1932

Abstract

Diverse plant biotrophs that establish a sustained site of nutrient acquisition induce localized host endoreduplication. Endoreduplication is a process by which cells successively replicate their genomes without mitosis, resulting in an increase in nuclear DNA ploidy. Elevated ploidy is associated with enhanced cell size, metabolic capacity, and the capacity to differentiate. Localized host endoreduplication induced by adapted plant biotrophs promotes biotroph colonization, development, and/or proliferation. When induced host endoreduplication is limited, biotroph growth and/or development are compromised. Herein, we examine a diverse set of plant-biotroph interactions to identify () common host components manipulated to promote induced host endoreduplication and () biotroph effectors that facilitate this induced host process. Shared mechanisms to promote host endoreduplication and development of nutrient exchange/feeding sites include manipulation centered on endocycle entry at the G2-M transition as well as yet undefined roles for differentiation regulators (e.g., CLE peptides) and pectin/cell wall modification.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080516-035458
2017-08-04
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/phyto/55/1/annurev-phyto-080516-035458.html?itemId=/content/journals/10.1146/annurev-phyto-080516-035458&mimeType=html&fmt=ahah

Literature Cited

  1. Ach RA, Durfee T, Miller AB, Taranto P, Hanley-Bowdoin L. 1.  et al. 1997. RRB1 and RRB2 encode maize retinoblastoma-related proteins that interact with a plant D-type cyclin and geminivirus replication protein. Mol. Cell. Biol. 17:5077–86 [Google Scholar]
  2. Araki S, Ito M, Soyano T, Nishihama R, Machida Y. 2.  2004. Mitotic cyclins stimulate the activity of c-Myb-like factors for transactivation of G2/M phase-specific genes in tobacco. J. Biol. Chem. 279:32979–88 [Google Scholar]
  3. Arguello-Astorga G, Lopez-Ochoa L, Kong KJ, Orozco BM, Settlage SB, Hanley-Bowdoin L. 3.  2004. A novel motif in geminivirus replication proteins interacts with the plant retinoblastoma-related protein. J. Virol. 78:4817–26 [Google Scholar]
  4. Asano T, Yoshioka Y, Kurei S, Sakamoto W, Sodmergen, Machida Y. 4.  2004. A mutation of the CRUMPLEDLEAF gene that encodes a protein localized in the outer envelope membrane of plastids affects the pattern of cell division, cell differentiation, and plastid division in Arabidopsis. . Plant J. 38:448–59 [Google Scholar]
  5. Ascencio-Ibáñez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD. 5.  et al. 2008. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 148:436–54 [Google Scholar]
  6. Bainard LD, Bainard JD, Newmaster SG, Klironomos JN. 6.  2011. Mycorrhizal symbiosis stimulates endoreduplication in angiosperms. Plant Cell Environ 34:1577–85 [Google Scholar]
  7. Baloban M, Vanstraelen M, Tarayre S, Reuzeau C, Cultrone A. 7.  et al. 2013. Complementary and dose-dependent action of AtCCS52A isoforms in endoreduplication and plant size control. New Phytol 198:1049–59 [Google Scholar]
  8. Baluska F, Bacigalova K, Oud JL, Hauskrecht M, Kubica S. 8.  1995. Rapid reorganization and microtubular cytoskeleton accompanies early changes in nuclear ploidy and chromatin structure in postmitotic cells of barley leaves infected with powdery mildew. Protoplasma 185:140–51 [Google Scholar]
  9. Bellafiore S, Shen Z, Rosso M-N, Abad P, Shih P, Briggs SP. 9.  2008. Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLOS Pathol 4:e1000192 [Google Scholar]
  10. Berkmans B, De Veylder L. 10.  2009. Transcriptional control of the cell cycle. Curr. Opin. Plant Biol. 12:599–605 [Google Scholar]
  11. Berta G, Fusconi A, Sampò S, Lingua G, Perticone S, Repetto O. 11.  2000. Polyploidy in tomato roots as affected by arbuscular mycorrhizal colonization. Plant Soil 226:37–44 [Google Scholar]
