MK, Chandra-Shekara AC, Jeong RD, Yu K, Zhu S. 116.  et al. 2012. Oleic acid–dependent modulation of NITRIC OXIDE ASSOCIATED1 protein levels regulates nitric oxide–mediated defense signaling in Arabidopsis. . Plant Cell 24:1654–74 [Google Scholar]
  117. Markham JE, Lynch DV, Napier JA, Dunn TM, Cahoon EB. 117.  2013. Plant sphingolipids: function follows form. Curr. Opin. Plant Biol. 16:350–57 [Google Scholar]
  118. Mata-Pérez C, Sánchez-Calvo B, Padilla MN, Begara-Morales JC, Luque F. 118.  et al. 2015. Nitro-fatty acids in plant signaling: nitro-linolenic acid induces the molecular chaperone network in Arabidopsis. . Plant Physiol. 170:686–701 [Google Scholar]
  119. McLoughlin F, Arisz S, Dekker HL, Kramer G, de Koster CG. 119.  et al. 2013. Identification of novel candidate phosphatidic acid–binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. Biochem. J. 450:573–81 [Google Scholar]
  120. Mei C, Qi M, Sheng G, Yang Y. 120.  2006. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol. Plant-Microbe Interact. 19:1127–37 [Google Scholar]
  121. Meijer HJ, Arisz SA, Van Himbergen JA, Musgrave A, Munnik T. 121.  2001. Hyperosmotic stress rapidly generates lyso-phosphatidic acid in Chlamydomonas. . Plant J. 25:541–48 [Google Scholar]
  122. Michaelson LV, Napier JA, Molino D, Faure J-D. 122.  2016. Plant sphingolipids: their importance in cellular organization and adaption. Biochim. Biophys. Acta 1861:1329–35 [Google Scholar]
  123. Michalak A. 123.  2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud. 15:523–30 [Google Scholar]
  124. Miège C, Maréchal E, Shimojima M, Awai K, Block MA. 124.  et al. 1999. Biochemical and topological properties of type A MGD, a spinach chloroplast envelope enzyme catalyzing the synthesis of both prokaryotic and eukaryotic MGDG. Eur. J. Biochem. 265:1–13 [Google Scholar]
  125. Mizoi J, Nakamura M, Nishida I. 125.  2006. Defects in CTP:phosphorylethanolamine cytidylyltransferase affect embryonic and postembryonic development in Arabidopsis. Plant Cell 18:3370–85 [Google Scholar]
  126. Moire L, Rezzonico E, Goepfert S, Poirier Y. 126.  2004. Impact of unusual fatty acid synthesis on futile cycling through β-oxidation and on gene expression in transgenic plants. Plant Physiol 134:432–42 [Google Scholar]
  127. Molina I, Bonaventure G, Ohlrogge J, Pollard M. 127.  2006. The lipid polyester composition of Arabidopsis thaliana and Brassica napus seeds. Phytochemistry 67:2597–610 [Google Scholar]
  128. Moreau M, Lee GI, Wang Y, Crane BR, Klessig DF. 128.  2008. AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. J. Biol. Chem. 283:32957–67 [Google Scholar]
  129. Munnik T, Laxalt AM. 129.  2013. Measuring PLD activity in vivo. Methods Mol. Biol. 1009:219–31 [Google Scholar]
  130. Munnik T, Testerink C. 130.  2009. Plant phospholipid signaling: “in a nutshell.”. J. Lipid 50:S260–65 [Google Scholar]
  131. Nakamura Y, Andres F, Kanehara K, Liu Y-C, Dörmann P, Coupland G. 131.  2014. Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering. Nat. Commun. 5:3553 [Google Scholar]
  132. Nandi A, Welti R, Shah J. 132.  2004. The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY 1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell 16:465–77 [Google Scholar]
  133. Narvaez-Vasquez J, Ryan CA. 133.  2002. The systemin precursor gene regulates both defensive and developmental genes in Solanum tuberosum. PNAS 99:15818–21 [Google Scholar]
