1932

Abstract

The introduction of pv. (Psa) severely damaged the New Zealand kiwifruit industry, which in 2010 was based on only two cultivars. Despite an extraordinarily quick and strong response by industry, government, and scientists to minimize the economic and social impacts, the economic consequences of this outbreak were severe. Although our understanding of Psa epidemiology and control methods increased substantively over the past six years, the kiwifruit industry largely recovered because of the introduction of a less-susceptible yellow-fleshed cultivar. The New Zealand population of Psa is clonal but has evolved rapidly since its introduction by exchanging mobile genetic elements, including integrative conjugative elements (ICEs), with the local bacterial populations. In some cases, this has led to copper resistance. It is currently believed that the center of origin of the pathogen is Japan or Korea, but biovar 3, which is responsible for the global outbreak, originated in China.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080516-035530
2017-08-04
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/phyto/55/1/annurev-phyto-080516-035530.html?itemId=/content/journals/10.1146/annurev-phyto-080516-035530&mimeType=html&fmt=ahah

Literature Cited

  1. Abelleira A, Ares A, Aguin O, Peñalver J, Morente MC. 1.  et al. 2015. Detection and characterization of Pseudomonas syringae pv. actinidifoliorum in kiwifruit in Spain. J. Appl. Microbiol. 119:1659–71 [Google Scholar]
  2. Abelleira A, Ares A, Aguín O, Picoaga A, López MM, Mansilla P. 2.  2014. Current situation and characterization of Pseudomonas syringae pv. actinidiae on kiwifruit in Galicia (northwest Spain). Plant Pathol. 63:691–99 [Google Scholar]
  3. Abelleira A, López MM, Peñalver J, Aguín O, Mansilla JP. 3.  et al. 2011. First report of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae in Spain. Plant Dis. 95:1583 [Google Scholar]
  4. Ark PA. 4.  1944. Pollen as a source of walnut bacterial blight infection. Phytopathology 34:330–34 [Google Scholar]
  5. Balestra GM, Mazzaglia A, Quattrucci A, Renzi M, Rossetti A. 5.  2009. Current status of bacterial canker spread on kiwifruit in Italy. Australas. Plant Dis. Notes 4:34–36 [Google Scholar]
  6. Balestra GM, Mazzaglia A, Quattrucci A, Renzi M, Rossetti A. 6.  2009. Occurrence of Pseudomonas syringae pv. actinidiae in Jin Tao kiwi plants in Italy. Phytopathol. Mediterr. 48:299–301 [Google Scholar]
  7. Balestra GM, Renzi M, Mazzaglia A. 7.  2010. First report of bacterial canker of Actinidia deliciosa caused by Pseudomonas syringae pv. actinidiae in Portugal. New Dis. Rep. 22:10 [Google Scholar]
  8. Balestra GM, Taratufolo MC, Vinatzer BA, Mazzaglia A. 8.  2013. A multiplex PCR assay for detection of Pseudomonas syringae pv. actinidiae and differentiation of populations with different geographic origin. Plant Dis. 97:472–78 [Google Scholar]
  9. Balestra GM, Varvaro L. 9.  1997. Pseudomonas syringae pv. syringae causal agent of disease on floral buds of Actinidia deliciosa (A. Chev) Liang et Ferguson in Italy. J. Phytopathol. 145:375–78 [Google Scholar]
  10. Baltrus DA, McCann HC, Guttman DS. 10.  2017. Evolution, genomics and epidemiology of Pseudomonas syringae. . Mol. Plant Pathol. 18:152–68 [Google Scholar]
  11. Barlass M. 11.  2016. From the Armchair: The Dark Side of Biosecurity Bruce, NZ: CRC Plant Biosecur.
  12. Bastas KK, Karakaya A. 12.  2011. First report of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae in Turkey. Plant Dis. 96:452 [Google Scholar]