  12. Betsuyaku S, Sawa S, Yamada M. 12.  2011. The function of the CLE peptides in plant development and plant-microbe interactions. Arabidopsis Book 9:e0149 [Google Scholar]
  13. Bischoff V, Nita S, Neumetzler L, Schindelasch D, Urbain A, Eshed R. 13.  et al. 2010. TRICHOME BIREFRINGENCE and its homolog At5g01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. . Plant Physiol. 153:590–602 [Google Scholar]
  14. Bischoff V, Selbig J, Scheible WR. 14.  2010. Involvement of TBL/DUF231 proteins into cell wall biology. Plant Signal. Behav. 5:1057–59 [Google Scholar]
  15. Boivin S, Fonouni-Farde C, Frugier F. 15.  2016. How auxin and cytokinin phytohormones modulate root microbe interactions. Front. Plant Sci. 7:1240 [Google Scholar]
  16. Bourdon M, Pirrello J, Cheniclet C, Coriton O, Bourge M. 16.  et al. 2012. Evidence for karyoplasmic homeostasis during endoreduplication and a ploidy-dependent increase in gene transcription during tomato fruit growth. Development 139:3817–26 [Google Scholar]
  17. Brefort T, Doehlemann G, Mendoza-Mendoza A, Reissmann S, Djamei A, Kahmann R. 17.  2009. Ustilago maydis as a pathogen. Annu. Rev. Phytopathol. 47:423–45 [Google Scholar]
  18. Breuer C, Braidwood K, Sugimoto K. 18.  2014. Endocycling in the path of plant development. Curr. Opin. Plant Biol. 17:78–85 [Google Scholar]
  19. Breuer C, Stacey NJ, West CE, Zhao Y, Chory J. 19.  et al. 2007. BIN4, a novel component of the plant DNA topoisomerase VI complex, is required for endoreduplication in Arabidopsis. . Plant Cell 19:3655–68 [Google Scholar]
  20. Caillaud MC, Dubreuil G, Quentin M, Perfus-Barbeoch L, Lecomte P, de Almeida Engler J. 20.  et al. 2008. Root-knot nematodes manipulate plant cell functions during a compatible interaction. J. Plant Physiol. 165:104–13 [Google Scholar]
  21. Castillo A, Collinet D, Deret S, Kashoggi A, Bejarano ER. 21.  2003. Dual interaction of plant PCNA with geminivirus replication accessory protein (Ren) and viral replication protein (Rep). Virology 312:381–94 [Google Scholar]
  22. Catoira R, Galera C, de Billy F, Penmetsa RV, Journet EP. 22.  et al. 2000. Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway. Plant Cell 12:1647–66 [Google Scholar]
  23. Cebolla A, Vinardell JM, Kiss E, Oláh B, Roudier F. 23.  et al. 1999. The mitotic inhibitor ccs52 is required for endoreduplication and ploidy‐dependent cell enlargement in plants. EMBO J 18:4476–84 [Google Scholar]
  24. Chandran D, Inada N, Hather G, Kleindt CK, Wildermuth MC. 24.  2010. Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. PNAS 107:460–65 [Google Scholar]
  25. Chandran D, Rickert J, Cherk C, Dotson BR, Wildermuth MC. 25.  2013. Host cell ploidy underlying the fungal feeding site is a determinant of powdery mildew growth and reproduction. Mol. Plant-Microbe Interact. 26:537–45 [Google Scholar]
  26. Chandran D, Rickert J, Huang Y, Steinwand MA, Marr SK, Wildermuth MC. 26.  2014. Atypical E2F transcriptional repressor DEL1 acts at the intersection of plant growth and immunity by controlling the hormone salicylic acid. Cell Host Microbe 15:506–13 [Google Scholar]
  27. Chandran DC, Wildermuth M. 27.  2016. Modulation of host endocycle during plant-biotroph interactions. The Enzymes Vol. 40: Developmental Signaling in Plants C Lin, S Luan 65–103 Burlington, MA: Academic [Google Scholar]
  28. de Almeida Engler J, Favery B, Engler G, Abad P. 28.  2005. Loss of susceptibility as an alternative for nematode resistance. Curr. Opin. Biotechnol. 16:112–17 [Google Scholar]
  29. de Almeida Engler J, Gheysen G. 29.  2013. Nematode-induced endoreduplication in plant host cells: Why and how?. Mol. Plant-Microbe Interact. 26:7–24 [Google Scholar]