  134. Ongena M, Duby F, Rossignol F, Fauconnier ML, Dommes J, Thonart P. 134.  2004. Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain. Mol. Plant-Microbe Interact. 17:1009–18 [Google Scholar]
  135. Park S-W, Kaimoyo E, Kumar D, Mosher S, Klessig D. 135.  2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–16 [Google Scholar]
  136. Pavlovic Z, Bakovic M. 136.  2013. Regulation of phosphatidylethanolamine homeostasis: the critical role of CTP:phosphoethanolamine cytidyllytransferase (Pcyt2). Int. J. Mol. Sci. 14:2529–50 [Google Scholar]
  137. Pinosa F, Buhot N, Kwaaitaal M, Fahlberg P, Thordal-Christensen H. 137.  et al. 2013. Arabidopsis phospholipase Dδ is involved in basal defense and nonhost resistance to powdery mildew fungi. Plant Physiol 163:896–906 [Google Scholar]
  138. Pollard M, Beisson F, Li Y, Ohlrogge JB. 138.  2008. Builiding lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13:236–46 [Google Scholar]
  139. Qin C, Wang X. 139.  2002. The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-selective PLDζ1 with distinct regulatory domains. Plant Physiol 128:1057–68 [Google Scholar]
  140. Raho N, Ramirez L, Lanteri ML, Gonorazky G, Lamattina L. 140.  et al. 2011. Phosphatidic acid production in chitosan-elicited tomato cells, via both phospholipase D and phospholipase C/diacylglycerol kinase, requires nitric oxide. J. Plant Physiol. 168:534–39 [Google Scholar]
  141. Rance II, Fournier J, Esquerre-Tugaye MT. 141.  1998. The incompatible interaction between Phytophthora parasitica var. nicotianae race 0 and tobacco is suppressed in transgenic plants expressing antisense lipoxygenase sequences. PNAS 95:6554–59 [Google Scholar]
  142. Ranoue R, Kobayashi M, Katayama K, Nagata N, Wada H. 142.  2014. Phosphotidylglycerol biosynthesis is required for the development of embryos and normal membrane structures of chloroplasts and mitochondria in Arabidopsis. . FEBS Lett. 588:1680–85 [Google Scholar]
  143. Rawsthorne S. 143.  2002. Carbon flux and fatty acid synthesis in plants. Prog. Lipid Res. 41:182–96 [Google Scholar]
  144. Reverberi M, Fanelli C, Zjalic S, Briganti S, Picardo M. 144.  et al. 2005. Relationship among lipoperoxides, jasmonates and indole-3-acetic acid formation in potato tuber after wounding. Free Radic. Res. 39:637–47 [Google Scholar]
  145. Riekhof WR, Ruckle ME, Lydic TA, Sears BB, Benning C. 145.  2003. The sulfolipids 2′-O-acyl-sulfoquinovosyldiacylglycerol and sulfoquinovosyldiacylglycerol are absent from a Chlamydomonas reinhardtii mutant deleted in SQD1. Plant Physiol 133:864–74 [Google Scholar]
  146. Rogalski M, Carrer H. 146.  2011. Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants. Plant Biotechnol. J. 9:554–64 [Google Scholar]
  147. Royo J, Leon J, Vancanneyt G, Albar JP, Rosahl S. 147.  et al. 1999. Antisense-mediated depletion of a potato lipoxygenase reduces wound induction of proteinase inhibitors and increases weight gain of insect pests. PNAS 96:1146–51 [Google Scholar]
  148. Roston R, Gao J, Xu C, Benning C. 148.  2011. Arabidopsis chloroplast lipid transport protein TGD2 disrupts membranes and is part of a large complex. Plant J 66:759–69 [Google Scholar]
  149. Roth MG. 149.  2008. Molecular mechanisms of PLD function in membrane traffic. Traffic 9:1233–39 [Google Scholar]