  13. Belrose I. 13.  2011. World Kiwifruit Review Pullman, WA: Belrose Inc, 2011 ed..
  14. Beresford RM, Tyson JL, Henshall WR. 14.  2017. Development and validation of an infection risk model for bacterial canker of kiwifruit using a multiplication and dispersal concept for forecasting bacterial diseases. Phytopathology 107:184–91 [Google Scholar]
  15. Biondi E, Galeone A, Kuzmanović N, Ardizzi S, Lucchese C, Bertaccini A. 15.  2013. Pseudomonas syringae pv. actinidiae detection in kiwifruit plant tissue and bleeding sap. Ann. Appl. Biol. 162:60–70 [Google Scholar]
  16. Birnie D, Livesey A. 16.  2014. Lessons Learned from the Response to Psa-V Wellington, NZ: Sapere Res. Group http://www.kvh.org.nz/vdb/document/100538
  17. Black M, Benge J, Hunkin W, Casonato S. 17.  2013. Uncovering the secrets of covered orchards. N. Z. Kiwifruit J. 219:23–25 [Google Scholar]
  18. Braggins TJ. 18.  2012. Mitigating the risk of Pseudomonas syringae pv. actinidiae introduction by pollen ZESPRI Innov. Proj. V11285 Rep., Zespri, Mount Maunganui, NZ: http://www.kvh.org.nz/vdb/document/1144 [Google Scholar]
  19. Butler M, Jung JS, Kim GH, Lamont I, Stockwell P. 19.  et al. 2015. Genome features of Pseudomonas syringae pv. actinidiae recently isolated in Korea. Acta Hortic. 1095:75–80 [Google Scholar]
  20. Butler MI, Stockwell PA, Black MA, Day RC, Lamont IL, Poulter RTM. 20.  2013. Pseudomonas syringae pv. actinidiae from recent outbreaks of kiwifruit bacterial canker belong to different clones that originated in China. PLOS ONE 8:e57464 [Google Scholar]
  21. Cellini A, Fiorentini L, Buriani G, Yu J, Donati I. 21.  et al. 2014. Elicitors of the salicylic acid pathway reduce incidence of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidae. Ann. Appl. Biol. 165:441–53 [Google Scholar]
  22. Chapman JR, Taylor RK, Weir BS, Romberg MK, Vanneste JL. 22.  et al. 2012. Phylogenetic relationships among global populations of Pseudomonas syringae pv. actinidiae. Phytopathology 102:1034–44 [Google Scholar]
  23. Cheng H, Li Y, Wan S, Zhang J, Ping Q. 23.  et al. 1995. Pathogenic identification of kiwifruit bacterial canker in Anhui. J. Anhui Agric. Univ. 22:219–23 (From Chinese) [Google Scholar]
  24. Choi EJ, Lee YS, Kim GH, Koh YJ, Jung JS. 24.  2014. Phenotypic characteristics of Pseudomonas syringae pv. actinidiae strains from different geographic origins. Korean J. Microbiol. 50:245–48 [Google Scholar]
  25. Ciarroni S, Gallipoli L, Taratufolo MC, Butler MI, Poulter RT. 25.  et al. 2015. Development of a multiple loci variable number of tandem repeats analysis (MLVA) to unravel the intra-pathovar structure of Pseudomonas syringae pv. actinidiae populations worldwide. PLOS ONE 10:e0135310 [Google Scholar]
  26. Colombi E, Straub C, Kunzel S, Templeton MD, McCann HC, Rainey PB. 26.  2017. Evolution of copper resistance in the kiwifruit pathogen Pseudomonassyringae pv. actinidiae through acquisition of integrative conjugative elements and plasmids. Environ. . Microbiol. 19:819–32 [Google Scholar]
  27. Corsi B, Forni C, Riccioni L, Linthorst JMH. 27.  2017. Enhancement of PR1 and PR5 gene expressions by chitosan treatment in kiwifruit plants inoculated with Pseudomonas syringae pv. actinidiae. . Eur. J. Plant Pathol. 147:471–89 [Google Scholar]
  28. Costa G, Ferguson AR. 28.  2015. Bacterial canker of kiwifruit: response to a threat. Acta Hortic 1095:27–40 [Google Scholar]
  29. Costa G, Testolin R, Vizzotto G. 29.  1993. Kiwifruit pollination: an unbiased estimate of wind and bee contribution. N. Z. J. Crop Hortic. Sci. 21:189–95 [Google Scholar]
  30. Cunty A, Poliakoff F, Rivoal C, Cesbron S, Fischer-Le Saux M. 30.  et al. 2015. Characterization of Pseudomonas syringae pv. actinidiae (Psa) isolated from France and assignment of Psa biovar 4 to a de novo pathovar: Pseudomonas syringae pv. actinidifoliorum pv. nov. Plant Pathol. 64:582–96 [Google Scholar]
  31. Datson P, Nardozza S, Manako K, Herrick J, Martinez-Sanchez M. 31.  et al. 2015. Monitoring the Actinidia germplasm for resistance to Pseudomonas syringae pv. actinidiae. . Acta Hortic. 1095:181–84 [Google Scholar]
  32. Donati I, Buriani G, Cellini A, Mauri S, Costa G, Spinelli F. 32.  2014. New insights on the bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). J. Berry Res. 4:53–67 [Google Scholar]
  33. Dreo T, Pirc M, Ravnikar M, Žežlina I, Poliakoff F. 33.  et al. 2014. First report of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker of kiwifruit in Slovenia. Plant Dis. 98:1578 [Google Scholar]