  30. de Almeida Engler J, Kyndt T, Vieira P, Van Cappelle E, Boudolf V. 30.  et al. 2012. CCS52 and DEL1 genes are key components of the endocycle in nematode-induced feeding sites. Plant J. 72:185–98 [Google Scholar]
  31. Desvoyes B, Ramirez-Parra E, Xie Q, Chua N-H, Gutierrez C. 31.  2006. Cell type–specific role of the retinoblastoma/E2F pathway during Arabidopsis leaf development. Plant Physiol 140:67–80 [Google Scholar]
  32. de Veylder L, Beeckman T, Beemster GTS, Krols L, Terras F. 32.  et al. 2001. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. . Plant Cell 13:1653–68 [Google Scholar]
  33. de Veylder L, Larkin JC, Schnittger A. 33.  2011. Molecular control and function of endoreplication in development and physiology. Trends Plant. Sci. 16:624–34 [Google Scholar]
  34. Djordjevic MA, Mohd-Radzman NA, Imin N. 34.  2015. Small-peptide signals that control root nodule number, development, and symbiosis. J. Exp. Bot. 66:5171–81 [Google Scholar]
  35. Efroni I, Blum E, Goldschmidt A, Eshed Y. 35.  2008. A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell 20:2293–306 [Google Scholar]
  36. Egelkrout EM, Mariconti L, Settlage SB, Cella R, Robertson D, Hanley-Bowdoin L. 36.  2002. Two E2F elements regulate the proliferating cell nuclear antigen promoter differently during leaf development. Plant Cell 14:3225–36 [Google Scholar]
  37. Egelkrout EM, Robertson D, Hanley-Bowdoin L. 37.  2001. Proliferating cell nuclear antigen transcription is repressed through an E2F consensus element and activated by geminivirus infection in mature leaves. Plant Cell 13:1437–52 [Google Scholar]
  38. Etemadi M, Gutjahr C, Couzigou JM, Zouine M, Lauressergues D. 38.  et al. 2014. Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant. Physiol. 166:281–92 [Google Scholar]
  39. Favery B, Complainville A, Vinardell JM, Lecomte P, Vaubert D. 39.  et al. 2002. The endosymbiosis-induced genes ENOD40 and CCS52a are involved in endoparasitic-nematode interactions in Medicago truncatula. . Mol. Plant-Microbe Interact. 15:1008–13 [Google Scholar]
  40. Favery B, Quentin M, Jaubert-Possamai S, Abad P. 40.  2016. Gall-forming root-knot nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied feeding cells. J. Insect Pathol. 84:60–69 [Google Scholar]
  41. Fusconi A, Lingua G, Trotta A, Berta G. 41.  2005. Effects of arbuscular mycorrhizal colonization and phosphorus application on nuclear ploidy in Allium porrum plants. Mycorrhiza 15:313–21 [Google Scholar]
  42. Gegas VC, Wargent JJ, Pesquet E, Granqvist E, Paul ND, Doonan JH. 42.  2014. Endopolyploidy as a potential alternative adaptive strategy for Arabidopsis leaf size variation in response to UV-B. J. Exp. Bot. 65:2757–66 [Google Scholar]
  43. Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P. 43.  2008. Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula. Daucus carota. Plant Cell 20:1407–20 [Google Scholar]
  44. Genschik P, Marrocco K, Bach L, Noir S, Criqui M-C. 44.  2014. Selective protein degradation: a rheostat to modulate cell-cycle phase transitions. J. Exp. Bot. 65:2603–15 [Google Scholar]
  45. Glawe DA. 45.  2008. The powdery mildews: a review of the world's most familiar (yet poorly known) plant pathogens. Annu. Rev. Phytopathol. 46:27–51 [Google Scholar]
  46. Gohlke J, Deeken R. 46.  2014. Plant responses to Agrobacterium tumefaciens and crown gall development. Front. Plant Sci. 5:155 [Google Scholar]
  47. Gomez SK, Harrison MJ. 47.  2009. Laser microdissection and its application to analyze gene expression in arbuscular mycorrhizal symbiosis. Pest Manag. Sci. 65:504–11 [Google Scholar]
  48. Grunewald W, Cannoot B, Friml J, Gheysen G. 48.  2009. Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection. PLOS Pathol 5:e1000266 [Google Scholar]