  150. Ruelland E, Kravets V, Derevyanchuk M, Martinec J, Zachowski A, Pokotylo I. 150.  2015. Role of phospholipid signalling in plant environmental responses. Environ. Exp. Bot. 114:129–43 [Google Scholar]
  151. Rusterucci C, Montillet JL, Agnel JP, Battesti C, Alonso B. 151.  et al. 1999. Involvement of lipoxygenase-dependent production of fatty acid hydroperoxides in the development of the hypersensitive cell death induced by cryptogein on tobacco leaves. J. Biol. Chem. 274:36446–55 [Google Scholar]
  152. Salas JJ, Ohlrogge JB. 152.  2002. Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch. Biochem. Biophys. 403:25–34 [Google Scholar]
  153. Samuels L, Kunst L, Jetter R. 153.  2008. Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu. Rev. Plant Biol. 59:683–707 [Google Scholar]
  154. Sanda S, Leustek T, Theisen MJ, Garavito RM, Benning C. 154.  2001. Recombinant Arabidopsis SQD1 converts UDP-glucose and sulfite to the sulfolipid head group precursor UDP-sulfoquinovose in vitro. J. Biol. Chem. 276:3941–46 [Google Scholar]
  155. Scheer JM, Ryan CA. 155.  2002. The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. PNAS 99:9585–90 [Google Scholar]
  156. Schneider LM, Adamski NM, Christensen CE, Stuart DB, Vautrin S. 156.  et al. 2016. The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes. J. Exp. Bot. 67:92715–30 [Google Scholar]
  157. Schnurr J, Shockey J, Browse J. 157.  2004. The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell 16:629–42 [Google Scholar]
  158. Schultz DJ, Cahoon EB, Shanklin J, Craig R, Cox-Foster DL. 158.  et al. 1996. Expression of a Δ9 14:0-acyl carrier protein fatty acid desaturase gene is necessary for the production of ω5 anacardic acids found in pest-resistant geranium (Pelargonium × hortorum). PNAS 93:8771–75 [Google Scholar]
  159. Schultz DJ, Medford JI, Cox-Foster DL, Grazzini R, Craig R, Mumma RO. 159.  2000. Anacardic acid in trichomes of Pelargonium: biosynthesis, molecular biology and ecological effects. Adv. Bot. Res. 32:176–92 [Google Scholar]
  160. Schultz DJ, Wickramsinghe N, Klinge C. 160.  2006. Anacardic acid biosynthesis and bioactivity. Recent Adv. Plant Biochem. 40:131–56 [Google Scholar]
  161. Serrano M, Coluccia F, Torres M, L'Haridon F, Métraux J-P. 161.  2014. The cuticle and plant defense to pathogens. Front. Plant Sci. 5:274 [Google Scholar]
  162. Shah J, Kachroo P, Nandi A, Klessig DF. 162.  2001. A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant J 25:563–74 [Google Scholar]
  163. Shah J, Zeier J. 163.  2013. Long distance communication and signal amplification in systemic acquired resistance. Front. Plant Sci. 4:30 [Google Scholar]
  164. Shanklin J. 164.  1998. Desaturation and related modifications of fatty acids. Plant Physiol 96:382–89 [Google Scholar]
  165. Sheng X, Yung YC, Chen A, Chun J. 165.  2015. Lysophosphatidic acid signalling in development. Development 142:1390–95 [Google Scholar]
  166. Shier WT, Abbas HK, Badria FA. 166.  1995. Complete structures of the sphingosine analog mycotoxins fumonisin B-1 and AAL toxin T-A: absolute-configuration of the side-chains. Tetrahedron Lett 36:1571–74 [Google Scholar]
  167. Shier WT, Abbas HK, Mirocha CJ. 167.  1991. Toxicity of the mycotoxins fumonisins B1 and B2 and Alternaria alternata f. sp. lycopersici toxin (AAL) in cultured mammalian cells. Mycopathologia 116:97–104 [Google Scholar]