  34. 34. EPPO. 2011. First report of Pseudomonassyringae pv. actinidiae in Australia. EPPO Rep. Serv 6/130. http://archives.eppo.int/EPPOReporting/2011/Rse-1106.pdf
  35. 35. EPPO. 2011. First report of Pseudomonas syringae pv. actinidiae in Switzerland. EPPO Rep. Serv. 8/168. http://archives.eppo.int/EPPOReporting/2011/Rse-1108.pdf
  36. 36. EPPO. 2013. First report of Pseudomonas syringae pv. actinidiae in Germany. EPPO Rep. Serv. 9/185. http://archives.eppo.int/EPPOReporting/2013/Rse-1309.pdf
  37. 37. EPPO. 2011. First report of Pseudomonas syringae pv. actinidiae in Chile. EPPO Rep. Serv. 3/055. http://archives.eppo.int/EPPOReporting/2011/Rse-1103.pdf
  38. Ercolani GL. 38.  1962. Individuazione di Xanthomonas juglandis (Pierce) Dowson in Emilia. Phytopathol. Mediterr. 2:1–10 [Google Scholar]
  39. Everett KR, Taylor RK, Romberg MK, Rees-George J, Fullerton RA. 39.  et al. 2011. First report of Pseudomonassyringae pv. actinidiae causing kiwifruit bacterial canker in New Zealand. Australas. . Plant Dis. Notes 6:67–71 [Google Scholar]
  40. Fang Y, Xiaoxiang Z, Tao WY. 40.  1990. Preliminary studies on kiwifruit disease in Hunan province. Sichuan Fruit Sci. Technol. 18:28–29 (From Chinese) [Google Scholar]
  41. Ferguson AR. 41.  2004. 1904—the year that kiwifruit (Actinidia deliciosa) came to New Zealand. N. Z. J. Crop Hortic. Sci. 32:3–27 [Google Scholar]
  42. Ferguson AR. 42.  2007. The need for characterisation and evaluation of germplasm: kiwifruit as an example. Euphytica 154:371–82 [Google Scholar]
  43. Ferguson AR. 43.  2015. Kiwifruit in the world: 2014. Acta Hortic 1096:33–46 [Google Scholar]
  44. Ferguson AR, Bollard EG. 44.  1990. Domestication of the kiwifruit. Kiwifruit: Science and Management IJ Warrington, GC Weston 165–246 Auckland, NZ: Ray Richards Publ. N. Z. Soc. Hortic. Sci. [Google Scholar]
  45. Ferguson AR, Huang H. 45.  2007. Genetic resources of kiwifruit: domestication and breeding. Horticultural Reviews J Janick 1–121 Hoboken, NJ: Wiley [Google Scholar]
  46. Ferrante P, Scortichini M. 46.  2009. Identification of Pseudomonas syringae pv. actinidiae as causal agent of bacterial canker of yellow kiwifruit (Actinidia chinensis Planchon) in central Italy. J. Phytopathol. 157:768–70 [Google Scholar]
  47. Ferrante P, Scortichini M. 47.  2010. Molecular and phenotypic features of Pseudomonas syringae pv. actinidiae isolated during recent epidemics of bacterial canker on yellow kiwifruit (Actinidia chinensis) in central Italy. Plant Pathol. 59:954–62 [Google Scholar]
  48. Ferrante P, Scortichini M. 48.  2014. Frost promotes the pathogenicity of Pseudomonas syringae pv. actinidiae in Actinidia chinensis and A. deliciosa plants. Plant Pathol. 63:12–19 [Google Scholar]
  49. Ferrante P, Takikawa Y, Scortichini M. 49.  2015. Pseudomonas syringae pv. actinidiae strains isolated from past and current epidemics to Actinidia spp. reveal a diverse population structure of the pathogen. Eur. J. Plant Pathol. 142:677–89 [Google Scholar]
  50. Fujikawa T, Sawada H. 50.  2016. Genome analysis of the kiwifruit canker pathogen Pseudomonas syringae pv. actinidiae biovar 5. Sci. Rep. 6:21399 [Google Scholar]
  51. Gallelli A, L'Aurora A, Loreti S. 51.  2011. Gene sequence analysis for the molecular detection of Pseudomonas syringae pv. actinidiae: developing diagnostic protocols. J. Plant Pathol. 93:425–35 [Google Scholar]
  52. Gallelli A, Talocci S, L'Aurora A, Loreti S. 52.  2011. Detection of Pseudomonas syringae pv. actinidiae, causal agent of bacterial canker of kiwifruit, from symptomless fruits and twigs, and from pollen. Phytopathol. Mediterr. 50:462–72 [Google Scholar]
  53. Gao X, Huang Q, Zhao Z, Han Q, Ke X. 53.  et al. 2016. Studies on the infection, colonization, and movement of Pseudomonas syringae pv. actinidiae in kiwifruit tissues using a GFPuv-labeled strain. PLOS ONE 11:e0151169 [Google Scholar]
  54. Genka H, Baba T, Tsuda M, Kanaya S, Mori H. 54.  et al. 2006. Comparative analysis of argK-tox clusters and their flanking regions in phaseolotoxin-producing Pseudomonas syringae pathovars. J. Mol. Evol. 63:401–14 [Google Scholar]
  55. Goto M, Hikota T, Nakajima M, Takikawa Y, Tsuyumu S. 55.  1994. Occurrence and properties of copper-resistance in plant pathogenic bacteria. Ann. Phytopathol. Soc. Jpn. 60:147–53 [Google Scholar]
  56. Greer G, Saunders C. 56.  2012. The Costs of Psa-V to the New Zealand Kiwifruit Industry and the Wider Community Lincoln, NZ: Agribus. Econ. Res. Unit Lincoln Univ.