  49. Guo Y, Ni J, Denver R, Wang X, Clark S. 49.  2011. Mechanisms of molecular mimicry of plant CLE peptide ligands by the parasitic nematode Globodera rostochiensis. . Plant Physiol. 157:476–84 [Google Scholar]
  50. Gutierrez C. 50.  2009. The Arabidopsis cell division cycle. Arabidopsis Book 7:e0120.2009 [Google Scholar]
  51. Haga N, Kato K, Murase M, Araki S, Kubo M. 51.  et al. 2007. R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. . Development 134:1101–10 [Google Scholar]
  52. Harrison MJ. 52.  2012. Cellular programs for arbuscular mycorrhizal symbiosis. Curr. Opin. Plant Biol. 15:691–98 [Google Scholar]
  53. Hershko A. 53.  1999. Mechanisms and regulation of the degradation of cyclin B. Philos. Trans. R. Soc. Lond. B 354:1571–76 [Google Scholar]
  54. Hewezi T, Howe P, Maier TR, Hussey RS, Mitchum MG. 54.  et al. 2008. Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with Arabidopsis pectin methylesterase: cooperative cell wall modification during parasitism. Plant Cell 20:3080–93 [Google Scholar]
  55. Heyman J, de Veylder L. 55.  2012. The anaphase-promoting complex/cyclosome in control of plant development. Mol. Plant. 5:1182–94 [Google Scholar]
  56. Horváth B, Yeun LH, Domonkos A, Halász G, Gobbato E. 56.  et al. 2011. Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses. Mol. Plant-Microbe Interact. 24:1345–58 [Google Scholar]
  57. Hu Z, Cools T, De Veylder L. 57.  2016. Mechanisms used by plants to cope with DNA damage. Annu. Rev. Plant Biol. 67:439–58 [Google Scholar]
  58. Huang G, Allen R, Davis EL, Baum TJ, Hussey RS. 58.  2006. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. PNAS 103:14302–6 [Google Scholar]
  59. Hudik E, Yoshioka Y, Domenichini S, Bourge M, Soubigout-Taconnat L. 59.  et al. 2014. Chloroplast dysfunction causes multiple defects in cell cycle progression in the Arabidopsis crumpled leaf mutant. Plant Physiol 166:152–67 [Google Scholar]
  60. Jegu T, Latrasse D, Delarue M, Mazubert C, Bourge M. 60.  et al. 2013. Multiple functions of Kip-related protein5 connect endoreduplication and cell elongation. Plant Physiol 161:1694–705 [Google Scholar]
  61. Jiang L, Wang H, Zhuang X, Wang X, Law HY, Zhao T. 61.  et al. 2016. Demonstration of a distinct pathway for polar exocytosis for plant cell wall formation. Plant Physiol 172:1003–18 [Google Scholar]
  62. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC. 62.  2007. How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat. Rev. Microbiol. 5:619–33 [Google Scholar]
  63. Kay S, Hahn S, Marois E, Hause G, Bonas U. 63.  2007. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648–51 [Google Scholar]
  64. Kieffer M, Master V, Waites R, Davies B. 64.  2011. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. . Plant J. 68:147–58 [Google Scholar]
  65. Kirik V, Schrader A, Uhrig JF, Hulskamp M. 65.  2007. MIDGET unravels functions of the Arabidopsis topoisomerase VI complex in DNA endoreduplication, chromatin condensation, and transcriptional silencing. Plant Cell 19:3100–10 [Google Scholar]
  66. Kobayashi K, Suzuki T, Iwata E, Magyar Z, Bogre L, Ito M. 66.  2015. MYB3Rs, plant homologs of Myb oncoproteins, control cell cycle–regulated transcription and form DREAM-like complexes. Transcription 6:106–11 [Google Scholar]
  67. Kobayashi K, Suzuki T, Iwata E, Nakamichi N, Suzuki T. 67.  et al. 2015. Transcriptional repression by MYB3R proteins regulates plant organ growth. EMBO J 34:1992–2007 [Google Scholar]
  68. Kondorosi E, Kondorosi A. 68.  2004. Endoreduplication and activation of the anaphase-promoting complex during symbiotic cell development. FEBS Lett 567:152–57 [Google Scholar]
  69. Kong LJ, Orozco BM, Roe JL, Nagar S, Ou S. 69.  et al. 2000. A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. EMBO J 19:3486–95 [Google Scholar]