  168. Spassieva SD, Markham JE, Hille J. 168.  2002. The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death. Plant J 32:561–72 [Google Scholar]
  169. Spoel SH, Dong X. 169.  2012. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 12:89–100 [Google Scholar]
  170. Stanley D. 170.  2006. Prostaglandins and other eicosanoids in insects: biological significance. Annu. Rev. Entomol. 51:25–44 [Google Scholar]
  171. Stasiuk M, Kozubek A. 171.  2010. Biological activity of phenolic lipids. Cell. Mol. Life Sci. 67:841–60 [Google Scholar]
  172. Tang D, Simonich MT, Innes RW. 172.  2007. Mutations in LACS2, a long-chain acyl-coenzyme A synthetase, enhance susceptibility to avirulent Pseudomonassyringae but confer resistance to Botrytis cinerea in Arabidopsis. . Plant Physiol 144:1093–103 [Google Scholar]
  173. Tanoue R, Kobayashi M, Katayama K, Nagata N, Wada H. 173.  2014. Phosphatidylglycerol biosynthesis is required for the development of embryo and normal membrane structures of chloroplast and mitochondria in Arabidopsis. . FEBS Lett. 588:1680–85 [Google Scholar]
  174. Testerink C, Munnik T. 174.  2011. Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J. Exp. Bot. 62:2349–61 [Google Scholar]
  175. Thelen JJ, Ohlrogge JB. 175.  2002. Metabolic engineering of fatty acid biosynthesis in plants. Metab. Eng. 4:12–21 [Google Scholar]
  176. Tripathy MK, Tyagi W, Goswami M, Kaul T, Singla-Pareek SL. 176.  et al. 2012. Characterization and functional validation of tobacco PLC delta for abiotic stress tolerance. Plant Mol. Biol. Rep. 30:488–97 [Google Scholar]
  177. Turner JG, Ellis C, Devoto A. 177.  2002. The jasmonate signaling pathway. Plant Cell 14:S153–64 [Google Scholar]
  178. van Besouw A, Wintermans JFGM. 178.  1978. Galactolipid formation in chloroplast envelopes. I. Evidence for two mechanisms in galactosylation. Biochim. Biophys. Acta 529:44–53 [Google Scholar]
  179. Vancanneyt G, Sanz C, Farmaki T, Paneque M, Ortego F. 179.  et al. 2001. Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. PNAS 98:8139–44 [Google Scholar]
  180. Vance JE. 180.  2003. Molecular and cell biology of phosphatidylserine and phosphatidylethanolamine metabolism. Prog. Nucleic Acid Res. Mol. Biol. 75:69–111 [Google Scholar]
  181. van Schooten B, Testerink C, Munnik T. 181.  2006. Signalling diacylglycerol pyrophosphate, a new phosphatidic acid metabolite. Biochim. Biophys. Acta 1761:151–59 [Google Scholar]
  182. Van Wees SC, Van der Ent S, Pieterse CM. 182.  2008. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11:443–48 [Google Scholar]
  183. Venugopal SC, Chanda B, Vaillancourt L, Kachroo A, Kachroo P. 183.  2009. Glycerol metabolism and plant defense. Plant Signal. Behav. 4:746–49 [Google Scholar]
  184. Venugopal SC, Jeong R-D, Mandal M, Zhu S, Chandra-Shekara AC. 184.  et al. 2009. ENHANCED DISEASE SUSCEPTIBILITY 1 and salicylic acid act redundantly to regulate resistance gene expression and low oleate-induced defense signaling. PLOS Genet 5:e1000545 [Google Scholar]
  185. Verlotta A, Liberatore MT, Cattivelli L, Trono D. 185.  2013. Secretory phospholipases A2 in durum wheat (Triticum durum Desf.): gene expression, enzymatic activity, and relation to drought stress adaptation. Int. J. Mol. Sci. 14:5146–69 [Google Scholar]