  57. Hirano SS, Upper CD. 57.  2000. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae: a pathogen, ice nucleus, and epiphyte. Microbiol. Mol. Biol. Rev. 64:624–53 [Google Scholar]
  58. Holeva MC, Glynos PE, Karafla CD. 58.  2015. First report of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae in Greece. Plant Dis. 99:723 [Google Scholar]
  59. Howpage D, Spooner-Hart RN, Vithanage V. 59.  2001. Influence of honey bee (Apis mellifera) on kiwifruit pollination and fruit quality under Australian conditions. N. Z. J. Crop Hortic. Sci. 29:51–59 [Google Scholar]
  60. Huang H, Ferguson AR. 60.  2001. Review: kiwifruit in China. N. Z. J. Crop Hortic. Sci. 29:1–14 [Google Scholar]
  61. Huang S, Ding J, Deng D, Tang W, Sun H. 61.  et al. 2013. Draft genome of the kiwifruit Actinidia chinensis. . Nat. Commun. 4:2640 [Google Scholar]
  62. Johnson CM, Grossman AD. 62.  2015. Integrative and conjugative elements (ICEs): what they do and how they work. Annu. Rev. Genet. 49:577–601 [Google Scholar]
  63. Johnson KB, Stockwell VO, Burgett DM, Sugar D, Loper JE. 63.  1993. Dispersal of Erwinia amylovora and Pseudomonas fluorescens by honey bees from hives to apple and pear blossoms. Phytopathology 83:478–84 [Google Scholar]
  64. Jung JS, Han HS, Jo YS, Koh YJ. 64.  2003. Nested PCR detection of Pseudomonas syringae pv. actinidiae, the causal bacterium of kiwifruit canker. Res. Plant Dis. 9:116–20 [Google Scholar]
  65. Kim GH, Kim K-H, Son KI, Choi ED, Lee YS. 65.  et al. 2016. Outbreak and spread of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae biovar 3 in Korea. Plant Pathol. J. 32:545–51 [Google Scholar]
  66. Koh YJ, Cha BJ, Chung HJ, Lee DH. 66.  1994. Outbreak and spread of bacterial canker in kiwifruit. Korean J. Plant Pathol. 10:68–72 [Google Scholar]
  67. Koh YJ, Kim GH, Jung JS, Lee YS, Hur JS. 67.  2010. Outbreak of bacterial canker on Hort16A (Actinidia chinensis Planchon) caused by Pseudomonas syringae pv. actinidiae in Korea. N. Z. J. Crop Hortic. Sci 38:275–82 [Google Scholar]
  68. Koh YJ, Kim GH, Koh HS, Lee YS, Kim S-C, Jung JS. 68.  2012. Occurrence of a new type of Pseudomonas syringae pv. actinidiae strain of bacterial canker on kiwifruit in Korea. Plant Pathol. J. 28:423–27 [Google Scholar]
  69. Koh YJ, Nou IS. 69.  2002. DNA markers for identification of Pseudomonas syringae pv. actinidiae. Mol. Cells 13:309–14 [Google Scholar]
  70. Lee-Jones D. 70.  2010. Report on State of Kiwifruit Sector in New Zealand GAIN Rep. NZ1014, USDA Foreign Agric. Serv Washington, DC: https://gain.fas.usda.gov/recent%20gain%20publications/2010%20report%20on%20state%20of%20kiwifruit%20sector%20in%20new%20zealand_wellington_new%20zealand_9-1-2010.pdf
  71. Lee-Jones D. 71.  2016. Kiwifruit Sector Report - 2016 GAIN Rep. NZ1601, USDA Foreign Agric. Serv Washington, DC: https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Kiwifruit%20Sector%20Report%20-%202016_Wellington_New%20Zealand_3-24-2016.pdf
  72. Liang Y, Zhang X, Tian C, Gao A, Wang P. 72.  2000. Pathogenic identification of kiwifruit bacterial canker in Shaanxi. J. Northwest For. Coll. 15:37–39 (From Chinese) [Google Scholar]
  73. Loughlin J, Jager L. 73.  2010. Chairman and chief executive's officer's report. Zespri Annu. Rev. 2009/10:3–10 [Google Scholar]
  74. Mansfield JW, Genin S, Magori S, Citovsky V, Sriariyanum M. 74.  et al. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13:614–29 [Google Scholar]