  70. Kuhn H, Kwaaitaal M, Kusch S, Acevedo-Garcia J, Wu H, Panstruga R. 70.  2016. Biotrophy at its best: novel findings and unsolved mysteries of the Arabidopsis–powdery mildew pathosystem. Arabidopsis Book 14:e0184 [Google Scholar]
  71. Kyndt T, Goverse A, Haegeman A, Warmerdam S, Wanjau C. 71.  et al. 2016. Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes. J. Exp. Bot. 67:4559–70 [Google Scholar]
  72. Kyndt T, Vieira P, Gheysen G, de Almeida-Engler J. 72.  2013. Nematode feeding sites: unique organs in plant roots. Planta 238:807–18 [Google Scholar]
  73. Lammens T, Boudolf V, Kheibarshekan L, Zalmas LP, Gaamouche T. 73.  et al. 2008. Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset. PNAS 105:14721–26 [Google Scholar]
  74. Larson-Rabin Z, Li Z, Masson PH, Day CD. 74.  2008. FZR2/CCS52A1 expression is a determinant of endoreduplication and cell expansion in Arabidopsis. . Plant Physiol. 149:874–84 [Google Scholar]
  75. Lee C, Chronis D, Kenning C, Peret B, Hewezi T. 75.  et al. 2011. The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development. Plant Physiol 155:866–80 [Google Scholar]
  76. Lee HO, Davidson JM, Duronio RJ. 76.  2009. Endoreplication: polyploidy with purpose. Genes Dev 23:2461–77 [Google Scholar]
  77. Le Fevre R, Evangelisti E, Rey T, Schornack S. 77.  2015. Modulation of host cell biology by plant pathogenic microbes. Annu. Rev. Cell Dev. Bio. 31:201–29 [Google Scholar]
  78. Li ZY, Li B, Dong AW. 78.  2012. The Arabidopsis transcription factor AtTCP15 regulates endoreduplication by modulating expression of key cell-cycle genes. Mol. Plant 5:270–80 [Google Scholar]
  79. Liu L, Chung HY, Lacatus G, Baliji S, Ruan J, Sunter G. 79.  2014. Altered expression of Arabidopsis genes in response to a multifunctional geminivirus pathogenicity protein. BMC Plant Biol 14:302 [Google Scholar]
  80. Lukhovitskaya NI, Solovieva AD, Boddeti SK, Thaduri S, Solovyev AG, Savenkov EI. 80.  2013. An RNA virus-encoded zinc-finger protein acts as a plant transcription factor and induces a regulator of cell size and proliferation in two tobacco species. Plant Cell 25:960–73 [Google Scholar]
  81. Magyar Z, Horvath B, Khan S, Mohammed B, Henriques R. 81.  et al. 2012. Arabidopsis E2FA stimulates proliferation and endocycle separately through RBR-bound and RBR-free complexes. EMBO J 31:1480–93 [Google Scholar]
  82. Marois E, Van den Ackerveken G, Bonas U. 82.  2002. The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Mol. Plant-Microbe Interact. 15:637–46 [Google Scholar]
  83. Maróti G, Kondorosi E. 83.  2014. Nitrogen-fixing Rhizobium-legume symbiosis: Are polyploidy and host peptide–governed symbiont differentiation general principles of endosymbiosis?. Front. Microbiol. 5:326 [Google Scholar]
  84. Martín-Trillo M, Cubas P. 84.  2010. TCP genes: a family snapshot ten years later. Trends Plant Sci 15:31–39 [Google Scholar]
  85. Maunoury N, Redondo-Nieto M, Bourcy M, Van de Velde W, Alunni B. 85.  et al. 2010. Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches. PLOS ONE 5:e9519 [Google Scholar]
  86. Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA. 86.  et al. 2004. A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. PNAS 101:4701–5 [Google Scholar]
  87. Miyawki K, Tabata R, Sawa S. 87.  2013. Evolutionarily conserved CLE peptide signaling in plant development, symbiosis, and parasitism. Curr. Opin. Plant Biol. 16:598–606 [Google Scholar]
  88. Morrison EN, Emery RJN, Saville BJ. 88.  2015. Phytohormone involvement in the Ustilago maydis–Zea mays pathosystem: Relationships between abscisic acid and cytokinin levels and strain virulence in infected cob tissue. PLOS ONE 10:e0130945 [Google Scholar]
  89. Mortier V, Den Herder G, Whitford R, Van de Velde W, Rombauts S. 89.  et al. 2010. CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiol 153:222–37 [Google Scholar]