  186. Viehweger K, Dordschbal B, Roos W. 186.  2002. Elicitor-activated phospholipase A2 generates lysophosphatidylcholines that mobilize the vacuolar H+ pool for pH signaling via the activation of Na+-dependent proton fluxes. Plant Cell 14:1509–25 [Google Scholar]
  187. Voinnet O. 187.  2010. Post-transcriptional RNA silencing in plant-microbe interactions: a touch of robustness and versatility. Curr. Opin. Plant Biol. 11:464–70 [Google Scholar]
  188. Walley JW, Kliebenstein DJ, Bostock RM, Dehesh K. 188.  2013. Fatty acids and early detection of pathogens. Curr. Opin. Plant Biol. 16:520–26 [Google Scholar]
  189. Wang C, Chin C, Chen A. 189.  1998. Expression of the yeast delta-9 desaturase gene in tomato enhances its resistance to powdery mildew. Physiol. Mol. Plant Pathol. 52:371–83 [Google Scholar]
  190. Wang C, El-Shetehy M, Shine MB, Yu K, Navarre D, Wendehenne D. 190.  et al. 2014. Free radicals mediate systemic acquired resistance. Cell Rep 7:348–55 [Google Scholar]
  191. Wang W, Yang X, Tangchaiburana S, Ndeh R, Markham JE. 191.  et al. 2008. An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell 20:3163–79 [Google Scholar]
  192. Webb MS, Green BR. 192.  1991. Biochemical and biophysical properties of thylakoid acyl lipids. Biochim. Biophys. Acta 1060:133–58 [Google Scholar]
  193. Weber H, Vick BA, Farmer EE. 193.  1997. Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. PNAS 94:10473–78 [Google Scholar]
  194. Weber H, Chetelat A, Caldelari D, Farmer EE. 194.  1999. Divinyl ether fatty acid synthesis in late blight–diseased potato leaves. Plant Cell 11:485–94 [Google Scholar]
  195. Wellesen K, Durst F, Pinot F, Benveniste I, Nettesheim K. 195.  et al. 2001. Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid omegahydroxylation in development. PNAS 98:9694–99 [Google Scholar]
  196. Wendehenne D, Gao Q-M, Kachroo A, Kachroo P. 196.  2014. Free radical–mediated systemic immunity in plants. Curr. Opin. Plant Biol. 20:127–34 [Google Scholar]
  197. White SWZJ, Zhang YM, Rock. 197.  2005. The structural biology of type II fatty acid biosynthesis. Annu. Rev. Biochem. 74:791–831 [Google Scholar]
  198. Wimalasekera R, Pejchar P, Holk A, Martinec J, Scherer GF. 198.  2010. Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana. . Mol. Plant 3:610–25 [Google Scholar]
  199. Wittek F, Hoffmann T, Kanawati B, Bichlmeier M, Knappe C. 199.  et al. 2014. Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid. J. Exp. Bot. 65:5919–31 [Google Scholar]
  200. Xia Y, Gao Q-M, Navarre D, Hildebrand D, Kachroo A, Kachroo P. 200.  2009. An intact cuticle in distal tissues is essential for the induction of systemic acquired resistance in plants. Cell Host Microbe 5:151–65 [Google Scholar]
  201. Xia Y, Yu K, Gao Q-M, Wilson EV, Navarre D. 201.  et al. 2012. Acyl CoA binding proteins are required for cuticle formation and plant responses to microbes. Front. Plant Sci. 6:224 [Google Scholar]
  202. Xia Y, Yu K, Navarre D, Seebold K, Kachroo A, Kachroo P. 202.  2010. The glabra1 mutation affects cuticle formation and plant responses to microbes. Plant Physiol 154:833–46 [Google Scholar]
  203. Xiao F, Goodwin SM, Xiao YM, Sun ZY, Baker D. 203.  et al. 2004. Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. EMBO J 23:2903–13 [Google Scholar]
  204. Xing J, Chin C-K. 204.  2000. Modification of fatty acids in eggplant affects its resistance to Verticillium dahliae. . Physiol. Mol. Plant Pathol. 56:217–25 [Google Scholar]