  75. Marcelletti S, Ferrante P, Petriccione M, Firrao G, Scortichini M. 75.  2011. Pseudomonas syringae pv. actinidiae draft genomes comparison reveal strain-specific features involved in adaptation and virulence to Actinidia species. PLOS ONE 6:e27297 [Google Scholar]
  76. 76. Martech Consult. Group. 2004. ZESPRI™ Gold kiwifruit lights up the fruit world. Auckland, NZ: Martech Consult. Group http://www.martech.co.nz/images/01zespri.pdf [Google Scholar]
  77. Mazarei M, Mostofipour P. 77.  1994. First report of bacterial canker of kiwifruit in Iran. Plant Pathol 43:1055–56 [Google Scholar]
  78. Mazzaglia A, Renzi M, Balestra GM. 78.  2011. Comparison and utilization of different PCR-based approaches for molecular typing of Pseudomonassyringae pv. actinidiae strains from Italy. Can. J. Plant Pathol. 33:8–18 [Google Scholar]
  79. Mazzaglia A, Studholme DJ, Taratufolo MC, Cai R, Almeida NF. 79.  et al. 2012. Pseudomonas syringae pv. actinidiae (PSA) isolates from recent bacterial canker of kiwifruit outbreaks belong to the same genetic lineage. PLOS ONE 7:e36518 [Google Scholar]
  80. McBride P, Jager L. 80.  2016. Chairman and CEO's report. Zespri Kiwifruit Annu. Rep. 2015–16:2–7 [Google Scholar]
  81. McCann H, Li L, Liu Y, Li D, Hui P. 81.  et al. 2016. Origin and evolution of a pandemic lineage of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae. bioRxiv https://doi.org/10.1101/085613 [Crossref]
  82. McCann HC, Rikkerink EH, Bertels F, Fiers M, Lu A. 82.  et al. 2013. Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. PLOS Pathog. 9:e1003503 [Google Scholar]
  83. Meparishvili G, Gorgiladze L, Sikharulidze Z, Muradashvili M, Koiava L. 83.  et al. 2015. First report of bacterial canker of kiwifruit caused by Pseudomonassyringae pv. actinidiae in Georgia. Plant Dis. 100:517 [Google Scholar]
  84. Michelotti V, Lamontanara A, Buriani G, Cellini A, Donati I. 84.  et al. 2015. Unraveling the molecular interaction between Pseudomonas syringae pv. actinidiae (Psa) and the kiwifruit plant through RNAseq approach. Acta Hortic. 1095:89–94 [Google Scholar]
  85. Miyoshi T, Shimizu S, Sawada H. 85.  2012. Occurrence and distribution of a defective non-phaseolotoxin-producing mutant of Pseudomonas syringae pv. actinidiae in Ehime Prefecture, Japan. Jpn. J. Phytopathol. 78:92–103 [Google Scholar]
  86. Moore D, Loan J. 86.  2012. A Review of Import Requirements and Border Processes in Light of the Entry of Psa into New Zealand Wellington, NZ: Sapere Res. Group http://www.srgexpert.com/wp-content/uploads/2015/08/psa-v-review-2012.pdf
  87. Naik A. 87.  2016. In pursuit of mental wellbeing: applying the lessons of Psa to dairying. N. Z. Kiwifruit J. 237:74–77 [Google Scholar]
  88. Nakajima M, Goto M, Hibi T. 88.  2002. Similarity between copper resistance genes from Pseudomonas syringae pv. actinidiae and P. syringae pv. tomato. J. Gen. . Plant Pathol. 68:68–74 [Google Scholar]
  89. Nakajima M, Yamashita S, Takikawa Y, Tsuyumu S, Hibi T, Goto M. 89.  1995. Similarity of streptomycin resistance gene(s) in Pseudomonassyringae pv. actinidiae with strA and strB of plasmid RSF1010. Ann. Phytopathol. Soc. Jpn. 61:489–92 [Google Scholar]
  90. 90. N. Z. Inst. Plant Food Res. Ltd. 2011. FreshFacts: New Zealand Horticulture Auckland, NZ: N. Z. Inst. Plant Food Res. Ltd.