  90. Nagar S, Hanley-Bowdoin L, Robertson D. 90.  2002. Host DNA replication is induced by geminivirus infection of differentiated plant cells. Plant Cell 14:2995–3007 [Google Scholar]
  91. Nagar S, Pedersen TJ, Carrick KM, Hanley-Bowdoin L, Robertson D. 91.  1995. A geminivirus induces expression of a host DNA synthesis protein in terminally differentiated plant cells. Plant Cell 7:705–19 [Google Scholar]
  92. Noir S, Marrocco K, Masoud K, Thomann A, Gusti A. 92.  et al. 2015. The control of Arabidopsis thaliana growth by cell proliferation and endoreplication requires the F-Box protein FBL17. Plant Cell 27:1461–76 [Google Scholar]
  93. Oldroyd G. 93.  2013. Speak, friend, and enter: signaling systems that promote beneficial symbiotic association in plants. Nat. Rev. Microbiol. 11:252–63 [Google Scholar]
  94. Ovchinnikova E, Journet EP, Chabaud M, Cosson V, Ratet P. 94.  et al. 2011. IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago spp. Mol. Plant-Microbe Interact. 24:1333–44 [Google Scholar]
  95. Park S, Rancour DM, Bednarek SY. 95.  2008. In planta analysis of the cell cycle–dependent localization of AtCDC48A and its critical roles in cell division, expansion, and differentiation. Plant Physiol 148:246–58 [Google Scholar]
  96. Parniske M. 96.  2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6:763–75 [Google Scholar]
  97. Peng H, Cui J, Long H, Huang W, Kong L. 97.  et al. 2016. Novel pectate lyase genes of Heterodera glycines play key roles in the early stage of parasitism. PLOS ONE 11:e0149959 [Google Scholar]
  98. Quentin M, Abad P, Favery B. 98.  2013. Plant parasitic nematode effector target host defense and nuclear functions to establish feeding cells. Front. Plant Sci. 4:53 [Google Scholar]
  99. Rancour DM, Dickey CE, Park S, Bednarek SY. 99.  2002. Characterization of AtCDC48. Evidence for multiple membrane fusion mechanisms at the plane of cell division in plants. Plant Physiol 130:1241–53 [Google Scholar]
  100. Rancour DM, Park S, Knight SD, Bednarek SY. 100.  2004. Plant UBX domain-containing protein 1, PUX1, regulates the oligomeric structure and activity of Arabidopsis CDC48. J. Biol. Chem. 279:54264–74 [Google Scholar]
  101. Raynaud C, Mallory AC, Latrasse D, Jégu T, Bruggeman Q. 101.  et al. 2014. Chromatin meets the cell cycle. J. Exp. Bot. 65:2677–89 [Google Scholar]
  102. Rehman S, Gupta VK, Goyal AK. 102.  2016. Identification and functional analysis of secreted effectors from phytoparasitic nematodes. BMC Microbiol 16:48 [Google Scholar]
  103. Repetto O, Massa N, Gianinazzi-Pearson V, Dumas-Gaudot E, Berta G. 103.  2007. Cadmium effects on populations of root nuclei in two pea genotypes inoculated or not with the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhiza 17:111–20 [Google Scholar]
  104. Replogle A, Wang J, Bleckmann A, Hussey RS, Baum TJ. 104.  et al. 2011. Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE. Plant J 65:430–40 [Google Scholar]
  105. Rojas M, Hagen C, Lucas WJ, Gilbertson RL. 105.  2005. Exploiting chinks in the plant's armor: evolution and emergence of geminiviruses. Annu. Rev. Phytopathol. 43:361–94 [Google Scholar]
  106. Roodbarkelari F, Bramsiepe J, Weinl C, Marquardt S, Novak B. 106.  et al. 2010. Cullin 4-ring finger-ligase plays a key role in the control of endoreplication cycles in Arabidopsis trichomes. PNAS 107:15275–80 [Google Scholar]
  107. Roux B, Rodde N, Jardinaud MF, Timmers T, Sauviac L. 107.  et al. 2014. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser‐capture microdissection coupled to RNA sequencing. Plant J 77:817–37 [Google Scholar]
  108. Sadasivam S, DeCaprio JA. 108.  2013. The DREAM complex: master coordinator of cell cycle–dependent gene expression. Nat. Rev. Cancer 13:585–95 [Google Scholar]