  205. Yaeno T, Matsuda O, Iba K. 205.  2004. Role of chloroplast trienoic fatty acids in plant disease defense responses. Plant J 40:931–41 [Google Scholar]
  206. Yamaguchi T, Kuroda M, Yamakawa H, Ashizawa T, Hirayae K. 206.  et al. 2009. Suppression of a phospholipase D gene, OsPLDβ1, activates defense responses and increases disease resistance in rice. Plant Physiol 150:308–19 [Google Scholar]
  207. Yeats TH, Rose JKC. 207.  2013. The formation and function of plant cuticle. Plant Physiol 163:15–20 [Google Scholar]
  208. Yu B, Xu C, Benning C. 208.  2002. Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. PNAS 99:5732–37 [Google Scholar]
  209. Yu B, Xu C, Benning C. 209.  2003. Anionic lipids are required for chloroplast structure and function in Arabidopsis. . Plant J. 36:762–70 [Google Scholar]
  210. Yu D, Xu F, Zeng J, Zhan J. 210.  2012. Type III polyketide synthases in natural product biosynthesis. IUBMB Life 64:285–95 [Google Scholar]
  211. Yu K, Soares JM, Mandal MK, Wang C, Chanda B. 211.  et al. 2013. A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity. Cell Rep 3:1266–78 [Google Scholar]
  212. Yu L, Nie J, Cao C, Jin Y, Yan M. 212.  et al. 2010. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. . New Phytol. 188:762–73 [Google Scholar]
  213. Zalejski C, Zhang Z, Quettier AL, Maldiney R, Bonnet M. 213.  et al. 2005. Diacylglycerol pyrophosphate is a second messenger of abscisic acid signaling in Arabidopsis thaliana suspension cells. Plant J 42:145–52 [Google Scholar]
  214. Zhai S, Gao Q, Liu X, Sui Z, Zhang J. 214.  2013. Overexpression of a Zea mays phospholipase C1 gene enhances drought tolerance in tobacco in part by maintaining stability in the membrane lipid composition. Plant Cell Tissue Organ Cult 115:253–62 [Google Scholar]
  215. Zhang Y, Zhu H, Zhang Q, Li M, Yan M. 215.  et al. 2009. Phospholipase D α1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. . Plant Cell 21:2357–77 [Google Scholar]
  216. Zhang W, Qin C, Zhao J, Wang X. 216.  2004. Phospholipase D α1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. PNAS 101:9508–13 [Google Scholar]
  217. Zhang X, Wang R, Zhang F, Tao F, Li W. 217.  2013. Lipid profiling and tolerance to low-temperature stress in Thellungiella salsuginea in comparison with Arabidopsis thaliana. Biol. Plant 57:149–53 [Google Scholar]
  218. Zhao J. 218.  2015. Phospholipase D and phosphatidic acid in plant defense response: from protein-protein and lipid-protein interaction to hormone signaling. J. Exp. Bot. 66:1721–36 [Google Scholar]
  219. Zheng SZ, Liu YL, Li B, Shang Zl, Zhou RG, Sun DY. 219.  2012. Phosphoinositide‐specific phospholipase C9 is involved in the thermotolerance of Arabidopsis. . Plant J. 69:689–700 [Google Scholar]
  220. Zhou Y, Peisker H, Weth A, Baumgartner W, Dörmann P, Frentzen M. 220.  2013. Extraplastidial cytidinediphosphate diacylglycerol synthase activity is required for vegetative development in Arabidopsis thaliana. . Plant J. 75:867–79 [Google Scholar]
  221. Zoeller M, Stingl N, Krischke M, Fekete A, Waller F. 221.  et al. 2012. Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid. Plant Physiol 160:365–78 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080516-035406
Loading
/content/journals/10.1146/annurev-phyto-080516-035406
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error