  91. Opgenorth DC, Lai M, Sorrell M, White JB. 91.  1983. Pseudomonas canker of kiwifruit. Plant Dis 67:1283–84 [Google Scholar]
  92. Patel HK, Ferrante P, Covaceuszach S, Lamba D, Scortichini M, Venturi V. 92.  2014. The kiwifruit emerging pathogen Pseudomonas syringae pv. actinidiae does not produce AHLs but possesses three LuxR solos. PLOS ONE 9:e87862 [Google Scholar]
  93. Pattemore DE, Goodwin RM, McBrydie HM, Hoyte SM, Vanneste JL. 93.  2014. Evidence of the role of honey bees (Apis mellifera) as vectors of the bacterial plant pathogen Pseudomonas syringae. Australas. Plant Pathol. 43:571–75 [Google Scholar]
  94. 94. Prim. Prod. Comm. 2015. Briefing from New Zealand Kiwifruit Growers Wellington, NZ: N.Z. House Represent https://www.parliament.nz/resource/en-NZ/51DBSCH_SCR64554_1/7af43ab3cb993540005432fbc7164fe7a714dae1
  95. Rees-George J, Vanneste JL, Cornish DA, Pushparajah IPS, Yu J. 95.  et al. 2010. Detection of Pseudomonas syringae pv. actinidiae using polymerase chain reaction (PCR) primers based on the 16S–23S rDNA intertranscribed spacer region and comparison with PCR primers based on other gene regions. Plant Pathol. 59:453–64 [Google Scholar]
  96. Reglinski T, Vanneste J, Wurms K, Gould E, Spinelli F, Rikkerink E. 96.  2013. Using fundamental knowledge of induced resistance to develop control strategies for bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae. Front. Plant Sci. 4:241–4 [Google Scholar]
  97. Renzi M, Copini P, Taddei AR, Rossetti A, Gallipoli L. 97.  et al. 2012. Bacterial canker on kiwifruit in Italy: anatomical changes in the wood and in the primary infection sites. Phytopathology 102:827–40 [Google Scholar]
  98. Rikkerink E, Andersen M, Rees-George J, Cui W, Vanneste JL, Templeton M. 98.  2011. Development of a Rapid Tool for the Molecular Characterisation of Psa Haplotypes Zespri Group Ltd. Ref. VI1256 Plant & Food Res. Auckland, NZ: http://www.kvh.org.nz/vdb/document/910
  99. Rikkerink EHA, McCann HC, Rees-George J, Lu A, Gleave AP. 99.  et al. 2015. Transposition, insertion, deletion and recombination drive variability in the type 3 secretome of Pseudomonas syringae pv. actinidiae, the transition from global effector comparisons to kiwifruit resistance breeding strategies. Acta Hortic. 1095:65–74 [Google Scholar]
  100. Rossetti A, Balestra GM. 100.  2008. Pseudomonas syringae pv. syringae on kiwifruit plants: epidemiological traits and its control. Pseudomonas syringae Pathovars and Related Pathogens: Identification, Epidemiology and Genomics MB Fatmi, A Collmer, NS Iacobellis, JW Mansfield, J Murillo et al.65–68 Dordrecht, Neth.: Springer [Google Scholar]
  101. Ruinelli M, Schneeberger PHH, Ferrante P, Bühlmann A, Scortichini M. 101.  et al. 2017. Comparative genomics–informed design of two LAMP detection assays for detection of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae and discrimination of isolates belonging to the pandemic biovar 3. Plant Pathol. 66:140–49 [Google Scholar]
  102. Sawada H, Kanaya S, Tsuda M, Suzuki F, Azegami K, Saitou N. 102.  2002. A phylogenomic study of the OCTase genes in Pseudomonas syringae pathovars: the horizontal transfer of the argK-tox cluster and the evolutionary history of OCTase genes on their genomes. J. Mol. Evol. 54:437–57 [Google Scholar]
  103. Sawada H, Kondo K, Nakaune R. 103.  2016. Novel biovar (biovar 6) of Pseudomonas syringae pv. actinidiae causing bacterial canker of kiwifruit (Actinidia deliciosa) in Japan. Jpn. J. Phytopathol. 82:101–15 [Google Scholar]
  104. Sawada H, Shimizu S, Miyoshi T, Shinozaki T, Kusumoto S. 104.  et al. 2015. Characterization of biovar 3 strains of Pseudomonas syringae pv. actinidiae isolated in Japan. Jpn. J. Phytopathol. 81:111–26 [Google Scholar]
  105. Sawada H, Takeuchi T, Matsuda I. 105.  1997. Comparative analysis of Pseudomonas syringae pv. actinidiae and pv. phaseolicola based on phaseolotoxin-resistant ornithine carbamoyltransferase gene (argK) and 16S–23S rRNA intergenic spacer sequences. Appl. Environ. Microbiol. 63:282–88 [Google Scholar]
  106. Scortichini M. 106.  1994. Occurrence of Pseudomonas syringae pv. actinidiae on kiwifruit in Italy. Plant Pathol. 43:1035–38 [Google Scholar]