  109. Schnittger A, Weinl C, Bouyer D, Schöbinger U, Hülskamp M. 109.  2003. Misexpression of the cyclin-dependent kinase inhibitor ICK1/KRP1 in single-celled Arabidopsis trichomes reduces endoreduplication and cell size and induces cell death. Plant Cell 15:303–15 [Google Scholar]
  110. Schweizer L, Yerk-Davis GL, Phillips RL, Srienc F, Jones RJ. 110.  1995. Dynamics of maize endosperm development and DNA endoreduplication. PNAS 92:7070–74 [Google Scholar]
  111. Scofield S, Jones A, Murray JAH. 111.  2014. The plant cell cycle in context. J. Exp. Bot. 65:2557–62 [Google Scholar]
  112. Serralbo O, Pérez-Pérez JM, Heidstra R, Scheres R. 112.  2006. Non-cell-autonomous rescue of anaphase-promoting complex function revealed by mosaic analysis of HOBBIT, an Arabidopsis CDC27 homolog. PNAS 103:13250–55 [Google Scholar]
  113. Shen J, Chen X, Chen J, Sun L. 113.  2016. A phloem-limited fijivirus induces the formation of neoplastic phloem tissues that house virus multiplication in the host plant. Sci. Rep. 6:29848 [Google Scholar]
  114. Siddique S, Radakovic Z, de la Torre CM, Chronis D, Novák O. 114.  et al. 2015. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants. PNAS 112:12669–74 [Google Scholar]
  115. Simková K, Kim C, Gacek K, Baruah A, Laloi C, Apel K. 115.  2012. The chloroplast division mutant caa33 of Arabidopsis thaliana reveals the crucial impact of chloroplast homeostasis on stress acclimation and retrograde plastid-to-nucleus signaling. Plant J. 69:701–12 [Google Scholar]
  116. Sindhu AS, Maier TR, Mitchum MG, Hussey RS, Davis EL, Baum TJ. 116.  2009. Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. J. Exp. Bot. 60:315–24 [Google Scholar]
  117. Singh BN, Sopory SK, Reddy MK. 117.  2004. Plant DNA topoisomerases: structure, function, and cellular roles in plant development. Crit. Rev. Plant Sci. 23:251–69 [Google Scholar]
  118. Sobczak M, Golinowski W, Grundler FMW. 118.  1997. Changes in the structure of Arabidopsis thaliana roots induced during development of males of the plant parasitic nematode Heterodera schachtii. . Eur. J. Plant Pathol. 103:113–24 [Google Scholar]
  119. Sugimoto-Shirasu K, Roberts GR, Stacey NJ, McCann MC, Maxwell A, Roberts K. 119.  2005. RHL1 is an essential component of the plant DNA topoisomerase VI complex and is required for ploidy-dependent cell growth. PNAS 102:18736–41 [Google Scholar]
  120. Sugimoto-Shirasu K, Stacey NJ, Corsar J, Roberts K, McCann MC. 120.  2002. DNA topoisomerase VI is essential for endoreduplication in Arabidopsis. . Curr. Biol. 12:1782–86 [Google Scholar]
  121. Suzaki T, Ito M, Yoro E, Sato S, Hirakawa H. 121.  et al. 2014. Endoreduplication-mediated initiation of symbiotic organ development in Lotus japonicus. . Development 141:2441–45 [Google Scholar]
  122. Tahiri-Alaoui A, Lingua G, Avrova A, Sampò S, Fusconi A. 122.  et al. 2002. A cullin gene is induced in tomato root forming arbuscular mycorrhizae. Can. J. Bot. 80:607–16 [Google Scholar]
  123. Takahashi N, Kajihara T, Okamura C, Kim Y, Katagiri Y. 123.  et al. 2013. Cytokinins control endocycle onset by promoting the expression of an APC/C activator in Arabidopsis roots. Curr. Biol. 23:1812–17 [Google Scholar]
  124. Trejo-Saavedra DL, Vielle-Calzada JP, Rivera-Bustamante RF. 124.  2009. The infective cycle of Cabbage leaf curlvirus (CaLCuV) is affected by CRUMPLED LEAF (CRL) gene in Arabidopsis thaliana. . Virol. J. 6:169 [Google Scholar]
  125. Vanholme B, van Thuyne W, Vanhouteghem K, de Meutter J, Cannoot B, Gheysen G. 125.  2007. Molecular characterization and functional importance of pectate lyase secreted by the cyst nematode Heterodera schachtii. . Mol. Plant Pathol. 8:267–78 [Google Scholar]