  107. Scortichini M, Marchesi U, Di Prospero P. 107.  2002. Genetic relatedness among Pseudomonas avellanae, P. syringae pv. theae and P.s. pv. actinidiae, and their identification. Eur. J. Plant Pathol. 108:269–78 [Google Scholar]
  108. Serizawa S, Ichikawa T. 108.  1993. Epidemiology of bacterial canker of kiwifruit. 1. Infection and bacterial movement in tissue of new canes. Jpn. J. Phytopathol. 59:452–59 [Google Scholar]
  109. Serizawa S, Ichikawa T. 109.  1993. Epidemiology of bacterial canker of kiwifruit. 2. The most suitable times and environments for infection on new canes. Jpn. J. Phytopathol. 59:460–68 [Google Scholar]
  110. Serizawa S, Ichikawa T. 110.  1993. Epidemiology of bacterial canker of kiwifruit. 3. The seasonal changes of bacterial population in lesions and of its exudation from lesion. Jpn. J. Phytopathol. 59:469–76 [Google Scholar]
  111. Serizawa S, Ichikawa T. 111.  1993. Epidemiology of bacterial canker of kiwifruit. 4. Optimum temperature for disease development of new canes. Jpn. J. Phytopathol. 59:694–701 [Google Scholar]
  112. Serizawa S, Ichikawa T, Suzuki H. 112.  1994. Epidemiology of bacterial canker of kiwifruit. 5. Effect of infection in fall to early winter on the disease development in branches and trunk after winter. Jpn. J. Phytopathol. 60:237–44 [Google Scholar]
  113. Serizawa S, Ichikawa T, Takikawa Y, Tsuyumu S, Goto M. 113.  1989. Occurrence of bacterial canker of kiwifruit in Japan: description of symptoms, isolation of the pathogen and screening of bactericides. Ann. Phytopathol. Soc. Jpn. 55:427–36 [Google Scholar]
  114. Shao B, Liu Y, Zhu T, Li S. 114.  2013. Molecular detection of Pseudomonas syringae pv. actinidiae on bacterial canker of kiwifruit. Acta Phytopathol. Sin. 43:458–66 [Google Scholar]
  115. Snelgar B, Blattman P, de Silva N, Patterson K. 115.  2015. Increasing dry matter of ‘Gold3’ under covers. N. Z. Kiwifruit J. 229:37–40 [Google Scholar]
  116. Spinelli F, Donati I, Vanneste JL, Costa M, Costa G. 116.  2011. Real time monitoring of the interactions between Pseudomonas syringae pv. actinidiae and Actinidia species. Acta Hortic. 913:461–66 [Google Scholar]
  117. Stefani E, Giovanardi D. 117.  2011. Dissemination of Pseudomonas syringae pv. actinidiae through pollen and its epiphytic life on leaves and fruits. Phytopathol. Mediterr. 50:489–96 [Google Scholar]
  118. Takikawa Y, Serizawa S, Ichikawa T, Tsuyumu S, Goto M. 118.  1989. Pseudomonas syringae pv. actinidiae pv. nov.: the causal bacterium of canker of kiwifruit in Japan. Ann. Phytopathol. Soc. Jpn. 55:437–44 [Google Scholar]
  119. Tontou R, Giovanardi D, Stefani E. 119.  2014. Pollen as a possible pathway for the dissemination of Pseudomonas syringae pv. actinidiae and bacterial canker of kiwifruit. Phytopathol. Mediterr. 53:333–39 [Google Scholar]
  120. Ushiyama K, Kita N, Suyama K, Aono N, Ogawa J, Fujii H. 120.  1992. Bacterial canker disease of wild Actinidia plants as the infection source of outbreak of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae. Ann. Phytopathol. Soc. Jpn. 58:426–30 [Google Scholar]
  121. Ushiyama K, Suyama K, Kita N, Aono N, Fujii H. 121.  1992. Isolation of kiwifruit canker pathogen, Pseudomonas syringae pv. actinidiae from leaf spot of tara vine (Actinidia arguta Planch.). Ann. Phytopathol. Soc. Jpn. 58:476–79 [Google Scholar]
  122. Vanneste JL. 122.  2010. Pseudomonas syringae pv. actinidiae research conducted in New Zealand. Presented at Workshop on Pseudomonas syringae pv. actinidiae. Auckland, NZ.:
  123. Vanneste JL. 123.  2012. Pseudomonas syringae pv. actinidiae (Psa): a threat to the New Zealand and global kiwifruit industry. N. Z. J. Crop Hortic. Sci. 40:265–67 [Google Scholar]
  124. Vanneste JL. 124.  2013. Recent progress on detecting, understanding and controlling Pseudomonas syringae pv. actinidiae: a short review. N. Z. Plant Prot. 66:170–77 [Google Scholar]
  125. Vanneste JL. 125.  2015. Pseudomonas syringae pv. actinidiae: the pathogen that brings us together. Acta Hortic. 1095:21–23 [Google Scholar]
  126. Vanneste JL, Cornish DA, Rees-George J, Templeton MD, Fujikawa T. 126.  et al. 2015. Molecular characterisation of Pseudomonas syringae pv. actinidiae strains isolated from Japan and Korea. Presented at 2nd Int. Symp. Bact. Canker Kiwifruit Bologna, Italy: [Google Scholar]