  126. Verkest A, Manes CL, Vercruysse S, Maes S, Van Der Schueren E. 126.  et al. 2005. The cyclin-dependent kinase inhibitor KRP2 controls the onset of the endoreduplication cycle during Arabidopsis leaf development through inhibition of mitotic CDKA;1 kinase complexes. Plant Cell 17:1723–36 [Google Scholar]
  127. Vieira P, de Almeida Engler J. 127.  2015. The plant cell inhibitor KRP6 is involved in multinucleation and cytokinesis disruption in giant-feeding cells induced by root-knot nematodes. Plant Signal. Behav. 10:e1010924 [Google Scholar]
  128. Vieira P, De Clercq A, Stals H, Van Leene J, Van De Slijke E. 128.  et al. 2014. The cyclin-dependent kinase inhibitor KRP6 induces mitosis and impairs cytokinesis in giant cells induced by plant-parasitic nematodes in Arabidopsis. Plant Cell 26:2633–47 [Google Scholar]
  129. Vieira P, Engler G, de Almeida Engler J. 129.  2013. Enhanced levels of plant cell cycle inhibitors hamper root-knot nematode-induced feeding site development. Plant Signal. Behav. 8:e26409 [Google Scholar]
  130. Vieira P, Escudero C, Rodiuc N, Boruc J, Russinova E. 130.  et al. 2013. Ectopic expression of Kip-related proteins restrains root-knot nematode-feeding site expansion. New Phytol 199:505–19 [Google Scholar]
  131. Vinardell JM, Fedorova E, Cebolla A, Kevei Z, Horvath G. 131.  et al. 2003. Endoreduplication mediated by the anaphase-promoting complex activator CCS52A is required for symbiotic cell differentiation in Medicago truncatula nodules. Plant Cell 15:2093–105 [Google Scholar]
  132. Vogel JP, Raab TK, Schiff C, Somerville SC. 132.  2002. PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis. . Plant Cell 14:2095–106 [Google Scholar]
  133. Vogel JP, Raab TK, Somerville CR, Somerville SC. 133.  2004. Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition. Plant J 40:968–78 [Google Scholar]
  134. Wang J, Replogle A, Hussey R, Baum T, Wang X. 134.  et al. 2011. Identification of potential host plant mimics CLAVATA3/ESR (CLE)-like peptides from the plant-parasitic nematode Heterodera schachtii. . Mol. Plant Pathol. 12:177–86 [Google Scholar]
  135. Weinl C, Marquardt S, Kuijt SJ, Nowack MK, Jakoby MJ. 135.  et al. 2005. Novel functions of plant cyclin-dependent kinase inhibitors, ICK1/KRP1, can act non-cell-autonomously and inhibit entry into mitosis. Plant Cell 17:1704–22 [Google Scholar]
  136. Wessling R, Epple P, Altmann S, He Y, Yang L, Henz SR. 136.  2014. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 16:364–75 [Google Scholar]
  137. Wildermuth MC. 137.  2010. Modulation of host nuclear ploidy: a common plant biotroph mechanism. Curr. Opin. Plant Biol. 13:449–58 [Google Scholar]
  138. Williamson B. 138.  1970. Induced DNA synthesis in orchid mycorrhiza. Planta 92:347–54 [Google Scholar]
  139. Yano K, Yoshida S, Müller J, Singh S, Banba M. 139.  et al. 2008. CYCLOPS, a mediator of symbiotic intracellular accommodation. PNAS 105:20540–45 [Google Scholar]
  140. Yoo MJ, Liu X, Pires JC, Soltis PS, Soltis DE. 140.  2014. Nonadditive gene expression in polyploids. Annu. Rev. Genet. 48:485–517 [Google Scholar]
  141. Yoon HJ, Hossain MS, Held M, Hou H, Kehl M. 141.  et al. 2014. Lotus japonicus SUNERGOS1 encodes a predicted subunit A of a DNA topoisomerase VI that is required for nodule differentiation and accommodation of rhizobial infection. Plant J 78:811–21 [Google Scholar]
  142. Zheng B, Chen X, McCormick S. 142.  2011. The anaphase-promoting complex is a dual integrator that regulates both microRNA-mediated transcriptional regulation of Cyclin B1 and degradation of cyclin B1 during Arabidopsis male gametophyte development. Plant Cell 23:1033–46 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080516-035458
Loading
/content/journals/10.1146/annurev-phyto-080516-035458
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error