  127. Vanneste JL, Cornish DA, Yu J, Boyd RJ, Morris CE. 127.  2008. Isolation of copper and streptomycin resistant phytopathogenic Pseudomonas syringae from lakes and rivers in the central North Island of New Zealand. N. Z. Plant Prot. 61:80–85 [Google Scholar]
  128. Vanneste JL, Cornish DA, Yu J, Stokes CA. 128.  2014. First report of Pseudomonas syringae pv. actinidiae the causal agent of bacterial canker of kiwifruit on Actinidia arguta vines in New Zealand. Plant Dis. 98:418 [Google Scholar]
  129. Vanneste JL, Giovanardi D, Yu J, Cornish DA, Kay C. 129.  et al. 2011. Detection of Pseudomonas syringae pv. actinidiae in kiwifruit pollen samples. N. Z. Plant Prot. 64:246–51 [Google Scholar]
  130. Vanneste JL, Kay C, Onorato R, Yu J, Cornish DA. 130.  et al. 2011. Recent advances in the characterisation and control of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker on kiwifruit. Acta Hortic. 913:443–56 [Google Scholar]
  131. Vanneste JL, Moffat BJ, Oldham JM. 131.  2012. Survival of Pseudomonas syringae pv. actinidiae on Cryptomeria japonica, a non-host plant used as shelter belts in kiwifruit orchards. N. Z. Plant Prot. 65:1–7 [Google Scholar]
  132. Vanneste JL, Poliakoff F, Audusseau C, Cornish DA, Paillard S. 132.  et al. 2011. First report of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker of kiwifruit in France. Plant Dis. 95:1311 [Google Scholar]
  133. Vanneste JL, Reglinski T, Yu J, Cornish DA. 133.  2015. Multiplication and movement of Pseudomonas syringae pv. actinidiae in kiwifruit plants. Acta Hortic. 1095:117–22 [Google Scholar]
  134. Vanneste JL, Voyle MD, Yu J, Cornish DA, Boyd RJ, McLaren GF. 134.  2008. Copper and streptomycin resistance in Pseudomonas strains isolated from pipfruit and stone fruit orchards in New Zealand. Pseudomonas syringae Pathovars and Related Pathogens: Identification, Epidemiology and Genomics M Fatmi, A Collmer, NS Iacobellis, JW Mansfield, J Murillo et al.81–90 Dordrecht, Neth.: Springer [Google Scholar]
  135. Vanneste JL, Yu J, Cornish DA. 135.  2010. Molecular characterisations of Pseudomonas syringae pv. actinidiae strains isolated from the recent outbreak of bacterial canker on kiwifruit in Italy. N. Z. Plant Prot. 63:7–14 [Google Scholar]
  136. Vanneste JL, Yu J, Cornish DA, Fiorentini L, Spinelli F. 136.  et al. 2015. The potential of elicitors in controlling Pseudomonas syringae pv. actinidiae. Presented at 2nd Int. Symp. Bact. . Canker Kiwifruit Bologna, Italy:
  137. Vanneste JL, Yu J, Cornish DA, Max S, Clark G. 137.  2011. Presence of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker of kiwifruit, on symptomatic and asymptomatic tissues of kiwifruit. N. Z. Plant Prot. 64:241–45 [Google Scholar]
  138. Vanneste JL, Yu J, Cornish DA, Oldham JM, Spinelli F. 138.  et al. 2015. Survival of Pseudomonas syringae pv. actinidiae in the environment. Acta Hortic. 1095:105–10 [Google Scholar]
  139. Vanneste JL, Yu J, Cornish DA, Tanner DJ, Windner R. 139.  et al. 2013. Identification, virulence and distribution of two biovars of Pseudomonas syringae pv. actinidiae in New Zealand. Plant Dis. 97:708–19 [Google Scholar]
  140. Wall T. 140.  2011. How to Save our Kiwifruit Industry. Sunday Star Times Oct. 10. http://www.stuff.co.nz/sunday-star-times/features/5832697
  141. Wang Z, Tang X, Liu S. 141.  1992. Identification of the pathogenic bacterium for bacterial canker on Actinidia in Sichuan. J. Southwest Agric. Univ. 14:500–3 (From Chinese) [Google Scholar]
  142. Xin X-F, Nomura K, Aung K, Velásquez AC, Yao J. 142.  et al. 2016. Bacteria establish an aqueous living space in plants crucial for virulence. Nature 539:524–29 [Google Scholar]
  143. Young JM, Gardan L, Ren XZ, Hu FP. 143.  1997. Genomic and phenotypic characterization of the bacterium causing blight of kiwifruit in New Zealand. Plant Pathol 46:857–64 [Google Scholar]
  144. Zhao ZB, Gao XN, Huang QL, Huang LL, Qin HQ, Kang ZS. 144.  2013. Identification and characterisation of the causal agent of bacterial canker of kiwifruit in the Shaanxi province of China. J. Plant Pathol. 95:155–62 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080516-035530
Loading
/content/journals/10.1146/annurev-phyto-080516-035530
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error